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ABSTRACT

The constant increase in overseas transportation in the past few years have pushed
terminal operators to search for solutions that can increase their efficiency. One current
example is the resolution published by the Brazilian National Agency of Oil in July of 2022,
which reinforced the importance of having a structured appointment scheduling methodology
to organize ship/shore operations.

This research has three main goals: the first one is framing the appointment scheduling
problem under different perspectives to help the designing process of such resolutions. The
second one is providing appointment scheduling models that can support terminals in their
optimization process. The third one is exploring insights about the value of information,
different scheduling time frames, coordination between scheduling and operational teams,
different agenda congestion profiles, uncertainty levels, berthing scheduling rules, among others.

The challenge is finding the optimized appointment plan that can maximize terminals
profits, considering particularities of each operation request, uncertainties in arrival and
processing times of ships, costs/earnings associated with contractual agreements and the
berthing sequencing rule used by the operational teams.

In one hand there will be contributions on the managerial side through ideas that
can enhance terminals performance. In the other hand there will be academic contributions
through proposing appointment scheduling models that incorporate stochasticity in parameters
and considers arrivals as being endogenous variables, under different agenda overlap profiles.
Therefore multiple heuristics will be proposed, dealing with stochastic, integer and non-
linear appointment scheduling problems (SINP). They consider clients requests, contractual
agreements, delays/ processing times distributions, and a pre-defined berthing sequence rule as
inputs. Based on how profitable are the operations, it defines which ships are accepted/rejected
to operate, as well as the appointment date that they are expected to happen.

Due to dimensionality issues, a partition methodology is proposed called “Cluster First,
Schedule Second” to reduce resolution time. The main problem is decomposed into smaller ones
which are then sequentially solved via Sample Average Approximation, having the scheduling
of each cluster impacting further ones. The results from the optimization models are also tested
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in a discrete event simulation environment that reproduces multiple restrictions encountered in
congested terminals.

Finally a set of ten research questions are proposed which will guide all the
experimentation process used to test multiple topics about the appointment scheduling problem
of port terminals. Highlighting some of the conclusions, results show that specially overlapped
terminals can have significant improvements in profit by using solvers such as the ones that
will be presented. Also, giving incentives to customers could be studied to get more up front
information about the operation as well as to increase flexibility in the available days. Answering
clients statically showed better results, as the terminal is able to take the decision with full
information. In case clients value dynamic answers, a suggestion would be offering it as a
premium service to reduce the overall impact. In terms of berthing rules, FIFO presented
good results for terminals with congested agendas, while by schedule rule was better in low
overlap situations. In case of simultaneous arrivals, prioritizing by smallest deviations is
recommended. Additionally, one surprising result is that uncertainties in arrivals can, in some
cases be beneficial, but accepting time windows instead of a scheduled date is not.

RESUMEN

El constante aumento del transporte maŕıtimo de los últimos años ha llevado a los
operadores de terminales maŕıtimos a investigar nuevas soluciones que aumenten su rendimiento.
Un ejemplo actual es la resolución publicada por la Agencia del Petróleo de Brasil en julio de
2022, en la que destaca la importancia de contar con una metodoloǵıa de programación de citas
estructurada para organizar las operaciones buque-tierra.

Esta investigación tiene tres objetivos principales: el primero de ellos es abordar el
problema de programar citas desde diferentes perspectivas para ayudar al proceso de diseño de
tales soluciones. El segundo es facilitar modelos de programación de citas que puedan ayudar a
los terminales en sus procesos de optimización. El tercero es estudiar diferentes planteamientos
sobre el valor de la información, diferentes plazos de programación, coordinación entre los
equipos operativos y de programación, diferentes perfiles de congestión de la agenda, niveles de
incertidumbre y normas de programación de atraque, entre otros.

El reto consiste en encontrar un plan de cita optimizado que permita maximizar las
ganancias de los terminales, considerando particularidades de cada solicitud de operación,
incertidumbres en plazos de llegada y en procesamiento de los buques, los costes y ganancias
vinculados a los contratos y la norma de secuenciación de atraques que utilizan los equipos
operativos.

