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Abstract

Background

Several studies indicate that the anterior visual pathway provides information about the

dynamics of axonal degeneration in Multiple Sclerosis (MS). Current research in the field is

focused on the quest for the most discriminative features among patients and controls and

the development of machine learning models that yield computer-aided solutions widely

usable in clinical practice. However, most studies are conducted with small samples and the

models are used as black boxes. Clinicians should not trust machine learning decisions

unless they come with comprehensive and easily understandable explanations.

Materials and methods

A total of 216 eyes from 111 healthy controls and 100 eyes from 59 patients with relapsing-

remitting MS were enrolled. The feature set was obtained from the thickness of the ganglion

cell layer (GCL) and the retinal nerve fiber layer (RNFL). Measurements were acquired by

the novel Posterior Pole protocol from Spectralis Optical Coherence Tomography (OCT)

device. We compared two black-box methods (gradient boosting and random forests) with a

glass-box method (explainable boosting machine). Explainability was studied using SHAP

for the black-box methods and the scores of the glass-box method.

Results

The best-performing models were obtained for the GCL layer. Explainability pointed out to

the temporal location of the GCL layer that is usually broken or thinning in MS and the rela-

tionship between low thickness values and high probability of MS, which is coherent with

clinical knowledge.
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Conclusions

The insights on how to use explainability shown in this work represent a first important step

toward a trustworthy computer-aided solution for the diagnosis of MS with OCT.

1 Introduction

1.1 Multiple sclerosis

Multiple sclerosis (MS) is a neurodegenerative disease affecting the central nervous system

(CNS). In MS the immune system attacks nerve fibers and myelin sheathing in the brain and

spinal cord. The consequences are inflammation, demyelination, and axonal degeneration in

the whole CNS, destroying nerve cell processes and altering the electrical messages in the

brain. A confirmed diagnosis of MS is difficult, especially in the early stages of the disease

when symptoms could be minor, sporadic, or even resemble other disease conditions. The

diagnosis is based on the McDonald criteria, consisting of clinical, radiographic, and labora-

tory parameters extracted from a neurological examination and the history of neurological

symptoms [1]. The initial version of the McDonald criteria was proposed in 2001 and it has

been revised multiple times. Most recent criteria date from 2017.

To fulfill a diagnosis of MS based on the 2017 McDonald criteria, an individual must show

evidences of CNS damage due to inflammation that is disseminating in space and in time. Dis-

semination in space occurs when the neurological damage is found in multiple parts of the

CNS or multiple regions of the nervous system. Specifically, McDonald 2017 criteria establish

that lesions should appear in at least two of the following four regions in the nervous system:

periventricular, juxtacortical or cortical, and infratentorial areas of the brain, and the spinal

cord. Dissemination in time occurs when the neurological damage is happening at more than

one temporal point of the history of the patient. Damage can be evidenced by a second disease

exacerbation, the appearance of new lesions, or evidence that damage in the same regions hap-

pened at different times (e.g. new inflammatory lesions surrounding older lesions that are no

longer actively inflammed). Magnetic Resonance Imaging (MRI) of the brain and the spinal

cord is used to detect the plaques or scars typical of MS damage. MRI with gadolinium can be

used to distinguish between active and inactive lesions, since gadolinium enhancing lesions

are areas of active inflammation.

In addition, the presence of oligoclonal bands (OB) in the cerebrospinal fluid (CSF) is

indicative of CNS inflammation. Individuals with clinically isolated syndrome (CIS) have

experienced a single episode of MS symptoms, therefore, dissemination in time criteria are not

fulfilled. For these individuals, OB has been established as an independent predictor of relapse.

Therefore, McDonald 2017 criteria establish testing positive for OB as a sufficient criterion

that replaces disemination in time criteria even in patients that show evident damage in just

one temporal point of their history.

Unfortunately, MRI and CSF evaluation are time-consuming, costly, and invasive. For

example, magnetic resonance devices are expensive, and image acquisition may range from 10

to 30 minutes. Gadolinium injections have side effects such as injection site pain, nausea, itch-

ing, dizziness, and headaches. Cerebrospinal fluid samples are acquired through a lumbar

puncture that takes about half an hour under local anaesthetic. It can be described as unpleas-

ant and painful and side effects may include infection of the punction area and headaches. For

these reasons it is worth exploring complementary or alternative criteria to be included in the

McDonald criteria once properly validated.
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1.2 MS and ophthalmic region deterioration

In the last decades, several studies indicate that the anterior visual pathway provides informa-

tion about the dynamics of axonal degeneration in MS [2–11]. The hypothesis is that MS may

be early diagnosed and then followed up from the quantification of the axonal damage in the

neuroretina [3, 12]. The optic nerve is being extensively investigated as a potential location in

future updates to the McDonald criteria [13].

Optical coherence tomography (OCT) is a fast (order of seconds) and non-invasive imaging

technique that allows the segmentation and quantification of the thickness of the different neu-

roretinal layers with less than 2 microns of precision. The discomfort for the patient during

the acquisition is minimum, since he/she only has to stare at a fixed point for a few seconds

while the images are acquired. In particular, OCT has revealed that the retinal nerve fiber layer

(RNFL) reflects the axonal integrity, while the ganglion cell layer (GCL) shows a progressive

thinning since the early stages of MS [2, 14, 15]. These findings point out OCT-derived mea-

surements as biomarkers potentially useful in the diagnosis of the disease.

Commercial OCT devices are distributed with accurate retinal layer segmentation algo-

rithms. They also provide quantification of the layer thicknesses in different ways and loca-

tions. One-dimensional measurements of the layer thicknesses around the optic nerve head

are taken using circular sections such as the peripapillary circle scan. Using this protocol, the

thickness of the peripapillary RNFL (pRNFL) in the temporal sector has been associated with a

level of cognitive and physical disability in MS [2, 16]. In its wide scan protocol, Triton OCT

device (Topcon, Tokyo, Japan) provides a two dimensional grid of measurements of the thick-

ness in macular and peripapillary areas (45 × 60 points). Posterior Pole (PPole) is a new two-

dimensional quantification protocol for Spectralis OCT devices (Heidelberg Engineering, Ger-

many). Similarly to Triton super grid, PPole protocol quantifies the different layer thicknesses

in an 8 × 8 grid. PPole has been satisfactorily used in early glaucoma assessment [17, 18] and

recent studies are conducted to establish its potential to detect changes in RNFL and GCL due

to MS [19, 20]. Current research in the field is focused on the quest for the most discriminative

measurements among MS and controls.

In particular, the PPole protocol of Spectralis OCT constitutes a significant advance in mea-

surement acquisition, because it is based on the high reliability provided by applying the Ana-

tomical Positioning System (APS) to OCT imaging. The APS works by locating points on the

eye using two fixed structural landmarks: the centre of the fovea and the centre of the Bruch

membrane opening. This allows much more precise monitoring, detecting even the slightest

alteration or inter-eye difference because using the APS, in conjunction with the True Track

eye-tracking system (TruTrack, Heidelberg Engineering), ensures accurate identification of

macula position in each eye based on head tilt and eye cyclotorsion. With other protocols, part

of the differences observed in the measurements could be due to differing alignment between

the right and left eyes, to minor anatomical or refractive differences between them, or even to

the patient’s head being positioned on the OCT device’s chin rest at a slight angle impercepti-

ble to the clinician.

1.3 Machine learning in the diagnosis of MS from OCT. Usable solutions

The different ways of quantifying the layer thicknesses have been used as feature sets for build-

ing machine learning systems toward the computer-aided diagnosis of MS. The comprehen-

sive review recently provided by Aslam et al. in [21] describes the advances in the performance

of these methods and discusses some limitations.

