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Abstract
In this paper new explicit integrators for numerical solution of stiff evolution equations are
proposed. As shown by Bassenne, Fu and Mani in (J Comput Phys 424:109847, 2021), the
action on the original vector field of the stiff equations of an appropriate time-accurate and
highly-stable explicit (TASE) linear operator, allows us to use explicit Runge–Kutta (RK)
schemes with these modified equations so that the resulting algorithm becomes stable for
the original stiff equations. Here a new family of TASE operators is considered. The new
operators, called Singly TASE, have the advantage over the TASE operators of Bassenne et
al. that the action on the vector field depends on the powers of the inverse of only one matrix,
which can be computationally more simple, without loosing stability properties. A complete
study of the linear stability properties of k–stage, kth–order explicit RK schemes under the
action of Singly TASE operators of the same order is carried out for k ≤ 4. For orders two,
three and four, particular schemes that are nearly strongly A–stable and therefore suitable for
stiff problems are devised. Further, explicit RK schemes with orders three and four that can
be implemented with only two storage locations under the action of Singly TASE operators
of the same order are discussed. A particular implementation of the classical four–stage
fourth–order RK scheme with two Singly TASE operators is presented. A set of numerical
experiments has been conducted to demonstrate the performance of the new schemes by
comparing with previous RKTASE and other established methods. The main conclusion is
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that the new integrators provide a very simple solver for stiff systems with good stability
properties and avoids the difficulties of using implicit algorithms.

Keywords Differential equations · Stiff problems · Runge–Kutta methods · Time-marching
schemes

1 Introduction

Numerical methods for the solution of stiff Initial Value Problems must have adequate sta-
bility properties. Unfortunately, for general problems such properties imply that the method
must be implicit, which makes the implementation of the integrators complicated and the
computational cost can be large for high dimensional problems. However, for particular
classes of stiff problems, explicit Runge–Kutta (RK) schemes with suitable stability proper-
ties can be constructed. For example, in the semidiscretization of parabolic PDEs, that are
known to have large negative real spectrum, the so called (damped) Chebyshev Runge–Kutta
methods [1–3] can be adequate. These methods are explicit, and with s stages and order less
or equal than two they have a stability interval [−α, 0] with α ≤ 2 s2 (see e.g. [1]), and a
thin stability region around the real axis and they have given raise to an integration code [4].
This class of schemes can solve stiff problems with eigenvalues located near the real axis,
but at the price of having probably a large number of (explicit) stages.

In [5, 6], a family of explicit Runge–Kutta schemes, referred to as Paired Explicit Runge–
Kutta schemes, that are suitable for the solution of stiff systems of equations, is proposed.
The P-ERK approach allows Runge–Kutta schemes to have a (bounded) large stability region
at the price of having a large number of stages, and this make the schemes suitable for midly
stiff problems. Highly stiff problems would require a very large number of (explicit) stages.

For stiff problems for which the eigenvalues of the Jacobian matrix are separated into two
clusters, one containing the “stiff” or fast components, and the other containing the slow
components, Bocher et al. [7] proposed a family of explicit Runge–Kutta schemes that use
exponential fitting techniques. The stability region of these methods contains two regions,
one close to the origin and the other one fitting the large eigenvalues.

In this paper we are considering a different approach to solve stiff problems by means
of explicit RK methods. This approach was proposed by Bassenne, Fu and Mani in a recent
paper [8], where, together the differential system associated to the step from (tn, Yn) to
(tn + �t, Yn+1)

d

dt
Y (t) = F(t, Y (t)), Y (tn) = Yn ∈ R

N (1)

the authors consider a second IVP that here will be called the stabilized IVP

d

dt
U (t) = T F(t, U (t)), U (tn) = Un ≡ Yn ∈ R

N , (2)

where T = T (�t L) is a linear operator, referred to as the TASE operator, that depends on
the product of the time step size �t and a d-dimensional linear operator L that approximates
the Jacobian Fu(tn, Un) at the initial values at each time-step. The TASE operator is choosen
so that the numerical solution of Eq. (2) URK (tn +�t) obtained with an explicit RK of order
p approximates the exact solution of (1), Y (tn + �t) at tn + �t with order p i.e.

URK (tn + �t) − Y (tn + �t) = O(�t p+1), (�t → 0),
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and also URK (tn + �t) satisfies some stability requirements, such as A- or L- stability, that
are necessary for solving stiff systems. Thus the introduction of the TASE operator into the
original governing equation allows us to overcome the numerical stability restrictions of
explicit RK time-advancing schemes for solving stiff systems.

In the simplest case of a linear system, i.e., F(t, Y ) = L Y , by defining the TASE operator
as T = (I − �t L)−1 and solving Eq. (2) with the explicit Euler with the time step size �t ,
we get the approximation Un+1 = URK (tn + �t) ≈ U (tn+1) given by

Un+1 = Un + �t T L Un = Yn + �t(I − �t L)−1L Yn = (I − �t L)−1 Yn,

which is equivalent to apply the first order BDF method to the original problem (1) and as
shown in [9] is L-stable and therefore does not have stability restrictions on the step size�t for
diffusion problems and other stiff systems with strongly damped components in the solution.
On the other hand by choosing T = (I − (�t/2)L)−1 and solving again the stabilized IVP
by explicit Euler’s scheme we get

Un+1 = Yn + �t (I − (�t/2)L)−1 L Yn = (I + (�t/2)L) (I − (�t/2)L)−1 Yn,

that is the implicit midpoint rule (see [10], p. 204) that is suitable for convective problems.
Observe that according to the nonlinear variation-of-constants formula [10, p. 96], assum-

ing that F is sufficiently smooth the solutions of (1) and (2) satisfy

U (tn + �t) − Y (tn + �t) =
=

∫ tn+�t

tn

∂Y

∂Yn
(tn + �t; s, U (s)) [T F(s, U (s)) − F(s, U (s))] ds (3)