Por un lado, existirán contribuciones en la parte de gestión a través de ideas que pueden
impulsar el rendimiento de los terminales. Por otro lado, existirán aportaciones académicas a
través de propuestas de modelos de programación de citas que incorporan la aleatoriedad en
parámetros y consideran las llegadas como variables endógenas, conforme a diferentes perfiles
de solapamiento de la agenda. Por tanto, se propondrán varias heuŕısticas, que abordarán
los problemas de programación de citas aleatorios, enteros y no lineales (SINP, por sus siglas
en inglés). Tienen en cuenta las solicitudes de los clientes, los acuerdos contractuales, las
distribuciones de plazos de retraso / procesamiento y la norma predefinida de secuencia de
atraques como insumos. En función de lo rentable que sean las operaciones, se define qué
buques se aceptan o rechazan para operar, aśı como la fecha de la cita que se espera que se
produzca.
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Debido a cuestiones de dimensionalidad, se propone una metodoloǵıa de descomposición
llamada “Cluster First, Schedule Second” (Primero agrupar, luego programar) con el fin de
reducir el plazo de resolución. El problema principal se descompone en otros más pequeños que
se resuelven de manera secuencial mediante la aproximación de la media muestral, de manera
que la programación de cada grupo afecta a los siguientes. Los resultados de los modelos de
optimización también se evalúan en un entorno de simulación de acontecimientos discreto que
reproduce varias restricciones presentes en terminales saturados.

Por último, se propondrá un conjunto de diez preguntas de investigación que guiarán
todo el proceso de experimentación utilizado para probar diferentes temas sobre el problema
de programación de citas de terminales portuarios. Entre las conclusiones, cabe destacar que
los resultados muestran que los terminales, especialmente saturados, pueden lograr mejoras
significativas en beneficios con medidas como las que se presentarán. También, se puede estudiar
dar incentivos a los clientes para obtener más información por adelantado sobre la operación,
aśı como aumentar la flexibilidad en la disponibilidad de d́ıas. Responder a los clientes de
forma estática dio mejores resultados, puesto que el terminal puede tomar la decisión con toda
la información. En caso de que los clientes valoren respuestas dinámicas, una sugerencia podŕıa
ser ofrecerles un servicio superior para reducir el impacto general. En términos de normas
de atraque, el método FIFO presentó buenos resultados en el caso de terminales con agendas
congestionadas, mientras que la norma por programación fue mejor en situaciones con poco
solapamiento. En el caso de llegadas al mismo tiempo, se recomienda priorizar en función de
las desviaciones más pequeñas. Además, un resultado sorprendente es que las incertidumbres
en las llegadas pueden, en algunos casos, ser beneficiosas, pero aceptar ventanas de tiempo en
lugar de una fecha programada no lo es.

Thesis Supervisor:
Mustafa Çagri Gürbuz, Ph.D.
Professor, MIT-Zaragoza International Logistics Program
Research Affiliate, MIT Center for Transportation and Logistics
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1 Introduction

1.1 Context and Motivation

The constant increase in overseas transportation in the past few years have pushed
terminal operators to search for solutions that can increase their efficiency. According to
UNCTAD (2021), over 80% of the international trade volume is carried by sea, which shows
the importance of ships and terminals in the global economy. Due to this high level of product
flow, many terminals face congestion of ships in their facilities. In fact, the same study shows
that a tanker waits in average 64 hours to start performing a loading/unloading operation in a
Brazilian terminal. This number stands out when compared to tankers commercial expectation
of performing a full load and unload operation in 72 hours.

There are three main figures involved in a ship/shore operation: cargo owner, shipowner
and terminal operator. Those operations are ruled by contracts that define the financial and
performance responsibilities of each party. One important clause sets how penalties will be
applied in case of delays. Terminals are specially susceptible to this issue as it is the party
that absorbs uncertainties from all the rest of the supply chain. According to Notteboom
(2006), more than 90% of the delays are attributable to port access and terminal operations.
Furthermore, delays in the arrival of ships, bureaucracy and adverse environmental conditions
also contribute to lateness in the process, which may have a “domino effect” in future operations.

In the case a ship overstays in the port due to someone else’s responsibility, an official
claim for demurrage payment can be posed which is proportional to the number of days
beyond the scheduled due date (Sun et al., 2021) agreed between all parties. Overstaying
is a consequence of delayed starts and/or extended processing times.

In July of 2022 a new resolution from the Brazilian National Agency of Oil, ANP (2022),
was published which regulates how oil terminals should offer their services reinforcing the need
of a structured appointment scheduling methodology. This is one of the many initiatives to
maximize the utilization of oil terminals and pipelines, by improving the access for any client
interested in supplying the market. The fact that this is an ongoing problem of high complexity
was a great motivator that triggered the current research.