Garcia-Martin et al. [22] pioneered the studies of the discrimination capability of multiple

sclerosis vs healthy control (MS vs HC) subjects using ML systems. In this work, artificial
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neural networks (ANN) were used with measurements from the circumpapillary RNFL thick-

ness from Spectralis SD-OCT. The study involved 106 MS patients and 115 age-matched HC.

The best-performing model obtained an AUC of 0.94.

Palomar et al. [23] studied the diagnostic capacity of traditional machine learning methods

in different locations of the neuroretina, centered on the macula (macular protocol) or on the

optic nerve (peripapillary protocol). The authors used a two-dimensional grid of measure-

ments from Triton SS-OCT device. The thickness was computed for the RNFL and GCL+

(GCL + IPL layers, IPL standing for the inner plexiform layer). The study involved 80 MS

patients and 180 age-matched HC. RNFL showed as the best feature set for the prediction of

the disease with a 97.24% of accuracy with decision trees (DT).

Cavaliere et al. [24] combined support vector machines (SVM) with the mean values over

right and left eyes of the macular thickness and the peripapillary area layer thickness from Tri-

ton SS-OCT. Feature selection was performed and the models were built over a feature set of

dimension three. The most discriminant values were the total GCL++ thickness (between the

inner limiting membrane to the inner nuclear layer boundaries) and the macular retina thick-

ness in the nasal quadrant of the outer and inner rings. The study involved 48 MS and 48 HC

subjects. The best-performing model obtained a 91% of accuracy.

Montolio et al. [25] performed an exhaustive study involving different ML methods in the

diagnosis of MS from the RNFL thickness averaged over the peripapillary, superior, nasal, infe-

rior, temporal, and foveal areas. The images were acquired with a Cirrus high definition OCT

device. The study involved 108 MS and 104 HC subjects. The study also included a temporal

analysis of the evolution of the measurements with a follow-up of 10 years. The best-perform-

ing model was obtained from a model ensemble of the best-performing models generated in

the cross-validation. The accuracy of the ensemble was 87.7% while kNN reached an accuracy

of 85.4% and SVM of 84.4%.

Garcia-Martin et al. [26], proposed a method for the early diagnosis of MS. The authors

used a two dimensional grid of measurements from Triton OCT device acquired using wide

protocol (12 × 9 mm). The thickness was computed for the RNFL, GCL+, and GCL++ layers

and features were extracted using a thresholding over the Cohen’s d metric. The study involved

48 MS patients and 48 healthy controls. GCL++ layer showed to be the one with the highest

discriminant capacity, with a 98.00% of accuracy in this case with a shallow neural network

(NN). It should be noticed the contradiction with Palomar et al. findings [23].

Montolio et al. [27] reproduced the study in [25] with the measurements of the peripapil-

lary circle scan in the RNFL layer and a different population of subjects. The study involved 72

MS patients and 30 HC. The authors reported kNN as the best-performing method with a 95%

of accuracy on a validation set balanced with SMOTE oversampling method.

Lopez Dorado et al. [28] implemented a system based on a convolutional neural network

(CNN) using the two-dimensional grid of measurements from Triton OCT device acquired

using wide protocol. The study involved 48 MS patients and 48 healthy controls. The dataset

was augmented using a generative adversarial network (GAN) and Cohen’s d metric was used

to select the retinal structures with the greatest discriminant capacity (resulting in GCL++,

complete retina, and GCL+). The final model obtained a 100% of accuracy in a leave-one-out

evaluation.

The major criticism from Aslam et al. in [21] is that these studies have been conducted with

a very small number of samples. Consequently, the models may not be robust presenting a

high variance. In addition, the models may be biased. We agree with these appreciations.

Indeed, the population sample and utilized features are usually quite different among the stud-

ies. This makes it unfeasible to establish which could be the best combination of feature set

and learning system for the task. Some of these works show comparative tables of the
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performance of the different methods when they cannot be objectively compared. These prob-

lems are not exclusive to this area of research and they are found more frequently than is desir-

able in different applications of ML in clinical contexts [29, 30].

The valuable information from these works relies on which features can be potential bio-

markers for which stages of the disease, but the proposed systems are still far from computer-

aided solutions usable for the general clinical practice. To ensure the reliability of the proposed

systems, the models should be built on a large dataset, demonstrate a high generalization capa-

bility, and make decisions coherent with clinical knowledge. However, this is not a simple task

in the great majority of clinical applications and this one is no exception.

The only study to date involving a large dataset has been recently conducted by Kenney

et al. [31]. The authors used Cirrus high-definition OCT and converted Spectralis HP-OCT

measurements of the pRNFL and GCL+ layers. The absolute difference between eyes and the

average between eyes were compared as features. The study involved 1568 MS patients and

552 HC. The authors reported the best results for the GCL+ layer with a logistic regression,

obtaining an AUC of 0.77. The AUC obtained for the pRNFL measurements was 0.65. These

results were improved up to an AUC of 0.89 with a composite score combining OCT measure-

ments with the score of an ophthalmologic test (a not anatomical feature). These results are far

from the impressive performances over the 90% provided in the small-dataset studies, but it is

not immediate to assess on the causes of the divergence of these results.

1.4 Explainable AI. Trustworthy solutions

Medical experts usually do not trust ML decisions unless they come with comprehensive and

easily understandable explanations [32]. It is well-known that the most accurate ML methods

are black boxes. This means that it is not comprehensive or easily understandable why or how

the system reached a specific decision or whether the system is making decisions with argu-

ments that are coherent with medical knowledge. In contrast to black-box models, glass-

box models offer full transparency since all parameters are known and it is understandable

how the system comes to its conclusion. However, glass-boxes tend to be much less accurate

than black boxes.

Attending the taxonomy of explainable methods, the trade-off between performance and

explainability is known. There is an inverse relationship between the accuracy of a machine-

learning algorithm and our ability to understand and interpret its output. Therefore, one

may engage the clinical experts with glass-box methods at the expense of decreasing the

accuracy.

In the last years, the novel discipline of explainable AI (xAI) has been developed with inter-

esting methods that try to open the black box of the most complex methods and provide expla-

nations of their decisions. Among them, SHAP [33] (https://shap.readthedocs.io) is an xAI

method based on game theory that provides information among the relationship between the

feature values and the predictions of an ML system. SHAP was proposed with many different

ways to graphically represent the SHAP values. Some of them allow the global identification of

the most important features involved in the predictions and assess whether high or low feature

values contribute to high or low probability predictions for a given class. For particular cases,

the SHAP values allow knowing which features contributed to their correct or wrong

classification.

Another approach in xAI consists of the proposal of inherently explainable methods that

are performance competitive with traditional black boxes, breaking the performance-explain-

ability trade-off. Explainable Boosting Machine (EBM) (https://interpret.ml) has been recently

proposed as a glass-box method intended to achieve an accuracy similar to competing black-
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box methods. Explanations from EBM can be graphically represented in a similar way to

SHAP.

The information provided by the different xAI approaches can be analyzed with clinical

experts to find out whether the ML models are making decisions coherent with clinical knowl-

edge, detect biases, or even point out flawed experimental designs. Thanks to SHAP and EBM,

xAI is nowadays in a mature state to bridge the gap between models generated in an academic

research environment and their effective utilization in clinical practice as usable and trustwor-

thy solutions.

1.5 Our contribution to the state of the art

The objective of our work is to study the potential of the PPole protocol from Spectralis

SD-OCT combined with ML methods for the diagnosis of MS with a novel approach based

on xAI. As feature sets, we consider two different ways of representing the measurements of

the GCL and RNFL thickness. The ML methods have been selected among those that have

obtained the best performances in other medical applications [29, 30]. Explainability has

been provided using SHAP and EBM. The models have been built using a local database with

the problems usually found in clinical practice: small size, unbalancing, heterogeneity, etc.