=
∫ tn+�t

tn

∂Y

∂Yn
(tn + �t; s, U (s)) (T − I ) F(s, U (s)) ds,

where Y (t) ≡ Y (t; tn, Yn) is the solution of (1). Hence if the TASE operator T = T (�t L)

satisfies

T (�t L) = I + O(�tq), (�t → 0), (4)

for some integer q ≥ 1 (the order of approximation of the operator to the identity), it follows
from (3) that

‖U (tn + �t) − Y (tn + �t)‖ ≤ O(�tq+1), (�t → 0). (5)

Moreover if the explicit RK scheme applied to the stabilized equation (2) has order p,
then

‖U (tn + �t) − URK (tn + �t)‖ = O(�t p+1), (�t → 0), (6)

and from Eqs. (5) and (6) it follows that

‖Y (tn + �t) − URK (tn + �t)‖ = O(�tmin(p,q)+1). (�t → 0). (7)

That is, the numerical solution of the stabilized system Eq. (2), URK (tn) has at least order
min(p, q).

A crucial point in the above approach is the construction of TASE operators that satisfy
(5) together with the A–stability and/or L–stability requirements. In [8], the authors propose
the TASE operator T = Tp(α �t) defined recursively by

Tp(α�t) =
⎧⎨
⎩

(I − α �t L)−1, if p = 1,(
2p−1

2p−1 − 1

)
Tp−1

(α

2
�t

)
−

(
1

2p−1 − 1

)
Tp−1(α �t), if p > 1,

(8)
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Here Tp(α�t) has an accuracy of order p and α > 0 is a real parameter to be chosen by the
stability requirements. By choosing α ≥ αmin = (2p − 1) C−1

p , where C p is the stability
abscissae of the explicit RK scheme of order p, some specific schemes that combine explicit
p–stage RK schemes with orders p ≤ 4 and TASE operators with the same orders have
been derived in [8], and their linear stability properties have been studied as well. Moreover
applications to some benchmark equations showed that this approach leads to time marching
algorithms that can be easily implemented and do not suffer from the stability restrictions on
the step size.

More recently, Calvo et al. [11] have considered a more general family of TASE operators
with the form

T = Tp =
p∑

j=1

β j (I − α j �t L)−1, (9)

where β j and α j > 0, j = 1, . . . , p, are free real parameters with α j distinct between them,
and β j uniquely determined by the condition Tp = I +O(�t p). Here the free parameters α j

have been selected to improve the linear stability properties of an explicit RK scheme with
order p for the scaled equation Eq. (2).

Even though TASE operators are very recent, they have already been considered in a
number of related papers ([12–14]) which encourages us to advance in this research.

Note that, in the TASE operators of types described by Eqs. (8) and (9), each Tp evaluation
involves the inversion of the p linear operators (I −�t α j L), j = 1, . . . , p, for given positive
α j . In fact, for an s–stage explicit RK scheme defined by the Butcher tableau [15]

0
c2 a21
...

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

ci =
i−1∑
j=1

ai j , i = 2, . . . , s,

the numerical solution of Eq. (2) is advanced from (tn, Un) → (tn+1 = tn + �t, Un+1)

by the formulas

Un+1 = Un + �t [b1 K1 + · · · + bs Ks] , (10)

where K j , j = 1, . . . , s are computed recursively from the formulas

F1 = F(tn, Un),

K1 = T F1 = ∑p
j=1 β j (I − α j �t L)−1 F1,

F2 = F (tn + c2�t, Un + �t a21K1) ,

K2 = T F2 = ∑p
j=1 β j (I − α j �t L)−1 F2,

...

Fs = F
(

tn + cs�t, Un + �t
∑s−1

k=1 ask Kk

)
,

Ks = T Fs = ∑p
j=1 β j (I − α j �t L)−1 Fs .

(11)

The explicit scheme defined by the Eqs. (10), (11), will be called a RKTASE scheme with
s stages and order p. Now the computational cost is the s evaluations of the vector field in
Eq. (11) and the computation of the p × s matrix operations

(I − α j �t L)−1 Fk, j = 1, . . . , p, k = 1, . . . , s.
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Note that these operations do not require the computation of the inverse of the matrices,
because as usual they can be done by solving the associated linear systems.

The aim of this paper is to study a new family of RK TASE schemes associated to TASE
operators given by

T = STp(�t L) =
p∑

j=1

βpj (I − �t α L)− j , α > 0, (12)

whereα > 0 andβp, j , j = 1, . . . , p are real parameters. Itwill be seen thatβpj , j = 1, . . . , p
are uniquely determined as functions of α by the condition that STp(�t L) = I + O(�t p).
Note that this family is not a subclass of the family (9) because that family dependes on the
operator (I − �t α j L)−1 with the power −1 whereas in the proposed family the operator
(I − �t α L)− j , with power − j is used.

The reason of the choice (12) is that the calculation of the stabilized stages STp Fk

requires a matrix operation with only the powers of the inverse of one matrix (I − �t α L).
Moreover it will be seen that with a suitable choice of the free parameter α > 0 the linear
stability properties are similar to the RK TASE schemes with the TASE operator (9). Clearly,
these operators require the solution of s linear systems all of them with the same matrix
(I − �t α L), similarly to the case of Singly Implicit RK methods [16, 17] and the Singly
Diagonally RK methods [18, 19] when simplified Newton is used to solve the implicit stage
equations. For this reason, the TASE operators (12) will be called Singly–TASE operators
hereafter. Moreover, for high dimensional ODEs that arise in the spatial semidiscretization
of some PDEs, the techniques used in their numerical solution must take into account not
only the accuracy and stability properties and it may be convenient to use low–storage RK
schemes [20, 21]. Then we will consider the use of the schemes that combine 2N–storage
RK schemes where N is the dimension of the system of ODEs, with Singly TASE operators.