1.2 Objective and Contributions

There are three main goals: the first one is framing the appointment scheduling problem
under different perspectives to help the designing process of resolutions such as ANP (2022).
The second one is providing appointment scheduling models that can support terminals in the
optimization process imposed by such resolutions. The third one is exploring insights about
the value of information, different scheduling time frames, coordination between scheduling and
operational teams, different agenda congestion profiles, uncertainty levels, berthing scheduling
rules, among others.

The literature encountered approaching the ship/shore operation planning is mostly
focused on allocation problems which defines what is the best strategy for the assignment
of berths (Golias, 2011), cranes (Rodrigues and Agra, 2022), tanks, trucks (Phan and Kim,
2016), yard space which should be used in the operations. Some literature also incorporates
the scheduling facet, defining the berthing sequence and the dates that should be considered to
optimize performance. Those type of problems normally consider the arrival pattern of ships
as a given, and that terminals have basically to mold their decisions in the best way possible
to accommodate the operations. This research focus on the previous planning step, on which
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appointments are being designed. The terminal is an active player on the decision of which
operations should be accepted and when they should be scheduled, which directly impacts how
those arrivals will happen, configuring an endogenous profile.

The challenge is finding the optimized appointment plan that can maximize terminals
profits, considering particularities of each operation request, uncertainties in arrival and
processing times of ships, costs/earnings associated with contractual agreements and the
berthing sequencing rule used by the operational teams.

In one hand there will be contributions on the managerial side through insights that
can enhance terminals performance and quality of ship/shore services. In the other hand
there will be academic contributions through proposing appointment scheduling models to the
terminal problem that incorporates both stochasticity, as well as considers arrivals as endogenous
variables under different agenda overlap profiles.

1.3 Methodology

As one of the goals is to study the appointment scheduling problem under different
perspectives, mathematical models will be proposed, being the main (and the first one presented)
based on the frame of the resolution ANP (2022). The others will be variations of the main one
exploring particularities of distinct settings.

The appointment scheduling problem approached in this thesis is stochastic, integer
and non-linear (SINP). It consider clients requests, contractual agreements, delays/ processing
times distributions, and a pre-defined berthing sequence rule as inputs. Based on how profitable
are the operations, it defines which ships are accepted/rejected to operate, as well as the
appointment date that they are expected to happen. Heuristics based on Sample Average
Approximation (SAA) are proposed, which is a technique used to deal with the stochastic
variables. For theoretical purpose, a partially linearized version of the model is also presented.

Due to dimensionality issues faced by this combinatorial problem a partitioning
methodology is proposed called “Cluster First, Schedule Second”, inspired by the “Cluster First,
Route Second” applied to vehicle routing problems (Street et al., 2015). The idea is breaking
the master problem into smaller clusters allowing the solution for large scale instances, which
are then sequentially solved via SAA, having the scheduling of each cluster impacting further
ones.

Considering that the model was proposed under simpler assumptions about port access
and operational rules, a discrete event simulation reproducing multiple restrictions encountered
in congested terminals is proposed (resource and berthing/unberthing limitations, operational
setups, sequencing rules, among others). This model, developed in ARENA environment, tests
the appointment solutions from the optimization model in order to identify possible differences
in the estimation of operations starting time and expected profit from a simpler setting to a
more complex one.

1.4 Research Questions

The experimentation phase is then proposed guided by a set of research questions defined
as follows:

1. What is the best clustering technique that can be used in the partitioning methodology?
And what is the impact of using those approximation methods in the total profit?
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2. What is the value generated by the optimization model when compared to manually
performed appointments?

3. Which differences can be acknowledged in the operational start term when comparing a
simple terminal to a complex one?

4. What is the value of having the volume information previous to the appointment scheduling
process?

5. What is the value of having more flexibility in the availability dates?

6. What is the impact of making decisions without having full information about future
requests (dynamic versus static scheduling)? What is the impact of allowing past
corrections in the dynamic scheduling procedure?