For a better insight on the capabilities of our systems, we are showing the average and vari-

ance of the performance measurements for the different ML methods, the different combina-

tions of measurement representation, and sample selection. We are describing how to

provide detailed global and local explanations for the ML decisions and how can they be

interpreted in an understandable way. We analyze whether the obtained explanations are

coherent with clinical knowledge. Finally, the local explanations of the failure cases provide

interesting insights into the decision-making process of the different methods. We believe

that the explainability study shown in this work represent a first important step toward a

trustworthy computer-aided solution for the diagnosis of MS that may help neurologist to

get an earlier definitive diagnosis in patients with clinical suspect of MS or even to get an esti-

mation of the risk of presenting the disease in subjects with unspecific neurological symp-

toms or with familiar antecedents of MS.

1.6 Manuscript organization

In the following, Section 2 describes the methods used in our study, including the data (sec

2.1), the ML and xAI methods used in our work (secs 2.2 and 2.3) for the discrimination of MS

and HC subjects, and the experimental design of our study (sec 2.4). Section 3 evaluates the

models obtained with our data and presents and discusses the explainability results. Finally,

Section 4 gathers the most remarkable conclusions of our work.

2 Methods

2.1 Dataset description

The clinical procedures in this study adhered to the tenets of the Declaration of Helsinki. The

experimental protocol was approved by the Ethics Committee of the Miguel Servet Hospital

(CEICA), Zaragoza, Spain, and all participants provided written informed consent to partici-

pate in the study. We included patients with definite relapsing-remitting MS (RR MS). Diag-

nosis was based on the 2010 revision of the McDonald Criteria and confirmed by a specialized

neurologist.

Our dataset comprises a total of 316 eyes from 111 healthy controls and 59 patients of

remitting-relapsing MS (RR MS). The dataset used in [20] is contained into ours. Table 1
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shows the demographics of our data. Mean disease duration in patients was 7.73±3.98 years

and median EDSS score was 1.35 (range: 0–5). Treatment distribution in MS group was 3

patients with Avonex (intramuscular interferon beta-1a), 4 patients with Betaseron (inteferon

beta-1b), 2 patients with Rebif (subcutaneous interferon beta-1a), 3 patients with Copaxone

(glatiramer acetate), 44 patients received oral last-generation treatments: Tecfidera (dimetilfu-

marato) for 11 patients, Gilenya (fingolimod) for 27 patients, Mayzent (siponimod) for 2

patients and Aubagio (teriflunomida) for 4 patients and 3 patients did not receive treatment.

The patients did not have a flare-up of optic neuritis. They were not in an active outbreak and

had not had an active outbreak for at least 6 months.

Eyes with previous episodes of optic neuritis were excluded from the study in order to

avoid bias when assessing how neurodegeneration is appreciable in the retinal layers. In addi-

tion, the exclusion criteria included: best-corrected visual acuity lower than 0.5 according to

Snellen charts, eyes longer than 25.2 mm, refractive errors higher than 5 diopters of spherical

equivalent refraction or 3 diopters of astigmatism, intraocular pressure higher than 20 mmHg,

media opacifications (nuclear color/opalescence, cortical or posterior subcapsular lens opacity

lower than 2 according to the Lens Opacities Classification System III) (Chylack, 1993), con-

comitant ocular disease (including glaucoma or retinal pathology), and other systemic condi-

tions potentially affecting the visual system.

Structural measurements of the retina were obtained using the Spectralis OCT device (Hei-

delberg Engineering, Germany). The Posterior Pole protocol (PPole), recently included in the

device software, was used for all subjects (see Fig 1). This protocol incorporates the Anatomic

Positioning System (APS), which describes a horizontal line between the fovea and the

entrance of Bruch’s Membrane opening. Based on this reference line 61 parallel explorations

are performed inside an area of 25˚ × 30˚. APS combined with the True Track system for eye

tracking ensures an accurate position of the macula for each individual based on their head tilt

and eye cyclotorsion.

Table 1. Demographics of the data used in our work. In addition, we show whether statistical significance can be obtained for the zone-based Posterior Pole (PPole) mea-

surements of ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL) between our populations of healthy controls (HC) and multiple sclerosis (MS) subjects. Bold

numbers indicate p values<0.05.

Healthy Controls Multiple Sclerosis p-value

Subjects 111 59 n.a.

Left eyes 109 50 n.a.

Right eyes 107 50 n.a.

Age (years) 44.55 ± 11.14 41.47 ± 14.06 0.15

Male/Female 25/86 10/49 n.a.

Z1 GCL thickness 41.78 ± 2.89 36.70 ± 6.62 < 0.001

Z2 GCL thickness 49.22 ± 3.68 43.50 ± 7.71 < 0.001

Z3 GCL thickness 28.52 ± 2.36 27.56 ± 3.40 0.015

Z4 GCL thickness 27.23 ± 2.46 25.42 ± 2.55 < 0.001

Z5 GCL thickness 28.46 ± 2.35 26.38 ± 2.87 < 0.001

Z6 GCL thickness 28.39 ± 2.62 27.13 ± 3.43 0.02

Z1 RNFL thickness 31.87 ± 4.26 30.12 ± 5.69 0.031

Z2 RNFL thickness 28.32 ± 2.99 26.66 ± 4.17 0.004

Z3 RNFL thickness 63.94 ± 10.25 60.58 ± 12.09 0.070

Z4 RNFL thickness 80.37 ± 12.93 72.40 ± 13.40 < 0.001

Z5 RNFL thickness 30.46 ± 4.38 28.63 ± 4.88 0.018

Z6 RNFL thickness 22.39 ± 2.73 22.91 ± 5.66 0.431

https://doi.org/10.1371/journal.pone.0289495.t001
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The OCT images were obtained by a single operator blinded to group classification. Images

have an axial (in tissue) resolution of 3.9 μm. Low-quality images (quality score higher than

25/40) or images with movement artifacts were excluded from the analysis. The OCT device

performed a detailed segmentation of the retinal layers that was used for obtaining the PPole

measurements as follows. The 25˚ × 30˚ area was divided into an 8 × 8 grid of 0.86 × 0.86 mm

cells, and the average thickness of each segmented layer was recorded in the 64 cells. In addi-

tion, the 64 cells were grouped into 6 zones previously proposed in [20] for a better clinical

understanding of the information. The criteria for zone grouping clusters the upper (Zones 4

and 5), lower (Zones 3 and 6), and papillomacular bundle (Zone 1) arch patterns that follows

the RNFL, the concentric pattern of the GCL dividing quadrants (Zones 3, 4, 5, and 6), and the

macular area, with the highest density of ganglion cells (Zone 2). Both the 64-dimensional and

the 6-dimensional measurements will be considered feature sets in our work. Fig 2 illustrates

the division of the PPole grid into zones. In this work, we will focus on the measurements of

the ganglion cell layer (GCL) and the retinal nerve fiber layer (RNFL). Table 1 shows whether

statistical significance can be obtained for the zone-based measurements, following the study

in [19, 20]. Fig 3 shows typical examples of the PPole data for multiple sclerosis (MS) and

healthy control (HC) records in our database.

Visual inspection of the whole database allowed us to obtain initial insights into the group

differences that may be interesting for the diagnosis:

• There are visual differences between left and right eyes (e.g. subject 5 from MS group and

subject 8 from HC group).

• The GCL layer shows a torus-like shape that is frequently broken in the temporal-inferior

region for the MS group (e.g. subject 1).

• We can find this GCL break in the control group although to a lesser extent (e.g. subject 8).

• The GCL torus thickness is usually greater in the HC group, although there are subjects with

a thin thickness (e.g. subject 9).

• The RNFL layer shows a wider dark blue extension for the MS subjects, which means that

the thickness in the MS group tends to be smaller than in the HC group (e.g. visual compari-

son between subject 3 and subject 7).