The outline of this paper is as follows. In Sect. 2, we propose a new family of TASE
operators of order p that requires the computation of p linear systems with the same matrix
of coefficients. Theydependonone free parameterd = α−1 that can be optimized to adjust the
stability properties of the resulting Singly–RKTASE scheme. In Sect. 3, the stability of two-
stage Singly–RKTASE schemes with order two is studied, and the necessary and sufficient
conditions on the free parameter d for A-stability and strong A-stability are obtained; In
Sect. 4, the stability of three-stage Singly–RKTASE schemes with order three is considered.
It is observed that there are no A-stable schemes, but there exist A(θ)-stable schemes with
θ = 89.05 degrees and also strongly A(θ)-stable schemes with θ = 88.99 degrees; Sect. 5
deals with the case of four-stage schemes with order four. It is noticed that no scheme of
this class can be A-stable, but there are A(θ)-stable and strongly A(θ)-stable schemes with
θ = 87.18 and θ = 87.17 degrees, respectively. Finally, in Sect. 5, we present the results
of some numerical experiments with selected stiff benchmark problems, comparing the new
schemes with previous RKTASE schemes and also with Rosenbrock and Singly Diagonally
Implicit RK (SDIRK) methods.

2 Singly–RKTASE Schemes

To simplify some expressions, Eq. (12) will be written in the equivalent form

T = STp(�t L) =
p∑

j=1

bpj (d I − �t L)− j , (13)
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where d = α−1 > 0, and bpj = βpj α− j , j = 1, . . . , p.
First of all, we determine the coefficients bpj of Eq. (13) so that STp has order (�t)p ,

i.e.,

STp(�t L) = I + Q p (�t)p L p + O(�t p+1).

This is equivalent to say that the scalar function STp(z), defined as

STp(z) =
p∑

j=1

bpj (d − z)− j , (14)

should be of order z p , i.e.,

STp(z) = 1 + Q pz p + O(z p+1), z → 0.

Then such a requirement leads to the non-singular linear system of p equations with regard
to p unknowns bpj , j = 1, . . . , p, that are

p∑
j=1

bpj d
− j = 1,

p∑
j=1

bpj d
− j

(
j + k − 1

k

)
= 0, k = 1, . . . , p − 1.

It has the unique solution

bp, j =
(

p
p − j

)
d j (−1)−1+ j , j = 1, . . . , p. (15)

Furthermore, the error coefficient Q p of the Singly–TASE operator Eq. (14) with the coeffi-
cients Eq. (15) satisfies

Q p = (−1)p+1

d p p! .

Also in view of Eq. (15), the function Eq. (14) can be written in the compact form

STp(z) = (z − d)p − z p

(z − d)p
. (16)

In particular for p = 2, 3, 4, the coefficients bpj have the values

b21 = 2d, b22 = −d2,

b31 = 3d, b32 = −3d2, b33 = d3,

b41 = 4d, b42 = −6d2, b43 = 4d3, b44 = −d4.

Next, we study the linear stability properties of an explicit s–stage RK scheme of order
p combined with a singly TASE operator of the same order. When applied to the scalar test
equation y′ = λy with λ ∈ C, the modified equation becomes

u′ = STp(�t λ) λ u,

and therefore if

Rs(z) = 1 + z + · · · + z p

p! + ap+1
z p+1

(p + 1)! + · · · + as
zs

s!
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is the stability function of the explicit s–stage RK scheme with some real coefficients a j , the
stability function of the stabilized scheme RST (z) will be

RST (z; d) = Rs
(
z STp(z)

) =
p∑

j=1

1

j !
[
z STp(z)

] j +
s∑

j=p+1

a j

j !
[
z STp(z)

] j
.

Recall the following stability properties:

• A method is called A-stable if |RST (z)| ≤ 1 for all Re z ≤ 0;
• A method is said to be L–stable if it is A–stable and |RST (∞)| = 0;
• A method is called Strongly A–stable if it is A–stable and |RST (∞)| = μ < 1;
• A method is called A(θ)–stable if |RST (z)| < 1 for all z such that arg(−z) ≤ θ , that is,

its stability region contains the left hand region of the complex plane with angle θ . If in
addition RST (∞) = 0 (resp. |RST (∞)| < 1), it is called L(θ)–stable (resp. Strongly
A(θ)–stable).

We first derive a necessary condition for A–stability. Since

lim
z→∞ z STp(z) = bp1 = −p d,

then

RSTs(∞; d) = lim
z→∞ RSTs(z) = Rs(−p d),

and therefore for given values of s ≥ p, a necessary condition for A–stability is that the
available positive parameter d satisfies

|Rs(−p d)| ≤ 1. (17)

A sufficient condition for A–stability can be derived from the application of the modulus
maximum theorem to RSTs(z) along the imaginary axis z = i y. In fact, it follows from
Eq. (16) that RSTs(z) has the form

RSTs(z; d) = Rs(zTs) = π2s(z)

(z − d)2s
,

where the numerator π2s(z) is a polynomial in z of degree ≤ 2 s with coefficients depending
polynomially on d . Now,

|RSTs(i y; d)|2 = |π2s(i y)2|
(y2 + d2)2s

is an even function of y and taking into account that the scheme has order p

|RSTs(i y)|2 − 1 = μ2p y2p + μ2p+2 y2p+2 + · · · + μ4s y4s

(y2 + d2)2s
, (18)

with μ j polynomial functions of d .
Clearly, a necessary and sufficient condition for A–stability is that the numerator ofEq. (18)

should be ≤ 0 for all y2 > 0, or else that the polynomial

Ps(u) = μ2p + μ2p+2 u + · · · + μ4s u2s−p−1 ≤ 0, (19)

for all u > 0. In general, this condition becomes too complicated to be checked, but there is
a necessary condition that can be easily checked, for example that μ2p ≤ 0.

123
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3 Second Order Singly–RKTASE Schemes

We need at least a two–stage RK scheme with order two combined with a second-order
Singly–TASE operator. Next we study the linear stability properties of this scheme.