7. What is the impact of not having a scheduled date defined?

8. Which berthing rule provides higher expected profits?

9. What is the impact of having uncertainties, in arrival and processing times?

10. What is the impact of not having coordination between schedulers and operational teams
around the berthing rule?

1.5 Thesis Structure

The following chapters will be divided as follows: Chapter 2 presents the literature
review about ship/shore operations and appointment scheduling systems used in the
development of this research. Chapter 3 analyzes practical issues about ship/shore operations
and their contract settings. Chapter 4 presents different versions of the terminal appointment
scheduling problem as well as their models, the methodology used to solve large instances and the
simulation model used to verify the appointment solutions under complex settings. Chapter 5
presents the design of the experiments as well as the results of each research question. Chapter
6 summarizes the conclusions highlighting some possibilities of future research. Chapter 7 has
all the annexes used as complementary reading.
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2 Literature Review

Scheduling applied to transportation is an old and heavily studied field and is recently
gaining new attention due to crossovers with currently debated issues, such as contractual design,
collaboration and coordination between stakeholders, and the application of new methodologies,
including machine learning and data-driven techniques. This chapter reviews the bibliography
covering those problems through different perspectives: transportation mode; level of decision
making; uncertainties in parameters; type of scheduling problem; optimization variables;
objective function modelling; type of restrictions and solution methodologies.

Even having seaborne shipping as a major component of international trade, historically
there has been less academic interest in that mode when compared, for example, to road
transportation. This low attention can be explained as a compounded result of: larger variability
of problem structures (making solutions specific instead of standardized to the industry), highly
uncertain environment and a conservative industry resistant to incorporating new solutions.

Those explanations also elucidate the reason why container problems are more explored
in the literature than liquid bulk ones (Umang et al., 2011). The cargo itself is aggregated in
standard units while in bulk is a fluid, the operation time depends basically on the number of
containers and crane capacity, while in bulk it also depends on the size of the ships, their pumps,
the types of product and berth infrastructure. In the bulk setting there is also the possibility
of interface between products, depending on the types of products carried by the ships and the
sequence they are operated (Magatão et al., 2012; Cafaro and Cerdá, 2008). Even though bulk
problems have those inherent complexities, the fact that regulatory agencies are demanding
new strategies to enhance efficiency (ANP, 2022) and that small improvements can guarantee
expressive savings, shows that there is opportunity and industry interest in the development of
solutions.

There are three levels of decision making on which scheduling can be seen in the
literature applied to the maritime area: strategic level (e.g. cargo owners defining which
terminals to operate with, terminals selecting which operations to accept/reject and stakeholders
designing contract conditions), tactical level (e.g. ships/cargo owners defining routes and
terminals agreeing on the best scheduling plan) and operational level (e.g. ships defining
speed adjustments policies and terminals sequencing the use of berth/cranes and yard). At
the strategic level, for example, Sun et al. (2021) defines contractual laytime conditions
between cargo owners and shipowners while Maisiuk and Gribkovskaia (2014) works on fleet size
definition using simulation methodology. At the tactical level, Maneengam and Udomsakdigool
(2021) approaches the ship routing and scheduling problem from a sustainable perspective,
and Jiang et al. (2012) explores strategies for yard management in container ports. At the
operational level, Correcher et al. (2019), for example, provides a survey about berth allocation
in terminals with irregular layouts and Sun et al. (2021) explores the speed adjustment decisions
made by shipowners.

Most of the literature can be located in the charterer/cargo owner strategic and
tactical level and also in the shipowner/terminal operational level (Cankaya et al., 2019).
There is limited amount of papers approaching problems from the terminal perspective at the
strategic/tactical level, which is exactly how this paper stands its contribution. Solutions in
that context can be found in papers such as Fernández and Munoz-Marquez (2022); Imai et al.
(2014) which explore the deterministic version of the berth template problem, defining which
clients should be accepted, as well as when, how and where ships with cyclic arrivals should
operate.

The ship/shore operation is the result of an agreement between three stakeholders:
shipowners, cargo owners and terminal operators. There are only a few papers that focus
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on the contractual negotiation and the implications of its execution, such as Sun et al. (2021).
Normally in those agreements there are clauses defining what is expected in terms of operational
time and service level, as well as penalization fees in case those expectations are not met (one
important penalty is called demurrage fee, applied to ship overstaying cases). Schofield (2015)
is referred for a comprehensive review on the legal terms of those contracts and a detailed
explanation of how demurrage fee is applied.