Fig 1. Illustration of the Posterior Pole (PPole) protocol. Left, standard positioning of the 8 × 8 grid centered over the macula. Center, color

thickness map of the ratinal nerve fiber layer (RNFL). Right, color thickness map of the ganglion cell layer (GCL). The green line indicates the

direction of Spectralis Anatomical Positioning System (APS). The blue sectors indicate the distribution of superior (S), nasal superior (NS), nasal

inferior (NI), inferior (I), temporal inferior (TI), and temporal superior (TS) areas.

https://doi.org/10.1371/journal.pone.0289495.g001
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2.2 Machine learning methods considered in this work

Our problem can be classified as a very small dataset problem. The Zones feature set can be

represented as tabular data. Although the 8 × 8 PPole grid feature set could be represented as

imaging data, the low resolution of the images made us lean towards the tabular representa-

tion. We included in our study two black-box methods, gradient boosting and random for-

est, ranking as the best-performing methods in different applications and challenges [29]. In

addition, we included one good-performing glass-box method, explainable boosting

machine, in order to assess the accuracy-explainability trade-off for our application. We dis-

carded the use of neural networks architectures from our study since the superiority of tradi-

tional methods in datasets with similar characteristics to ours has been extensively

demonstrated [34].

2.2.1 Gradient Boosting (XGB). Gradient Boosting is an ensemble learning technique

that combines several weak learners (with poor accuracy) into a strong learner (with high

accuracy). In particular, gradient boosting is a model ensemble of individual decision trees

that are trained iteratively such that each new tree improves the residual errors of the previous

tree ensemble. XGBoost (XGB) is an optimized distributed gradient boosting library available

in the popular scikit-learn library. Its high efficiency is achieved through a parallel tree boost-

ing algorithm that is known to accurately solve data science problems involving billions of

examples. In the last years, XGB is ranked among the best methods for ML classification and

regression on tabular data [34]. To the date, neural networks are not able to outperform XGB

in many different tasks. For example, the winner of the Alzheimer’s Disease diagnosis forecast

in the TADPOLE Challenge was Frog, a system built on a gradient boosting machine with

XGBoost [29].

Fig 2. Coordinate system and zone grouping of the 8 × 8 Posterior Pole (PPole) grid. In our work we use a

coordinate system with origin located at point (1,1) of the PPole grid. This way, the coordinate naming convention

follows the one used by Spectralis optical coherence tomography device.

https://doi.org/10.1371/journal.pone.0289495.g002
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Fig 3. Selection of illustrative samples of the Posterior pole (PPole) grid values found in our database. The first

row in each group shows the data acquired from the left eye while the second row shows the data from the right eye.

Bicubic interpolation is used for enhancing visualization.

https://doi.org/10.1371/journal.pone.0289495.g003
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The most relevant hyperparameters of gradient boosting are the learning rate (learning

rate), maximum tree depth (max depth), number of trees to fit (n estimators), and L2 regulari-

zation weight (reg lambda). We performed hyperparameter selection using a Bayesian search

with optuna package (https://optuna.org/). We found that the hyperparameter selection greatly

improved the validation accuracy but the default hyperparameters provided a system whose

test accuracy is close to that of the best-performing models in validation. For the sake of repro-

ducibility, XGBoost has been executed in our study with the default hyperparameter values:

learning rate = 0.3, max depth = 6, n estimators = 100, and reg lambda = 1.

2.2.2 Random Forests (RF). Random Forests (RF) is a model ensemble that consists of a

large number of decision trees. Each individual tree in the forest performs one class prediction,

and the class with the majority of the votes becomes the model prediction. The trees in a forest

are uncorrelated models that together produce ensemble predictions that are more accurate

than any of the individual predictions. Uncorrelation is the key to a successful ensemble. It is

obtained from random selection of different sets of data and different features for each tree.

RF has been proposed in different applications for building computer-aided diagnosis systems

[32, 35]. The runner-up of the diagnosis forecast in the TADPOLE Challenge was ThreeDays,

a random forest (RF) machine.

The most relevant hyperparameters of RF are the method for sampling data points (boot-

strap), maximum number of levels in the tree (max depth), number of features to be consid-

ered at every split (max features), minimum number of samples required at each leaf (min

samples leaf) and to split a node (min samples split), and number of trees in the forest (n esti-

mators). As with XGB, we performed hyperparameter selection using optuna. We also found

that the default hyperparameters provided the same accuracy as those of the best-performing

model. Therefore, RF has been executed in our study with the default hyperparameter values:

bootstrap = True, max depth = None, max features = auto, min samples leaf = 1, min samples

split = 2, n estimators = 100.

2.2.3 Explainable Boosting Machine (EBM). Explainable Boosting Machine (EBM) is a

glassbox model. It was designed with the idea of obtaining accuracies comparable to state-of-

the-art ML methods like boosted trees and random forests, while being highly intelligible and

explainable. EBM fits under the family of Generalized Additive Models (GAM)

gðE½y�Þ ¼ b0 þ
P

fjðxjÞ; ð1Þ

where the feature functions fj are estimated using small trees in a way that it resembles gradient

boosting. The boosting procedure is restricted to train one feature at a time in all vs all fashion

using a very low learning rate so that feature order does not matter. Thus, the feature functions

are composed of sums of small trees. Therefore, many complicated functions can be modeled

very accurately due to the versatility of trees. In addition, this way of training mitigates the

effects of co-linearity. The best feature functions fj provide measurements of how each feature

contributes to the model’s prediction of the problem yielding the explainability of the model.

Indeed, EBM can automatically detect and include pairwise interaction terms by using models

of the form

gðE½y�Þ ¼ b0 þ
P

fjðxjÞ þ
P

fi;jðxi; xjÞ ð2Þ

which further increases the accuracy while maintaining explainability in an analogous way. In

this work, we will refer with EBM to the model given by Eq 1 and with EBM + i to the model

with interactions given by Eq 2.

In general, the default hyperparameters for EBM should perform reasonably well on most

problems. The authors recomend in https://interpret.ml/docs/faq.html to train a model with
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the defaults and use explainability to catch features with abnormal behavior. Using the

defaults, we obtained a performance comparable with XGB and RF and we did not detected

any problem requiring hyperparameter tuning.

2.3 Explainable machine learning

Explainable AI (xAI) is a recent subfield of AI that aims to provide explanations of general

machine learning algorithms. xAI methods are intended to be combined with the most com-

plex families of methods that have been traditionally considered as black boxes [36, 37]. The

objective of xAI is to overcome the trade-off traditionaly existing between accuracy and

explainability and provide both powerful and explainable systems with arguments for increas-

ing the confidence in the output of the algorithms.

Explainability is an important first step toward fully usable and trustworthy AI systems.

The most important current xAI techniques facilitate the establishment of the importance

given to the different features by the system, assessing how a particular feature affects model

predictions, or which feature values favor or hinder correct or incorrect predictions. All this

information can help ensure whether only significant features coherent with current knowl-

edge are used to infer the output for the application of interest, or, on the other hand, to assess

whether the system is biased or the experimental design is flawed.

SHapley Additive exPlanations (SHAP) has attracted increasing attention in the field of xAI

(https://shap.readthedocs.io). The core idea of SHAP is to transfer ideas from cooperative

game theory to the attribute feature importance of a model output given an input [38]. SHAP

values represent the distribution of the contributions toward game success or failure amongst

all the players working in cooperation.

In the context of explainability of machine learning methods, SHAP values represent the

change in each feature in the expected model prediction under conditioning on that feature.

The explainability from SHAP is achieved through different graphical representations derived

from the SHAP values. In this work, we will represent the mean of the SHAP values as

box plots, and represent the impact of feature values on the probability of the MS class using

violin plots and partial dependence plots. In addition, SHAP allows providing local explana-

tions on the decisions taken by the models. In this work, we will use waterfall plots. In https://

www.kaggle.com/code/meliao/shap-on-titanic-why-is-rose-alive-but-jack-not we can find an

easy to follow example on the use of SHAP and the graphical representation of the SHAP val-

ues for understanding the survival chances of Rose and Jack in Titanic’s tragedy.