The stability function of a two–stage RK scheme with order two is

R2(z) = 1 + z + z2

2
,

and it can be seen that |R2(z)| ≤ 1 if and only if z ∈ [−2, 0]. Further the minimum value of
R2(z) in the interval [−2, 0] is attained at z = −1 with R2(−1) = 1/2. The first necessary
condition for A–stability (17) holds if and only if d ∈ (0, 1].

Next, we investigate whether or not this condition is also sufficient. We consider the
polynomial Eq. (19) with s = p = 2 that is

P2(u) = μ4 + μ6u + μ8u2,

with

μ4 = d5(d3 − 16), μ6 = 8d6 − 8d5 − 32d3, μ8 = 16d4 − 32d3 + 32d2 − 16d.

Sinceμ4 < 0,μ6 < 0 andμ8 ≤ 0 for all d ∈ (0, 1], for all d ∈ (0, 1] all second order Singly
RK schemes with s = 2 are A–stable. Moreover for all d ∈ (0, 1), |RST2(∞)| < 1 and the
schemes are strongly A–stable. In particular min |RST2(∞)| = 1/2 is attained for d = 1/2
and therefore there are no L–stable second order Singly RK schemes with two stages.

If we want to have L–stable second order Singly RK schemes we must consider second
order RK schemes with s = 3 three stages. Now the stability polynomial will be

R3(z) = 1 + z + z2

2! + a3
z3

3! , (20)

and the condition

lim
z→∞ R3(ST2(z) z) = 0

is satisfied if and only if

a3 = 3(1 − 2d + 2d2)

4d3 . (21)

A numerical study of the conditions (18) and (19) leads to conclude that |T ST2(iy)| ≤ 1 for
all y ∈ R iff d ∈ (0.2625 . . . , 1.915 . . .). In conclusion we may state the following

Theorem 1 (1) A Singly–RKTASE scheme of order two with two stages is A–stable if and
only if the parameter d satisfies d ∈ (0, 1] (α ≥ 1).

(2) For all d ∈ (0, 1) the Singly–RKTASE schemes are strongly A–stable. Themin |RST (∞)|
= 1/2 is attained for d = 1/2.

(3) There exist L–stable Singly –RKTASE schemes of second order and three stages with
stability function given by (20) with (21) for all d ∈ (0.2625 . . . , 1.915 . . .).

In the right plot of Fig. 1, we display (solid line) the boundary of the stability region of the
Singly–RKTASE RT2 for d = 1 as well as (dashed line) that of the Singly–RKTASE scheme
with d = 1/2. A remarkable fact is that the stability regions are not connected. In fact, apart
from the component that includes the negative complex plane, they have a small component

123
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Fig. 1 Boundary of the stability region of A–stable second-order TASE schemes Left: RKTASE, Right:
Singly–RKTASE. Solid lines correspond to the schemes for which RT2(∞) = 1 and dashed lines to the
schemes for which RT2(∞) = 1/2 is minimum

in the positive complex semi–plane. For comparison purposes, we plot also in the left plot of
Fig. 1 the boundary of the stability regions of the RKTASE schemes proposed in [8, 11].

In addition to the plots, we include in the Figure two tables with the error coefficient Q2

and the stability angle θ that, since all the schemes are A–stable, is 90 degrees.
In view of the Tables displayed in Fig. 1 it can be seen that the RKTASE schemes, in

spite of having been selected within a family with two free parameters α1 and α2, have
larger error constants than those of the Singly–RKTASE schemes, for which there is only
one free parameter α = 1/d . Finally, it is worth to remark that (see [10]) there exist a one–
parameter family of two–stage RK schemes with order two, and each scheme of this family
supplemented with Singly TASE ST2 leads to Singly–RKTASEwith the same linear stability
properties.

4 Third Order Singly–RKTASE Schemes

Wewill consider three–stage third order RK schemes. The third-order Singly TASE operator
is defined by

ST3(z) = 3d

(d − z)
+ −3d2

(d − z)2
+ d3

(d − z)3
= (z − d)3 − z3

(z − d)3

and taking into account that the stability function of a three-stage RK scheme with order
three is

R3(z) = 1 + z + z2

2! + z3

3! , (22)

the stability function of the third-order RKTASE is

RST3(z; d) = 1 + (z T3(z)) + (z T3(z))2

2! + (z T3(z))3

3! .
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Recalling that R3(z) given by Eq. (22) satisfies |R3(z)| ≤ 1 if and only if z ∈ [zsol , 0] with

zsol = −1 −
(
−4 + √

17
)−1/3 +

(
−4 + √

17
)1/3 � −2.51275,

the first necessary condition for A–stability (17) holds iff

d ∈ (0,−zsol/3 = dA]. (23)

Moreover, since

|RST3(i y)|2 − 1 =
(

− 1

12
+ 2

d3

)
y4 + O(y6), (24)

and for all d that satisfies Eq. (23) the coefficient of y4 in Eq. (24) is positive, all the schemes
that satisfy Eq. (23) cannot be A–stable. In fact, the stability region does not contain the
imaginary axis around the origin and is nearly A–stable.

On the other hand, since R3(uL) = 0 for

uL = −1 −
(
−1 + √

2
)−1/3 +

(
−1 + √

2
)1/3 � −1.59607,

with d = dL = −uL/3, RST3(∞;−3 dL) = 0, then RST3(−3dL) = 0 for dL = −uL/3
and consequently the corresponding scheme is L(θ)–stable. Hence we conclude:

Theorem 2 (1) A Singly–RKTASE scheme of order three with three stages cannot be A–
stable.

(2) For d = dA the three stage Singly–RKTASE is A(θ)– stable with θ = 89.05◦.
(3) For d = dL the three stage Singly–RKTASE is L(θ) stable with θ = 88.99◦.