Those fees are significant when compared to transportation earnings and ships
overstaying in terminals are a recurrent problem, specially when considering congested systems.
Ribeiro et al. (2016) and Barros et al. (2011), for example, explore the berth allocation model for
bulk terminals accounting for demurrage and despatch fees (which is the opposite of demurrage,
being a bonus fee when ships operate in less time then expected). Parra (1995) and Huang and
Karimi (2006) proposes a scheduling system for ship/shore operations focusing on minimizing
those costs and Liang et al. (2011) analyzes the influence of demurrage on yard utilization.
Ships are expected to operate according to an appointment agreed between all stakeholders.

The appointment scheduling problem (ASP) is defined by customers requesting services
that should be arranged to future slots of time given a booking horizon. Those clients can be
patients requiring medical care, chemotherapy sessions, hotel and car rental arrangements or
even loading/unloading procedures in terminals. According to Gocgun and Puterman (2014),
this type of challenge is conceptually different from allocation problems (AP), which requests are
either served or rejected immediately, meaning that they are not appointed to operate in future
periods of time. Allocation problems normally follow pre-defined arrival patterns (exogenous
arrivals), while appointment scheduling problems normally are the ones that organize those
patterns (called endogenous arrivals). Having endogenous arrivals means that any change in the
appointment decision automatically impacts in changes in the arrivals and start of operations.

Those problems might focus on optimizing local variables, such as queuing time, resource
utilization and service level, or global variables such as profits and costs. There might be
constraints on the capacity/inventory level (Wang, 1993; Barros et al., 2011), time-windows
and due-dates (Gocgun and Puterman, 2014) and environmental restrictions (Le Carrer et al.,
2020; Mauri et al., 2016). Some special conditions might also appear such as the possibility of
no-shows (Zacharias and Pinedo, 2014), cancellation, overbooking (Cao, 2009; Wasesa et al.,
2021; Ala and Chen, 2022) and different types of customers/priorities (Golias et al., 2009;
Alstrup et al., 1986).

Allocation problems are vastly explored in the maritime literature, specially under the
topics of berth allocation problems (BAP) and berth template problems (BTP). The main
difference between those is the fact that berth template solves a BAP for cyclical arrivals,
which are very common in terminals that operate container liners. For a comprehensive review
on BAP the reader is referred to Rodrigues and Agra (2022), Bierwirth and Meisel (2015) and
the specific paper about bulk ports from Umang et al. (2011). For BTP it is suggested the
papers from Imai et al. (2008a), Moorthy and Teo (2006) and Fernández and Munoz-Marquez
(2022).

Terminals can operate a single berth or multiple ones which can have discrete, continuous
or hybrid compositions (Umang et al., 2013; Mauri et al., 2016). There are some interesting
literature exploring the BAP integration with yard and/or crane scheduling (Wang et al., 2018;
Lee et al., 2007; Imai et al., 2008b) and pipeline sequencing (Cafaro and Cerdá, 2008; Magatão
et al., 2012). There are also papers that add the scheduling factor (Zhen and Chang, 2012;
Xiang et al., 2017), called berth scheduling problems, defining which is the optimal berthing
sequence and when operations should happen, normally given a pre-defined arrival pattern.

The appointment scheduling problem was also explored in the maritime context, such as
in Sabria and Daganzo (1989), which used queuing theory to propose predictions about expected
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delays on systems with ship arrival deviations, or in papers integrating port performance with
truck appointment systems reviewed by Abdelmagid et al. (2022). Following that topic, Guan
and Liu (2009) applied a multi-server queuing model to analyze gate congestion and truck
waiting costs. Also, Chen et al. (2013) proposed a genetic algorithm that optimises the hourly
quota of entry appointments with a non-stationary M(t)/Ek/c(t) queuing model. Recently the
environmental perspective has also gained attention considering carbon emissions in port area
(Fan et al., 2019; Schulte et al., 2017).

The most attention to appointment scheduling systems has been given in the medical
setting and the first papers date back to the 60’s when those were being introduced in hospitals
and general practices (John, 1964; Jackson, 1964). Gocgun and Puterman (2014), for example,
proposed a model to solve the appointment scheduling of patients in need of chemotherapy
sessions, focusing on minimizing the deviation between the scheduled dates and the target
dates provided by protocoled timetable that can guarantee maximum efficacy of the treatment.
Shehadeh (2019) considered an outpatient colonoscopy scheduling problem, checking the impact
of pre-procedure bowel preparation quality on the variability of the colonoscopy duration. The
paper written by Mandelbaum et al. (2020) also approached an appointment problem for patient
surgeries, with multiple servers and uncertainties in parameters using a data-driven robust
optimization approach. Chen and Robinson (2014) combined routine patients with last-minute
call patients incorporating random and heterogeneous service times and no-show rates and
ancillary physician tasks. For a comprehensive understanding of challenges and opportunities
on the appointment scheduling in health care the reader is referred to Gupta and Denton (2008).