In EBM, the contribution of each feature to a final prediction can be visualized and under-

stood by plotting fj or fi,j. Since EBM is an additive modeling, each feature contributes to pre-

dictions in a modular way that makes it easy to reason about the contribution of each feature

to the prediction (similarly to SHAP). For example, term contributions can be sorted and visu-

alized to show which features have the most impact on any individual prediction.

2.4 Experimental design

Ideally, we would like to work with a train/validation/test split. However, our data set is small.

Therefore, it is more convenient to evaluate the performance of our methods and study the

explainability of our models using ten-fold cross-validation splits. Thus, the original set was

divided into ten different train-test splits of subjects with 80% − 20% proportionality. This

means that if a subject falls into the train/test set of a given fold, the eyes for this subject belong

to the train/test set. Since we were not separating a hold-out test from the very beginning of

the process, we were extremely careful with our experimental setup in order to avoid any kind

of data leakage.
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Since each subject can contribute to the dataset with one or two eyes, we generated four dif-

ferent datasets and assessed the performance of the corresponding models: left eye (L), right

eye (R), randomly selected eye (rand), and both eyes (LR) (independent sample assumption).

For the randomly selected eye models, random selection was only performed for subjects with

both eyes. We carried out a comparison of the performance metrics and selected the most

appropriate models for our interpretability study, after making sure that there was not statisti-

cal significance with the other candidates. We ended up with ten different models with differ-

ent accuracies for assessing explainability. We opted for showing the explainability results for

the best-performing fold. The S1 File shows the explainability results for the worst-performing

fold.

Although the PPole grid features have a two-dimensional structure, we decided to represent

them as tabular data, given the low resolution and the small number of samples. Future work

will address the problem for 2D.

Both XGB, RF, and EBM require little data preparation in contrast to other methods like

neural networks (e.g. no normalization). In addition, the default parameters should perform

reasonably well on most problems. As we mentioned in Section 2, preliminary exploration

with Bayesian search did not provide a better hyperparameter setting than default values. We

found similar results in a previous study on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [30]. Since further dividing our train set into train and validation sets would aggravate

the small sample problem, and there would be a combinatorial explosion in the number of

experiments, we decided to use the default hyperparameters.

Finally, we considered both undersampling and oversampling for dealing with the problem

of data unbalancing. Preliminary exploration indicated that oversampling using SMOTE on

the minority group (MS) was preferable. It should be noticed that the test set should be unbal-

anced, preserving the actual distribution of the overall population of our dataset. Otherwise,

we have the risk of providing an overestimation of the true capacities of the models in the

evaluation.

Our methods were implemented in Python 3.6 using the libraries in scikit-learn (https://sci-

kit-learn.org). For XGB and RF, SHAP values were obtained from tree explainers, a fast imple-

mentation of SHAP for tree-based methods. Our experiments were run on a machine with an

Intel Core i7 working at 3.70 GHz and 32 GBS of DDR3 RAM.

3 Results

3.1 Performance study

The performance in this study has been measured from the metrics typically used in ML stud-

ies that are computed from the number of true positives, true negatives, false positives, and

false negatives in the test set. These metrics are the accuracy, sensitivity, specificity, F1-score,

and area under the curve (AUC). Fig 4 shows the distribution of the obtained results for the

populations with left eyes (L), right eyes (R), randomly selected eyes (rand), and both eyes

(LR). The S1 File gathers the results obtained through the ten-fold cross-validation experi-

ments. From the analysis of the plots, we identify the most remarkable results:

• The models built with the left eyes show in general a performance lower than the models

built with the right eyes.

• The models built with randomly selected eyes show a performance similar to the models

built with both eyes.

• The variance in accuracy is close to or greater than 5% in the majority of models.
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• The use of the GCL layer measurements as a feature set greatly outperforms the use of the

RNFL layer.

• For the GCL layer,

• The Zones feature set provides a slightly improved performance with respect to the PPole

grid feature set.

• The sensitivity indicates that some models obtain a low accuracy in the diagnosis of MS.

This could be due to the small size of the dataset and the unbalanced nature of the sample.

• The specificity indicates that the models are in general good in the identification of HC.

• No method consistently stands out in performance above the rest.

Welch’s t-test on the GCL measurements and the Zones feature set did not find any statisti-

cal significance between accuracies. The same test on the PPole feature set showed statistical

significance between L and R eyes for XGB (p = 0.02) and RF (p = 0.02), L and rand eyes for

RF (p = 0.07), EBM (p = 0.09), and EBM + i (p = 0.07), and L and LR eyes for XGB (p = 0.03)

and RF (p = 0.01). Therefore, no statistical significance was found between rand and LR eyes.

Regarding the rule of thumb of having a number of samples per class of at least ten times

the number of features, we would like to remark that the Zones feature set meets this

Fig 4. Distribution of the performance metrics in the test sets of the ten-fold cross-validation experiments. For

each retinal layer, the left column shows the results obtained with the Zones feature set. The right column shows the

results obtained with the Posterior Pole (PPole) grid feature set. L indicates the model built with the population of left

eyes. R indicates the model built with right eyes. Rand indicates the model built with randomly selected eyes. LR

indicates the model with both eyes. Blue boxes show the results obtained with gradient boosting (XGB), green with

random forests (RF), and magenta with explainable boosting machine (EBM). The horizontal line in the area under the

curve (AUC) plot indicates the test set baseline provided in [31].

https://doi.org/10.1371/journal.pone.0289495.g004
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requirement. Although the PPole grid feature set does not meet the requirement, it seems that

the performance is not greatly affected by the ML methods used in this study. We observed

similar behavior in our previous work for XGB and RF with the Alzheimer’s Disease Neuroim-

aging Initiative (ADNI) tabular data [30].

Comparing our AUCs with the baseline provided in the test set in Kenney et al. [31] for the

average of GCL+ thickness from both eyes, we can see that the rand models from the Zones

feature set achieve a close mean. It is over the baseline for XGB. LR models from the Zones fea-

ture set achieve a comparable mean in all cases. The LR models from the PPole grid feature set

slightly perform under with the exception of RF for the LR models. For the RNFL thickness,

our rand models for the Zones feature set show a comarable mean for XGB and RF. The LR

models from the Zones feature set underperforms the baseline. All the LR models from the

PPole grid feature set show a comparable mean. It should be noticed that Kenney et al. used

random sampling and the pRNFL thickness instead of RNFL.

Table 2 shows the results of the best-performing random and LR models for each feature

set configuration. For the GCL layer, the models built with the random dataset greatly outper-

formed the models built with the LR dataset for the Zones feature set in XGB and RF. The

remaining models performed similarly regardless of the use of random or LR datasets. There-

fore, in the following, we proceed with the interpretability study for the models built with the

LR dataset since the performance is similar and it may give us more opportunities to analyze

interesting cases. Furthermore, the fold identifier (id) of the best-performing model is the

same for all three methods, and therefore the results can be compared fairly. With the excep-

tion of Subsection 3.2.6, our interpretability will focus on assessing the measurements obtained

on the GCL layer.

3.2 Explainability study

3.2.1 Global SHAP-based explainability. Fig 5 shows different representations of the

average SHAP values for the best-performing XGB and RF models with the Zones feature set.

These representations include horizontal bar plots of the SHAP values ranked by order of

importance, violin plots with the distribution of the SHAP values colored by the magnitude of

the feature values, and partial dependence plots for assessing the marginal effect of the two

most important features on the predicted outcome of the ML models.