In the right plot of Fig. 2, we display (solid line) the boundary of the stability region of
the third-order Singly–RKTASE scheme with d = dA together with (dashed line) that of the
Singly–RKTASE scheme with d = dL that is nearly L–stable. In the left plot of the Fig. 2
we also display the boundary of the stability regions of the RKTASE schemes of order three
proposed in [8, 11]. In addition to the plots, we include in the Fig. 2 two tables with the error
coefficient Q3 and the stability angle θ in degrees.

For the third-order schemes, the error coefficients of the Singly–RKTASE schemes are
smaller than those of the RKTASE schemes. However, the stability angle (none of them is
A-stable) is slightly smaller for the Singly–RKTASE schemes.

To show the behavior of the boundaries around the origin, we present here a zoomed-in
view around this point of the boundaries in Fig. 3.

Remark 1 We must remark that (see [10]) there exist a two–parameter family of three–stage
RK schemes with order three. All of these schemes possess the same linear stability function
R(z). Therefore all the associated Singly RKTASE scheme of order three have the same
stability properties that depend only on the parameter d in the ST3 operator. Hence we may
select the RK scheme taking into account some additional criteria as accuracy or low storage
requirements.

As an example of 2N–storage implementation of a third order RK scheme with three
stages supplemented with a Singly TASE ST3, we may consider the RK scheme proposed
by Williamson [20] and Carpenter and Kennedy [21] with the Butcher array

0
1/3 1/3
3/4 −3/16 15/16

1/6 3/10 8/15
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Fig. 2 Boundary of the stability region of third-order schemes. Left: RKTASE, Right: Singly–RKTASE.
Solid lines correspond to the schemes for which RT3(∞) = 1 and dashed lines to the schemes for which
RT3(∞) = 0 is minimum

Fig. 3 Zoom of the boundary of
the stability region of
Singly–RKTASE nearly A–stable
third-order schemes. Solid line
corresponds to d = dA for which
RT3(∞) = 1 and dashed line to
d = dL for which RT3(∞) = 0

where the coefficients have been selected so that they minimize the local truncation error
among the three stage RK schemes with order three that can be cast in the 2N–storage
implementation of Williamson. Recall that in this implementation the two 2N–storage are
U j and dU j that are computed by (see [20])

dU j = A j dU j−1 + �t (ST3) F(U j−1)

U j = U j−1 + B j dU j

}
( j = 1, 2, . . . , p) (25)

with p = 3, U0 = Y0, U3 = Y1 and A j and B j given by

A j 0 −5/9 −153/128
B j 1/3 15/16 8/15

Each successive stage is written onto the same register without zeroing the previous value.

123



   17 Page 12 of 24 Journal of Scientific Computing            (2023) 96:17 

5 Fourth–Order Singly RKTASE

First of all we consider explicit four-stage fourth–order RK schemes supplemented with
Singly TASE operators of order four. Following the notations of the previous sections, we
have

ST4(z) = (z − d)4 − z4

(z − d)4
, R4(z) =

4∑
j=0

z j

j ! , RST4(z; d) =
4∑

j=0

(zT4(z)) j

j ! . (26)

Taking into account that

|R4(z)| ≤ 1 ⇔ z ∈ [γ4, 0],
where γ is the real stability abscissae of R4(z), given by

γ4 = 1

3

[
−4 − 10 21/3 (−43 + 9

√
29)−1/3 + 22/3 (−43 + 9

√
29)1/3

]
� −2.78529,

the necessary condition of A–stability derived from | RST4(∞; d)| ≤ 1 is d ∈ (0, dA =
−γ4/4].

On the other hand, since

min {RST4(∞; d); d ∈ (0,−γ4/4]} = 0.270395,

that is attained at

z = zmin = −1 − (−1 + √
2)−1/3 + (−1 + √

2)1/3 � −1.59607.

The optimal strong A–stability scheme will be for

d = dL = − zmin

4
.

Concerning the second necessary condition for A–stability, we have

|RST4(i y; d)|2 − 1 =
(

− 1

72
+ 8

d5

)
y6 + O(y8), (27)

and taking into account that the coefficient of y6 in Eq. (27) is non negative for all d ∈
(0,−γ4/4], all schemes that satisfy this condition are not A–stable. In fact, small values of
z = iy near the origin in the imaginary axis are not contained in the stability region of the
scheme, and we conclude:

Theorem 3 (1) A Singly–RKTASE scheme of order four with four stages can not be A–stable.
(2) For d ∈ (0,−γ4/4] the Singly–RKTASE is A(θ) stable. In particular for d = −γ /4 is

A(87.8◦)–stable.
(3) For d ∈ (0,−γ4/4) the Singly-RKTASE is strongly stable. The min |RST4(∞; d)| =

0.270395 is attained for d = dL .

In the right plot of Fig. 4, we display (solid line) the boundary of the stability region of
the fourth-order Singly–RKTASE for d = dA = −γ4/4 together with (dashed line) that of
the Singly–RKTASE scheme with d = dL that is nearly strongly A–stable. In the left plot
of the Fig. 4, we display the boundary of the stability regions of the schemes of order four
proposed in [8, 11].
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Fig. 4 Boundary of the stability region of RKTASE (left plot) and Singly–RKTASE (right plot) fourth-order
schemes. Solid lines correspond to the schemes for which RT4(∞) = 1 and dashed lines to the schemes for
which RT4(∞) = 0.270395 is minimum

Fig. 5 Zoom of the boundary of
the stability region of
Singly–RKTASE nearly A–stable
fourth-order schemes. Solid line
corresponds to d = dA for which
RT4(∞) = 1 and dashed line to
d = dL for which
RT4(∞) = 0.270395

In addition to the plots, we include in the Fig. 4 two Tables with the error coefficients
Q4 and the stability angles θ in degrees. It can be seen in the Tables that the properties of
Singly–RKTASE schemes are very similar to those of RKTASE schemes.

To show the behavior of the boundaries around the origin, we present here a zoomed-in
view around this point of the boundaries in Fig. 5.