The appointment scheduling problem is also found under the name of booking problem
(You, 2008; Xing et al., 2019; Alstrup et al., 1986), reservation systems (Liu et al., 2015; Wang
and Wang, 2019; Gerchak et al., 1996; Du and Larsen, 2017; Lindberg, 2007) and advance
scheduling (Gocgun and Puterman, 2014).

Those problems can have parameters that are either deterministic or stochastic, with
uncertainties normally considered in the arrivals and processing times. In the deterministic
setting Phan and Kim (2016), for example, brings an interesting collaboration scheme between
trucking companies and terminal operators, in an iterative methodology that defines preferred
appointment windows giving information about expected queues, which showed to be robust
to real cases unexpected events. Lalla-Ruiz et al. (2012) approaches the sequencing of traffic
in a waterway considering the Yangtze Estuary in China as a case study. They propose a
hybrid metaheuristic that incorporates Tabu Search with Path Relinking which computational
experience outperformed other techniques commonly used in the literature. The paper from
El-Kholany et al. (2022) proposes a constrained clustering algorithm to assign operations into
time-windows using Answer Set Programming, which is a form of declarative programming
oriented primarily towards NP-hard searching problems. A broad review of past literature in
deterministic scheduling problems can be found in papers such as Graham et al. (1979) and
Dempster et al. (1981).

Going towards stochastic papers, some of them consider uncertainties only in the arrival
times, such as the paper from Umang et al. (2013) that studies a dynamic hybrid BAP in bulk
ports minimizing the total service times of vessels and Moorthy and Teo (2006) that models
the BTP as a rectangle packing problem on a cylinder. There are also papers that consider
only uncertainties in the processing times, with deterministic arrival patterns (or that consider
the arrivals exactly when operations are scheduled). The paper from Sadghiani and Motiian
(2021) is an example, that explores those uncertainties by training a Deep Neural Network in an
appointment scheduling problem context. Zhen (2015) also proposes a robust approach to deal
with those uncertainties when limited information about probability distributions are available.
Karafa et al. (2013) and Golias (2011) approach with stochastic handling times a bi-objective
BAP model.
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There are also papers that consider both stochasticity in arrivals and processing times
such as the one written by Zhen et al. (2011) which models a berth allocation model that
minimizes penalty costs of deviations from the initial schedule. Golias et al. (2014) also deals
with the BAP with uncertainties in arrival and processing times although by minimizing the
average and the range of the total service times. Chen and Robinson (2014) studies appointment
scheduling in a medical center for a combination of routine patients (who book well in advance)
and last-minute patients, considering no-show possibilities. All the appointment scheduling
problems highlighted above consider arrivals as an exogenous variable.

Due to the combinatorial nature of scheduling problems, specially in cases of stochastic
settings, approximations and/or heuristics/metaheuristics are used to speed up the solution
process (Cankaya et al., 2019). As an example, Cunha et al. (2020) defines a mathematical
model and a heuristic based on the iterated local search metaheuristic for rescheduling pipe-
laying support vessels with wells activities constraints, which resulted in faster and close to
optimal solutions. Umang et al. (2013) propose a heuristic method based on squeaky wheel
optimization to solve a dynamic berth allocation problem in bulk ports. Mansourifard et al.
(2018) proposes a heuristic policy for the sequencing of surgeries based on the newsvendor
cost using real hospital data for the analysis, which showed to outperform common heuristics
in practice (such as ordering the surgeries based on the variance of surgery duration and
requesting all patients to be present in the beginning of the day). Mak et al. (2014) focus in the
sequencing of appointments using inventory approximations through a two stages solution on
which determining time allowances as buffers against random job duration is considered similar
to selecting inventory levels as buffers to accommodate random demand in a supply chain. They
find out that the heuristic proposed is close to optimal and that computational time is reduced
substantially when compared to other approaches.