For both XGB and RF, zones Z1 and Z2 are the most relevant for the discrimination of MS

from HC. The order of importance is similar. The violin plots show that medium and low val-

ues of the average thicknesses contribute to a higher probability for MS. The only exception is

for Z6 in the case of XGB, where high values of the average thickness contribute to a higher

probability for MS. Our clinical experts indicated that this zone corresponds with the most

inferior and temporal paramacular area. This is a zone with medium and large size blood ves-

sels (see Fig 2) and, therefore, GCL measurements may be less accurate. The partial depen-

dence plots show that the slope of the distribution of the SHAP values for Z1 is negative. This

means that high values of the average thickness contribute to a lower probability for MS, cor-

roborating the violin plot for Z1. The same happens with Z2.

Analogously for PPole grid features, Fig 6 shows different representations of the average of

the SHAP values for the best-performing XGB and RF models. In addition to the bar, violin,

and dependence plots, we show the SHAP values on the 8 × 8 grid for a finer location of the

anatomical part identified with our models as mostly affected by the disease.

For both XGB and RF, features 5.4 and 5.3 are the most relevant for the discrimination of

MS from HC. These features are located at Z1 and Z2 zones, which were marked by SHAP as

the most important ones in the corresponding models (Fig 5). The violin plots show that low
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average thicknesses contribute to a higher probability for MS. Some exceptions to the rule can

be identified for features located at the boundary points (e.g. feature 8.4). The partial depen-

dence plots show a negative slope corroborating the relationship between high thickness values

and low probability values for MS given by the models. The grids show that RF feature impor-

tance is distributed among features 5.4 and 5.3 and some features located over the superior

and nasal superior locations. Therefore, RF seems to realize the 2D geometry of the data. It is

worth noticing that feature 3.1 is considered as important by both methods. Our clinical

experts found a plausible interesting interpretation of this finding that is discussed in Section

4. However, we do not rule out either a bias of our models due to the characteristics of our

dataset.

Table 2. Results of the best-performing random and LR (both eyes) models for each feature set configuration considered in this work. We indicate the id of the train-

ing and test set used to generate the model and obtain the metrics.

Random

Method Layer Feature set fold id Acc (%) Sens (%) Spec (%) F1-score (%) AUC

XGB GCL Zones 5 93.54 90.90 95.00 90.90 0.92

XGB GCL PPole grid 5 87.09 81.81 90.00 81.81 0.85

RF GCL Zones 1 92.85 87.50 95.00 87.50 0.91

RF GCL PPole grid 5 87.09 81.81 90.00 81.81 0.85

EBM GCL Zones 1 85.71 60.00 100.00 66.66 0.75

EBM GCL PPole grid 4 83.33 100.00 80.00 66.66 0.90

EBM + i GCL Zones 5 90.32 81.81 95.00 85.71 0.88

EBM + i GCL PPole grid 5 83.87 81.81 85.00 78.26 0.83

XGB RNFL Zones 1 78.57 75.00 80.00 66.66 0.77

XGB RNFL PPole grid 5 77.41 72.72 80.00 69.56 0.76

RF RNFL Zones 0 79.31 66.66 82.60 57.14 0.74

RF RNFL PPole grid 5 83.87 72.72 90.00 76.19 0.81

EBM RNFL Zones 0 72.41 50.00 78.26 42.85 0.64

EBM RNFL PPole grid 0 82.75 66.66 86.95 61.53 0.76

EBM + i RNFL Zones 4 73.33 60.00 76.00 42.85 0.68

EBM + i RNFL PPole grid 4 76.66 80.00 76.00 53.33 0.78

LR

Method Layer Feature set fold id Acc (%) Sens (%) Spec (%) F1-score (%) AUC

XGB GCL Zones 6 85.00 78.57 86.95 70.96 0.82

XGB GCL PPole grid 5 86.66 80.00 90.00 80.00 0.85

RF GCL Zones 5 86.66 75.00 92.50 78.94 0.83

RF GCL PPole grid 5 88.33 80.00 92.50 82.05 0.86

EBM GCL Zones 5 88.33 90.00 87.50 83.72 0.88

EBM GCL PPole grid 5 83.33 75.00 87.50 75.00 0.81

EBM + i GCL Zones 5 93.33 95.00 92.50 90.47 0.93

EBM + i GCL PPole grid 5 86.66 70.00 95.00 77.77 0.82

XGB RNFL Zones 5 75.00 28.57 89.13 34.78 0.58

XGB RNFL PPole grid 5 78.33 55.00 90.00 62.85 0.72

RF RNFL Zones 0 75.00 35.71 86.95 40.00 0.61

RF RNFL PPole grid 5 78.33 65.00 85.00 66.66 0.75

EBM RNFL Zones 0 71.66 57.14 76.08 48.48 0.66

EBM RNFL PPole grid 5 81.66 65.00 90.00 70.27 0.77

EBM + i RNFL Zones 4 68.33 80.00 66.00 45.71 0.73

EBM + i RNFL PPole grid 1 76.66 60.00 85.00 63.15 0.72

https://doi.org/10.1371/journal.pone.0289495.t002
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3.2.2 Local SHAP-based explainability. Figs 7 and 8 show the local explainability associ-

ated with the failed test set subjects for the best-performing XGB and RF models and PPole

grid feature set. The S1 File shows the local explainability for the worst-performing XGB and

RF models. For each sample we show the PPole grid data, the grid of the corresponding SHAP

values, and the waterfall plot, which indicates the contribution of each feature toward (red) or

against (blue) MS. The corresponding confusion matrices can be found in Fig 9.

Analyzing the MS subjects that were incorrectly classified as HC for XGB, we can see that

three of the MS subjects show a shape typically found in the HC set (test set ids 5.1, 5.16, and

5.17). Surprisingly, the 5.13 subject shows the typical break observed in the MS set, but it was

classified as HC. From the corresponding waterfall plot, we can see that feature 5.3 contributed

to the probability of MS, but it was neutralized by feature 5.4. The same happened with the fol-

lowing meaningful features. In the end, less meaningful features against the correct classifica-

tion contributed to the final outcome. The probability for HC is low, therefore the decision

made by the model should not be trusted.

From the HC subjects incorrectly classified as MS by XGB, we can see that subjects 5.28

and 5.35 show the typical torus shape break or a thinning in feature 5.4. Subjects 5.47 and 5.52

show a similar SHAP grid, and it seems that features 5.3, 5.4 and 5.6 were mostly responsible

of the erroneous classification. Although the overall shape is typically observed in the HC

group, considering the thickness values individually may explain the error in classification.

Similarly analyzing the subjects that were incorrectly classified as HC for the best-perform-

ing RF model, we find again subjects 5.1, 5.16, and 5.17 that showed a shape typically found in

the HC group. Subject 5.6 shows the typical torus shape break and feature 5.3. contributed to

the probability of MS. However, the remaining 55 features surprisingly summed up against the

correct classification. This may be an indication that the decision should not be trusted.

From the HC subjects that were incorrectly classified as MS, subjects 5.35 and 5.52 match

with the XGB subjects. Subject 5.39 shows a torus thinning in feature 5.6, which was consid-

ered among the most important features. The waterfall plot shows oscillating contributions,

which explains why it ended up in the incorrect outcome. Our clinical experts indicated that

this torus configuration is typical from early glaucoma. The probabilities estimated by the

model are low in all cases, therefore the decisions made by the model should not be trusted.

Fig 5. Global SHAP results. SHAP results for the gradient boosting (XGB) and random forests (RF) best models

obtained with the Zones feature set. Left, horizontal bar plots of the SHAP values. Center, violin plots. Right, partial

dependence plot for the two most important features.

https://doi.org/10.1371/journal.pone.0289495.g005
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Fig 6. Global SHAP results. SHAP values for the gradient boosting (XGB) and random forests (RF) best models obtained

with the posterior pole (PPole) grid feature set. The grid showing the SHAP values obtained in each spatial location is

shown in its original resolution (left) and after bicubic interpolation (right).

https://doi.org/10.1371/journal.pone.0289495.g006
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Fig 7. Local SHAP results. Gradient boosting (XGB) best-performing model. Left, Posterior Pole (PPole) grid sample.