One may wonder whether or not the consideration of RK schemes with five stages and
order four would make possible to have L–stable schemes. For a five–stage fourth–order RK
scheme the stability function is

R5(z) =
4∑

j=0

z j

j ! + ν
z5

5! ,

123



   17 Page 14 of 24 Journal of Scientific Computing            (2023) 96:17 

with some constant ν �= 0. Then a necessary condition for L–stability is

lim
z→∞ R5

(
z ST4(z)

)
= 1

120
(120 − 480d + 960d2 − 1280d3 + 1280d4 − 1024d5ν) = 0

and a numerical study shows that this condition is not compatible with∣∣∣R5

(
iy ST4(iy)

)∣∣∣ ≤ for all y ∈ R.

Remark 2 It can be seen (see [10], page 135) that there exist several families of four–stage
fourth–order RK schemes depending on one or two parameters. All these schemes have the
same linear stability function R(z). Clearly each of these schemes combined with the Singly
TASE ST4 gives a Singly RKTASE with order four whose stability properties depend only
on the parameter d . Hence wemay select the RK scheme taking into account some additional
criteria as accuracy or low storage requirements.We can for example take a four stages fourth
order low-storage Runge Kutta scheme (see e.g. [22]) or else the classical RK of order four
and combine it with the Singly TASE operator ST4 and apply it to stiff problems.

6 The Implementation of Singly RKTASE Schemes

In this section we examine the main issues in the implementation of a Singly RKTASE
scheme for the numerical solution of stiff IVPs (1). We will consider the case of four stages,
s = 4, but the generalization to any other s is straightforward. For the Singly TASE operator
ST4 = ST4(�t L) (26) we will take either d = −γ4/4 (A(θ = 87.18◦)–stable) with
RST4(∞; dA) = 1 or else d = dL ( strongly A(θ = 87.17◦)–stable) with RST4(∞; dL) =
0.270395.

A first point is the choice of the linear operator L in ST4. If the original IVP (1) is linear
F(t, Y ) = M(t) Y +g(t), the safest option is to take at the step from tn to tn +�t , L = M(tn).
In the non linear case we could take L = ∂Y F(tn, Yn). However, the order of the scheme is
not reduced if L is not the exact Jacobian, so we can take an approximation instead whenever
the stability of the numerical solution is maintained. Something similar happens with implicit
Runge–Kutta methods, where the Jacobian matrix is often frizzed for several steps unless
the iterative scheme used has som problems to converge. Thus, to reduce the computational
effort, we can freeze the Jacobian for several steps (even the whole integration), or even take
an approximation to it that makes the solution of the linear systems cheaper.

A second point is the computation of the scaled stages (11)

Kk = (ST4) Fk, k = 1, . . . , 4. (28)

Taking into account that

ST4 =
4∑

j=1

β4 j (d I − �t L)− j ≡
4∑

j=1

β4 j W − j , (29)

with

β41 = 4, β42 = −6, β43 = 4, β44 = −1, W = (d I − �t L) (30)

we compute (28) by using a Horner type algorithm because due to (29), Kk can be written
in the form (((−W −1 + 4

)
W −1 − 6

)
W −1 + 4

)
W −1 Fk .
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And therefore given Fk computed by (11) and W = d I − �t L , the scaled stage Kk of (28)
can be computed by the recurrence

1: Kk ← 0
2: for j from 4 to 1 step −1 do
3: Kk ← Kk + β4 j Fk
4: Kk ← solution of W x = Kk
5: end for

The implementation of the complete RKTASE integrator is very simple. We can take the
implementation of the explicit Runge–Kutta scheme (of order four in this case) and add the
above algorithm just after each evaluation of the vector field. With this, the integrator can be
used to solve stiff problems.

7 Numerical Experiments

In this section, some numerical experiments are presented to confirm the theoretical analyses
in the above sections and to compare the performance of our proposed Singly–RKTASE
methods with that of the methods in [8] and [11]. Specifically, we will consider the following
fourth-order RKTASE and Singly–RKTASE methods based on the classical RK scheme of
fourth-order given by the Butcher array

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

and the following TASE operators:

TASE-A (not strongly) A(θ)–stable, θ = 88.36, for which |RT4(∞)| = 1 [8] and the
parameters are given as

α = 5.38542873795360379398, b1 = −1/21,
α2 = α1/2, b2 = 2/3,
α3 = α1/4, b3 = −8/3,
α4 = α1/8, b4 = 64/21.

TASE-S Strongly A(θ)–stable, with minimum value |RT4(∞)| = 0.270395 [11] and the
parameters are given as

α1 = 3.939556, b1 = −2.3487740262789467740,
α2 = 2.450558, b2 = 139.59763724183703275,
α3 = 2.227083, b3 = −313.52837746665272729,
α4 = 2.061235, b4 = 177.27951425109464132.

STASE-A (not strongly)A(θ)–stable Singly–RKTASE, θ = 87.18, forwhich |RT4(∞)| = 1
and the parameters are given as

γ4 = −2.7852935634052827,
α = −4/γ4 = 1.4361143301209602,
b1 = 4, b2 = −6, b3 = 4, b4 = −1.
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STASE-S StronglyA(θ)–stable,withminimumvalue |RT4(∞)| = 0.270395 and the param-
eters are given as

zmin = −1.5960716379833215,
α = −4/zmin = 2.5061531730831987,
b1 = 4, b2 = −6, b3 = 4, b4 = −1.

We want also to compare the proposed methods with some Rosenbrock methods [23], which
have a structure similar to RKTASE schemes, and with the SDIRK methods [18, 19]. More
specifically, the following methods will be used.

SDIRK-A Fourth-order, three-stage, SDIRK A-stable scheme (see Hairer et al. [9]) defined
by the Butcher array

γ γ

1

2

1

2
− γ γ

1 − γ 2γ 1 − 4γ γ

δ 1 − 2δ δ

γ = 1√
3
cos

( π

18

)
+ 1

2
,

δ = 1

6(2γ − 1)2
.