Another commonly used methodology to approximate stochastic scenarios is the sample
average approximation (SAA) method studied in Verweij et al. (2003) and Mancilla and
Storer (2012). In this technique the expected objective function of the stochastic problem is
approximated by a sample average estimation derived from a random sample, also called Monte
Carlo Simulation or Numerical Simulation. This technique was also applied to the appointment
scheduling context by Sadghiani and Motiian (2021), Mak et al. (2014) and in Ho and Lau
(1992). In the last reference, the goal is to minimize the expected cost of idle doctors and
patients waiting, by using various scheduling rules. They consider deterministic endogenous
arrivals.

Decomposition/partitioning methods are also very common, with the objective of
breaking the master problem into smaller ones that can be solved faster with small deviations
from the optimal results. As an example, El-Kholany et al. (2022) uses decomposition with
data mining methodologies to solve a job-shop scheduling problem. Sun and Batta (1996) also
approach the same topic through another decomposition method called divide and conquer on
which the job shop is first decomposed into cells then a shop scheduling problem is solved through
iteratively defining, solving and coordinating cell scheduling problems. They also compare
scheduling with different dispatching rules, with and without decomposition, concluding that
breaking the problem into smaller ones is computationally effective and brings great results.
Street et al. (2015) revisit another decomposition method used on vehicle routing problems
called “Cluster first, Route second” on which groups using k-medians like clustering structure
aggregate customers that form certain shapes with respect to the depot. Those are then solved
as traveling salesman problems with the use of CPLEX.

Figure 1 visually summarizes a network map with the keywords that most appeared
in the papers collected through this research path, showing that “Berth Allocation” and
“Scheduling” were the ones that stood out.
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Figure 1: VOSViewer

Those topics are highly correlated and, in some cases, even complementary to the
terminal appointment scheduling problem (TASP) explored in this thesis as showed by Figure
2. Normally BAP/BSP depend on given arrival patterns as an input, returning a berthing
sequence as an output, while the terminal appointment scheduling under review considers the
berthing rule as an input and outputs the appointments which will directly affect the arrival
pattern.

Figure 2: Interaction between TASP and BAP/BSP

In some terminals those berthing sequencing rules are defined by operational teams and
not by scheduling teams, and if the schedulers perform the appointment scheduling procedure
under different rules from the ones actually used, there is a greater chance that results deviate
from the optimal. The alignment problem between codependent decision makers is explored in
the literature under the name of coordination theory (Malone, 1988).

Table 1 summarises some of the important papers reviewed and the main characteristics
collected from close related papers, reinforcing that there is no knowledge up to now of other
papers that consider the terminal appointment scheduling problem under stochastic arrivals
and processing times, with arrivals also being an endogenous variable, which is one of the
contributions of this research.
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For the experimentation phase an overlap index is proposed which allows to separate
the analysis of high, medium and low overlapped requests. Additionally, to overcome the
computational issue a partitioning method called “Cluster first, Schedule second” is proposed.
Both the index definition and the “Cluster first, Schedule second” methodologies were not
encountered in the literature reviewed.

From the managerial perspective it is also expected insights about value of information,
different answering time frames, impact of uncertainties in arrivals and processing times, impact
of different berthing sequencing rules, coordination between schedulers and operational teams,
among others.

Table 1: Contribution PhD
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3 Oil and Derivatives Terminal Services

3.1 Terminal services and operations

The first step to understand how to optimize terminal services is by understanding how
they work and what are the commitments agreed in the contracts. A port terminal consists
of a dedicated space for the interconnection of land and sea, on which people and goods are
in constant transit. Although infrastructure is completely different depending on the type of
cargo it carries, Henesey (2006) proposes a very general four subsystem way of dividing terminal
processes which is represented in Figure 3, and explained in sequence.

Figure 3: Terminal Subsystems

• Ship-to-Shore: the load/unload subsystem that allow movement of products between
those two environments.

• Transfer: the interconnection subsystem, that allows transportation between each of the
above subsystems (such as cranes, specialized vehicles, pipelines or conveyors).

• Storage: inventory subsystem.

• Delivery/Receipt: the onshore subsystem, which provides the connection with other
modes of transportation such as trucks, trains and external pipelines.

The main service offered by a terminal is the product transportation (also known as
cargo handling) and storage. For oil terminals, there are some secondary operations that might
be offered, such as water and bunker supply, waste collection/ treatment, and oil sample analysis
(Figure 4).