Middle, grid of the local SHAP values. Right, waterfall plot for assessing feature contribution towards or against

multiple sclerosis (MS).

https://doi.org/10.1371/journal.pone.0289495.g007
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3.2.3 Global EBM-based explainability. Fig 10 shows the average of the scores for the

best performing EBM model with the Zones feature set. These values are represented as hori-

zontal bar plots ranked by order of importance. In addition, we show for each feature the

curves of the score values depending on the feature values. The information driven from these

curves would be analogous to the information given by SHAP with the violin plot

representation.

Fig 8. Local SHAP results. Random forests (RF) best-performing model. Left, Posterior Pole (PPole) grid sample.

Middle, grid of the local SHAP values. Right, waterfall plot for assessing feature contribution towards or against

multiple sclerosis (MS).

https://doi.org/10.1371/journal.pone.0289495.g008
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As with XGB and RF, zones Z1 and Z2 are the most relevant for the discrimination of MS

from HC. The order of importance matches the order of XGB. The curves show that high val-

ues of Z1 contribute to a lower probability of MS. The curves from Z2 show oscillating contri-

butions from low to medium values, while the highest values contribute to a lower probability

of MS. The pattern is similar for Z3 and Z4 while it is reversed for Z5 and Z6. These results are

analogous to the violin plots shown in Fig 5.

Fig 11 shows the scores for the best-performing EBM model with the PPole grid feature set.

Additionally to the bar plots, we show the score values on the 8 × 8 grid. As with XGB and RF,

features 5.4 and 5.3 are in the top-three of relevance for the discrimination of MS from HC. It

drives our attention that features in the boundary of the grid such as 8.5, 3.1, and 8.4 occupy

the top positions. The grid shows that feature importance is distributed among features 5.4

and 5.3 and the torus-like shape. However, feature importance is also located in two points of

the boundary. The curves for features 5.4 and 5.3 show that high values contribute to a low

Fig 9. Confusion matrices for the best models. Gradient boosting (XGB), random forests (RF), explainable boosting machine

(EBM), and EBM with interactions (EBM + i) models with the PPole grid feature set.

https://doi.org/10.1371/journal.pone.0289495.g009

Fig 10. Global explainable boosting machine (EBM) results. Scores for the best EBM model obtained with the Zones

feature set. Up, horizontal bar plots of the scores. Down, curves of the score values depending on each feature value.

https://doi.org/10.1371/journal.pone.0289495.g010
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probability of MS. The same happens with the curves for feature 3.1. On the contrary, the

curves for feature 8.5 show that high values contribute to a high probability of MS. We find

again a possible bias of the model that considers this location useful for the discrimination

between groups.

3.2.4 Local EBM-based explainability. Fig 12 shows the local explainability associated

with the failed test set subjects for the best-performing EBM model and PPole grid feature set.

For each sample, we show the PPole grid data, the 2D grid of scores, and the local importance

scores. The corresponding confusion matrix can be found in Fig 9. The S1 File shows the local

explainability for the worst-performing EBM model.

Analyzing the MS subjects incorrectly classified as HC for EBM, we find subjects 5.16 and

5.17 that showed a shape typically found in the HC group. Subjects 5.11, 5.12, and 5.13 should

be clearly identified as MS patients, but the importance given by the model to the boundary

points 7.8, 8.3, and 8.4 contributed to an incorrect decision. For the HC subjects incorrectly

classified as MS, subject 5.21 has been incorrectly classified using information from feature

points 7.8, 8.5, and 8.4 and subject 5.35 from point 1.1. The remaining subjects show patterns

observed in the MS population, and the model attributed the greatest importance to the loca-

tions where these patterns are found, e.g., subject 5.38 and features 6.5 and 3.5; subject 5.39

and features 6.6. and 5.6; subject 5.52 and features 5.4, 4.6, and 5.3.

3.2.5 EBM with interactions. Fig 13 shows the average of the scores for the best perform-

ing EBM + i model with the Zones and PPole grid feature sets. While for the Zones feature set

Fig 11. Global explainable boosting machine (EBM) results. Scores for the best EBM model obtained with the

posterior pole (PPole) grid feature set. Up, horizontal bar plots of the scores and grids. Down, curves of the score

values of the top-four feature set.

https://doi.org/10.1371/journal.pone.0289495.g011
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Fig 12. Local explainable boosting machine (EBM) results. EBM best-performing model. For each subject, left figure

shows the posterior pole (PPole) grid sample, middle figure shows the grids, and right figure shows the feature

contribution towards or against multiple sclerosis (MS).

https://doi.org/10.1371/journal.pone.0289495.g012
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the importance rank is similar between EBM and EBM + i models, pairwise interactions

occupy the top-ten positions for the EBM + i model with the PPole grid feature set. Fig 13 also

shows the interaction plot for the top-four positions. The top-one interaction is between points

4.5 and 5.4. This is consistent with the explanations given by XGB and RF. The interaction plot

shows that for low values of thickness in 4.5 and 5.4 the probability of MS is high, as expected.

For low values in 5.4 and high values in 4.5, the probability of MS is high. This means that the

model uses the torus shape break or thinning in this location for taking the decision. On the

contrary, for high values in 5.4 and low values in 4.5, then the probability of MS is low. Finally,

for high values in 5.4 and 4.5 the probability of MS is nearly zero. In this case, these features

are not relevant for the model to distinguish between groups.

The second interaction is between the boundary points 3.1 and 8.4. As happened in the case

of the top-one interaction, for low values of both features, the probability of MS is high, and

for high values of both features the probability of MS is nearly zero. For low values in 8.4 and

high values of 3.1 the probability of MS is low. For high values in 8.4 and low values in 3.1 the

probability of MS is high. Recalling the suspected bias found in points 8.4 and 8.5 for the

model without interactions, it seems that in this case the bias is shown in this interaction of

highly unlikely related features. The same reasoning can be applied to the interaction between

points 2.1 and 5.4 and between points 4.5 and 8.3.

Fig 14 shows the local explainability associated with the failed test set subjects for the best-

performing EBM + i model and PPole grid feature set. Both EBM and EBM + i models failed

Fig 13. Global explainable boosting machine with interactions (EBM + i) results. Up, horizontal bars of the scores for

the best EBM + i model obtained with Zones and posterior pole (PPole) grid feature sets. Middle and down, interaction

maps of the top-four feature set for the PPole grid feature set.

https://doi.org/10.1371/journal.pone.0289495.g013
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in subjects 5.12, 5.13, 5.16, and 5.39. It seems that the most important features involving

boundary points were the responsible of the failed decisions.

3.2.6 Global explainability: Layers and models. To finish our study, we provide a com-

parison of the global SHAP values and EBM scores from the PPole grid feature set for the GCL

and the RNFL layers. Figs 15 and 16 show the grids obtained for the models generated with the

ten test sets considered in our work. For the GCL feature set, all the models give consistently

importance to the location of the 5.4 feature. For XGB this seems to be the single most remark-

able feature in the majority of models. RF shows importance in several locations of the torus

ridge. EBM also shows importance in several locations of the torus ridge but it is also giving

importance to other locations. We realize that the majority of models find feature 3.1 as impor-

tant, and this becomes more apparent for XGB and EBM. EBM tends to remark as important

many more points on the boundary.

For the RNFL feature set, all models consistently point out to feature 5.4. Indeed, we can

appreciate two or three diagonally aligned points consistently remarked by all the models: fea-

ture 5.4, 6.5, and 7.6. These points correspond to the locations of some of the nerve bundle

fibers (see Fig 1 from [39]). From the boundary points, feature 1.8 is remarked as important by

all the models. It seems that the system sees some relevant information that can be used to

Fig 14. Local explainable boosting machine with interactions (EBM + i) results. EBM + i best-performing model.