SDIRK-L Fourth-order, five-stage, SDIRK L-stable scheme (see Hairer et al. [9]) defined
by the Butcher array

1

4

1

4
3

4

1

2

1

4
11

20

17

50
− 1

25

1

4
1

2

371

1360
− 137

2720

15

544

1

4

1
25

24
−49

48

125

16
−85

12

1

4

25

24
−49

48

125

16
−85

12

1

4

ROS-L Fourth-order, four-stage, L-stable Rosenbrock method (see Hairer et al. [9])
defined by the equations

(
1

hγ
I − fy(t0, y0)

)−1

ui

= f

⎛
⎝t0 + αi h, y0 +

i−1∑
j=1

ai j u j

⎞
⎠ +

i−1∑
j=1

ci j

h
u j + hγi ft (t0, y0), i = 1, . . . , 5,

y1 = y0 + ∑s
j=1 m j u j .
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a21 = 2 c21 = −7.13761503641231,
a31 = 1.867943637803922 c31 = 2.580708087951457,
a32 = 0.2344449711399156 c32 = 0.6515950076447975,
α2 = 1.14564 c41 = −2.137148994382534,
α3 = 0.655216863815590 c42 = −0.3214669691237626,
γ = 0.57282 c43 = −0.6949742501781779,
γ1 = γ m1 = 2.255570073418735,
γ2 = −1.769193891319234 m2 = 0.2870493262186792,
γ3 = 0.759263343792048 m3 = 0.4353179431840180,
γ4 = −0.104902108710045 m4 = 1.093502252409163.

With these methods, we will integrate the following four stiff differential problems, with
which two of them are linear while the other two are non-linear.

• Problem 1 (linear) The 1D diffusion of a scalar function y = y(x, t), with a time
dependent source term (taken from [8] and [11])

∂ y

∂t
= ∂2y

∂x2
+ A sin(t/τs), τs = 50, A = 1/10.

The solution y = y(x, t) is assumed to be 2π -periodic in x . As the initial condition, we
have taken

y(x, 0) = 1 − cos(x)101.

For the spatial discretization, we have used fourth-order centered difference schemes
with a grid resolution of N = 512 (�x = 2π/512) and periodic conditions are assumed
at the two domain boundaries. The real part of the eigenvalues of the Jacobian matrix of
the semi-discrete problem ranges from −3.5 × 104 to 2.79 × 10−5.

• Problem 2 (linear) The two-species advection–diffusion–reaction problem in the
bounded domain of 0 ≤ x ≤ 1 is taken from [8] as

∂ y1
∂t

+ U
∂ y1
∂x

= ∂2y1
∂x2

+ K (y2 − y1),

∂ y2
∂t

+ U
∂ y2
∂x

= ∂2y2
∂x2

− K (y2 − y1),

with K = 104, D = 102, and U = 102. Two different initial and boundary conditions
have been considered as

(i)

y1(x, 0) = x, y2(x, 0) = x2,
y1(0, t) = y2(0, t) = 0,
y1(1, t) = y2(1, t) = 1.

(ii)

y1(x, 0) = x, y2(x, 0) = 0.1x2,
y1(0, t) = y2(0, t) = 0,
y1(1, t) = 1, y2(1, t) = 1/10.
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Dirichlet condition is assumed at the two boundaries, and for the spatial discretization,
we used fourth-order centered difference schemes in x ∈ [0, 1], with a grid resolution of
N = 256 (�x = 1/256). The real part of the eigenvalues of the Jacobian matrix of the
semi-discrete problem ranges from −3.5 × 107 to 1.4 × 10−9 in both cases, suggesting
that the problem is highly stiff.

• Problem 3 (non-linear) The 1D Burgers’ equation can be written in the conservative
form as

∂ y

∂t
= ε

∂2y

∂x2
− ∂

∂x

( y

2

)2
,

where ε > 0 denotes the constant viscosity coefficient. The initial condition y(x, 0) is
given as

y(x, 0) = 1 − cos(x)101.

The solution is 2π -periodic, and we have solved this problem on a spatial grid of 0 ≤ x ≤
2π using fourth-order centered difference schemes with a grid resolution of N = 512
(�x = 2π/512). Periodic conditionswill be used for both boundaries. The real part of the
eigenvalues of the Jacobian matrix of the semi-discrete problem ranges from−3.5×103

to 2.6 × 10−6, indicating that the problem is mildly stiff.
• Problem 4 (non-linear) This non-linear problem is taken from [8] with the governing

equation as

∂ y

∂t
= ∂

∂x

(( y

2

)β ∂ y

∂x

)
, y(x, 0) = 1 + e−x2/4, x ∈ [−5, 5],

where β is a positive constant.
For the spatial discretization, we have used fourth-order centered difference schemes
with a grid resolution of N = 512 (�x = 2π/512). Neumann conditions, i.e.,
∂ y/∂x |x=−5 = 2.5e−25/4 and ∂ y/∂x |x=5 = −2.5e−25/4, are assumed at the left and
right domain boundaries, respectively. The real part of the eigenvalues of the Jacobian
matrix of the semi-discrete problem ranges from −1.38 × 104 to 6.41 × 10−6.

With respect to the implementation of TASE operators, for the linear problems 1 and 2 we
have taken as operator L the Jacobian matrix of the vector field F(t, Y ). Since in both cases
this matrix is constant it was computed just once at the first time-step.

For the nonlinear problem 4 we have taken as operator L the Jacobian matrix of the vector
field F(t, Y ), computed by standard finite difference schemes and it has been re-evaluated
at each time-step.

For problem 3 we have taken as operator L the Jacobian matrix of only the diffusion term,
which is not the Jacobian matrix of the full vector field at any point (tn, Yn). In this way,
the matrix L is constant and need to be computed only at the first step of the integration.
This has been also used in the implementation of Rosenbrock and SDIRK methods to save
computational effort.

In all the cases, the corresponding linear systems were solved by factorizing the matrix in
the LU form.

For the solution of the non-linear systems that appear in SDIRK methods, we used a
simplified Newton method, iterated until the norm of the difference between two consecutive
approximations was smaller than the threshold of 10−9.
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Fig. 6 Problem 1. Left plot: approximation to y(x, t = 6) given by the methods with time step size �t = 0.2.
Right plot: approximation to y(x = 0, t)

Fig. 7 Problem 1. Efficiency plot.
Maximum error at t = 6
(logarithmic scale) versus CPU
time in seconds

7.1 Results

Regarding the comparison between Singly–RKTASE and previous RKTASE schemes, in all
the cases, all the considered methods behave very similarly with respect to accuracy as well
as stability. The only relevant difference is that the new Singly–RKTASE schemes required,
as expected, a lower computational cost than the standard RKTASE methods.

For the highly stiff problems (i.e., problems 1 and 2), strongly A(θ)-stablemethods present
a better convergence behavior for large time step sizes (see Figs. 6, 7 8, 9). For mildly stiff
problems (problems 3 and 4), the Singly–RKTASE and RKTASEmethods with |R(∞)| = 1
present a slightly better convergence behavior (smaller global error), due to their smaller
error coefficients (see Figs. 11, 12, 13 and 14).

Concerning the computational efficiency, the Singly–RKTASE schemes are clearly more
efficient than the standard RKTASE methods, and, moreover, the strongly A(θ)-stable meth-
ods are more efficient for highly stiff problems.

Regarding the comparison with the classical SDIRK and Rosenbrock methods, for the
highly stiff problems the strongly stable Singly–RKTASE and RKTASE schemes present
efficiency plots (see Fig. 10) comparable to the other methods.

For problem 3, the efficiency of Singly-RKTASE schemes is similar to that of SDIRK
methods for large time step sizes. Rosenbrock scheme (see Fig. 12) looses efficiency because
it does not use the exact Jacobian matrix and this makes the method to lose order of accuracy.
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Fig. 8 Problem 2. Left plot: approximations to y1(x, t = 0.1) with time step size �t = 0.01 and initial
condition y2(x, 0) = x2. Right plot: approximations to y1(x, t = 0.1)with initial condition y2(x, 0) = 0.1 x2

Fig. 9 Problem 2. Left plot: approximations to y1(x = 1/2, t) with time step size �t = 0.01 and initial
condition y2(x, 0) = x2. Right plot: approximation to y1(x = 1/2, t) with initial condition y2(x, 0) = 0.1x2

Fig. 10 Problem 2. Efficiency plot. Maximum error at t = 0.1 (logarithmic scale) versus CPU time

Moreover, for the largest time step size �t = 0.4, Rosenbrock, TASE-A and STASE-A are
not stable enough and the numerical solution becomes very large (Fig. 13).

Rosenbrock and SDIRK methods present better efficiency plots than Singly–RKTASE
methods for problems 1 and 4 (see Figs. 7, and 14). The reason is not the lower computational
cost of these methods (indeed, the cost is similar for all the methods), but the lower global
error given by the integrators. Note that the selected SDIRK and Rosenbrock methods are
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Fig. 11 Problem 3. Left plot: approximation to y(x, t = 6) given by the methods with time step size�t = 0.2.
Right plot: approximation to y(x = 0, t)

Fig. 12 Problem 3. Efficiency
plot. Maximum error at t = 6
(logarithmic scale) versus CPU
time in seconds

Fig. 13 Problem 4 (β = 4). Left plot: approximation to y(x, t = 0.6) given by the methods with time step
size �t = 0.15. Right plot: approximation to y(x = 1/2, t)

among the most efficient ones in their families. This encourages us to undertake a further
research to find the most efficient combination of the RK schemes and the TASE operators.

Also note that SDIRK schemes require, at each time step, the solution of several non-linear
systems by means of some iterative method. It runs the risk that, for a specific problem, the
iterative method fails to converge. In general, any implicit method requires at each step the
solution of one (or more) non-linear implicit system of equations, and therefore the overall
efficiency of the integrator depends strongly on the non-linear solver used. On the other hand,
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Fig. 14 Problem 4 (β = 4).
Efficiency plot. Maximum error
at t = 0.6 (logarithmic scale)
versus CPU time in seconds

the Rosenbrock and TASE methods do not involve any non-linear equation and therefore do
not have this possible problem.

An advantage of the Singly–RKTASEmethods with respect to the Rosenbrock schemes is
that the order of accuracy does not change if we take an approximation to the Jacobian matrix
[24], which further allows to save Jacobian matrix evaluations and LU matrix factorizations,
as was the case for example with problem 3.

8 Conclusions

In this work, a new family of STASE operators for the solution of stiff differential equations
has been proposed. The advantage over previous TASE operators [8, 11] is that they require
the solution of linear systems with the same coefficient matrix, whereas in the previous cases
there are different coefficient matrices. As a consequence, the new STASE method only
relies on the inverse of a single matrix. The new schemes are computationally comparable to
the classical Rosenbrock methods. A detailed study of the accuracy and the linear stability
properties up to fourth-order methods has been carried out, resulting in nearly A–stable and
strongly A–stable Singly–RKTASE schemes. The results of several numerical experiments
have been presented by comparing two new Singly–RKTASE fourth-order schemes with the
standard RKTASEmethods of the same order in [8, 11]. The newmethods are also compared
with the classical SDIRK and Rosenbrock methods.

The main conclusions derived from the numerical experiments are as follows.

• Singly–RKTASE schemes aremore efficient than their correspondingRKTASEmethods.
• For highly stiff problems, strong stability is an essential feature.
• In most problems, Singly–RKTASE schemes introduce larger global errors than the

SDIRK and Rosenbrock methods. Further research needs to be done to find an efficient
and optimal combination of the RK schemes and the STASE operators.
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