For each subject, left figure shows the posterior pole (PPole) grid sample and right figure shows the feature

contribution towards or against multiple scleroris (MS).

https://doi.org/10.1371/journal.pone.0289495.g014
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Fig 15. Global SHAP and explainable boosting machine (EBM) results. Ganglion cell layer (GCL). SHAP and EBM

grids obtained with the models of the ten-fold cross-validation.

https://doi.org/10.1371/journal.pone.0289495.g015
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Fig 16. Global SHAP and explainable boosting machine (EBM) results. Retinal nerve fiber layer (RNFL). SHAP and

EBM grids obtained with the models of the ten-fold cross-validation.

https://doi.org/10.1371/journal.pone.0289495.g016
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discriminate between both groups. Our clinical experts indicated that feature 1.8 corresponds

to the exit zone of the papillomacular bundle. This bundle is made up of ganglion cell axons

which, coming from the most central area of the retina (macula), reach the temporal border of

the optic nerve by means of a practically rectilinear fascicle. It is therefore highly logical that

this is an important feature in determining the presence/absence of the pathology.

4 Discussion

The state of the art in ML diagnosis from OCT is made of studies that are focused exclusively

on providing high values of performance while eluding a proper discussion on the usability of

the models and the trust on the decisions made by the proposed solutions. The major criticism

from these works is that these studies have been conducted with a very small number of sam-

ples and the results from the best models are shown without analyzing means, medians, and

variances. These models have low generalization capability and may be establishing unrealistic

baselines. In addition, the methods are used as black-boxes, therefore, we don’t know whether

the models are taking decisions in accordance to clinical knowledge that we can trust. We

believe that there is still a long way to go toward solutions for MS diagnosis widely usable and

trustworthy in clinical practice. To ensure the reliability of the systems, the models should be

built up on a large dataset, demonstrate a high generalization capability, and yield explanations

coherent with clinical knowledge.

Our study is a first step toward a trustworthy solution for computer-aided diagnosis of MS

from OCT that will be usable in ophthalmological clinical practice. Our models are built using

the thickness of GCL and RNFL layers, measured with the PPole protocol of Spectralis

SD-OCT devices. Since every subject can contribute to the dataset with two samples, we have

analyzed the performance of the models built with left, right, random, and both eyes. We did

not find any signicative difference in accuracy between using random or both eyes. We have

compared three of the best-performing methods in different applications and challenges with

datasets similar to ours: XGB, RF, and EBM. Our models confirmed measurements given in

PPole protocol being as informative as other measurements in the discrimination of MS from

HC subjects, with performance in the order of the state of the art baseline, with large sample

sizes established in [31]. We were able to reach an accuracy greater than 0.9 in some folds for

some configurations of feature set, sampling, and methods. We found that the measurements

from the GCL layer were much more useful than RNFL in the discrimination of MS from HC

subjects. This is in agreement with the latest advances in the state of the art [28, 31]. From

these results, we believe that any of the considered configurations of feature set (Zones or

PPole grid), sampling (rand or LR), and machine learning method could be used as a starting

point for a usable computer-aided solution, once an appropriate large dataset sample has been

gathered.

The limitation of our solution is with the applicability to individuals fulfilling the exclusion

criteria. For example, eyes longer than 25.2 mm tend to show systematic layer thinning due to

extreme deformations, OCT measurements are not reliable, and the images show artifacts.

Eyes with acute myopia or astigmatism may show abnormal shapes of GCL and RNFL thick-

ness. Including this kind of data in the training phase of ML models would harm the generali-

zation capability of the systems. It is worth noticing that experienced clinicians would find

difficulties in identifying damage due to MS. Eye diseases like glaucoma show a thinning effect

on the neuroretinal layers, similarly to MS. In this case, the overall damage cannot be attrib-

uted to a single pathology. This is a difficult problem for ML systems.

Our study has revealed the combination of XGB or RF and SHAP as a tandem that may per-

fectly serve the specialist to make decisions aided by the model explanations. Global
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explanations pointed out to zones Z1 and Z2 and points 5.4 and 5.3 (from 64 features), where

a visual inspection of the dataset revealed a break or thinning of the torus shape of the GCL

measurements. We also found that point 3.1 in the boundary of the PPole grid was mostly con-

sidered as a relevant feature. In addition, a reduction of the thickness in these locations was

related with a high probability for the MS class. This is consistent with current knowledge on

how MS affects neuroretina damage.

The local analysis of the SHAP values for the failed test samples revealed, for the best-per-

forming models, subjects with features of the wrongly predicted class that would also con-

found an expert in most cases. We also found cases where there is no reason to give a wrong

prediction. In these cases SHAP waterfall plots indicated that the most important features

contributed to antagonist decisions, and the final decision ended up in less relevant feature

values.

EBM without interactions obtained an accuracy similar to XGB and RF. The explanations

were given in a similar way to SHAP, which proves that this glass-box method could compete

or complement XGB and RF in the task. Global explanations also pointed out zones Z1 and Z2

and points 5.4 and 5.3 with the highest scores. Point 3.1 in the boundary was also considered

as a relevant feature together with other boundary points. It seems that, while feature impor-

tance is located over the ridge of the torus shape for XGB and RF, it is spread out all over the

grid for EBM. Adding pairwise interactions to the model ended up with pairwise explanations

as the most relevant features. The interaction pair 4.5 × 5.4 was revealed as the most important.

However, the remaining interactions involved boundary features, which may reinforce our

suspicions of bias in EBM models. From these results we believe that EBM may be more sensi-

tive to developing bias than XGB or RF for this kind of data.

Our clinical experts indicated that a plausible pathophysiological explanation for the

importance of feature 3.1 could be based on the vascular theory that accompanies neurode-

generative diseases, which argues that axonal loss in these pathologies is associated with a

loss of vascular supply, so that both mechanisms (neurodegeneration and vascular loss) are

associated in the pathophysiology of MS. Feature 3.1 is crossed by medium and large calibre

peripapillary blood vessels (see Fig 2). When the thickness of the GCL is reduced, it is due to

the presence of thinner blood vessels and our machine learning methods may be able to cap-

ture this relationship.

From our results, we glimpse a computer-aided solution for the diagnosis of MS where the

practitioner is informed with the PPole grid image, the probability of the ML methods, the

local SHAP and EBM explanations, and some recommendations learned from the waterfall

plots in negative cases that would guide the process of decision making. In the case of witness-

ing signs of doubt as the ones shown in this work, complementary examination beyond the

neuroophthalmological eye anatomy or maintaining a wait-and-see approach should be rec-

ommended. This way, OCT can be regarded as a quick test for the assessment of MS, with no

side effects, non-invasive and therefore can be repeated on a serial basis in cases of unclear

diagnosis or to see the progression of axonal damage. OCT is very economical and cost-effec-

tive for healthcare systems and can be performed by non-specialised personnel, making it a

tool that in many cases can be used to reduce the number of magnetic resonance imaging

requested, and thus alleviate the healthcare and economic burden on healthcare systems.

Despite computer-aided solutions not able to reach a 100% accuracy, they would provide a

first trustable assessment in the great majority of cases that would save additional expensive,

time-consuming, and invasive tests.

Possible room for improvement lies in the fact that we have worked with PPole grid features

as raw data. The decision was made due to the small sample size and the low resolution of the

data. Given the two-dimensional nature of PPole features, we believe that the performance and
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explainability may be improved with models that take into account the spatial representation

of the data. As future work, we will explore convolutional neural networks, vision transformers

(ViT), or swim transformers using the PPole grid features as images.

Although our study shows the methodology to follow to develop this solution, our results

need to be confirmed by a larger sample of patients. Therefore, we are currently working on

recruiting more populated and balanced datasets. We expect that the improved solution will

provide models with a good balance between accuracy and explainability.
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