As seen in Figure 3, an oil terminal has its mooring infrastructure (berths or buoys),
tanks (eventually) and pipelines. Depending on the terminal, there is an unique pipeline
that is used for all products or there might be segregated ones for each product. Shared
infrastructure (transporting more than one product through the same pipeline) may recall for
product degradation (mixed interface between two products), which introduces more frequent
cleaning procedures and quality tests.

The terminal can be onshore, with berths completely attached to land; or offshore,
meaning that ships connect to a monobuoy or a set of buoys offshore, and product is transferred
through a sub-sea pipeline between ship and onshore infrastructure. Product can be imported,
exported or transferred between regions of the same country (cabotage), which might recall
different quality ensurances.

There are basically two types of operations that can happen in a terminal: operations
between tanks and ships (loading or unloading), and ships directly with other ships (ship-
to-ship or transshipment). Loading procedure means that a ship receives cargo from other

20



Figure 4: Types of Terminal Services

terminals/refineries via pipelines, which could be stored in tanks previously. Unloading
procedure is basically the other way around, where a ship sends cargo to the terminal tanks
or directly to other terminals/refineries. The reference of loading/unloading is always the ship,
meaning that if a loading procedure is happening the ship is being loaded, and if unloading is
happening it is the ship that is being unloaded.

A terminal can also offer its infrastructure and resources to transfer product from one
ship directly to another. The first way is called stationary ship-to-ship operation (or stationary
STS), on which a ship basically uses the terminal berth as a mooring point (called “principal”
ship) so a second ship can moor side by side (called “secondary ship” or “pair”), and product
can be transferred through hoses connecting both ships. The second way called transshipment
uses two berths from the same terminal that have interconnected pipelines and product flows
from one ship to the other using this interconnected infrastructure. Both ship to ship and
transshipment are procedures that do not internalize product to the terminal.

Figure 5 details the main steps of a ship operation (for both loading and unloading
procedures), referencing which teams are responsible for which box-process: vessel team,
terminal team and external entities (boxes were drawn under the respective responsible
columns). For STS and transshipment operations, all steps are done with both ships.

Some terminals operate under a first in first out approach (FIFO), and others with
appointments. According to Wang (1993) the appointment is called static when all clients
requests are received up to a limit date and processed at once, and dynamic when processed
once per time as they come (this definition varies across authors). When scheduling a ship
operation, a terminal has to define the date the ship should start the operation as well as the
time-window it should take to finish considering clients restrictions.

As soon as the ship arrives to the port a “Notice of Readiness” (NOR) is sent to the
terminal. If the terminal is also ready, the ship proceeds to berth directly, otherwise it needs to
anchor and wait permission to enter.

In order to authorize mooring, some port authorities require a harbor pilot on board,
who will guide ship maneuvering inside port region. As the ship is berthed, procedures such
as: safety checks, documentation/information exchange, cargo measuring, cargo sampling and
internal alignments (connections between ship/pipeline and pipeline alignments) are prepared,
in order to get the system ready to pump product. If the cargo flows from the terminal to the
ships, pumps from the terminal are used. If the cargo flows from the ships to the terminal,
pumps from the ships are used.
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Figure 5: Flowchart of ship operation

As it was said before, it is possible that a ship requests extra services such as: bunker
supply (ship fuel), water, and slop collection. In some cases those services are provided
in parallel to the cargo handling, and in others they are provided in sequence. When all
the product is handled, ship and terminal finalize documentation signatures, sampling and
measurement procedures, as well as internal alignments, valve closures, disconnections and
unmooring. Harbor pilot might be again requested to release the ship, ending operation.

There are quite many particularities impacting the flow of operations, meaning that
each time is almost an unique experience, making this kind of service very complex to plan and
address.

As any other service, what a terminal offers has four different characteristics (Kotler
and Armstrong, 2017): intangibility (terminal/ship operation is not a physical material),
inseparability (preemption is not allowed, unless in very specific cases), variability (the quality
depends on stochastic variables) and perishability (time not used is never recovered).

3.2 Terminal service contracts

This section explores the players involved in a ship/shore operation, contracts and
financial agreements.

A cargo owner is the party that owns the cargo and wants to transport it from point A
to point B. If this transport is through sea, a ship must be hired (if the cargo owner does not
have its own fleet to make transportation). The ship belongs to a ship owner, and the charterer
is the figure that represents the interests of the cargo owner in the signing and planning of a
Charter Party (agreement of ship service hiring).

There is another figure called ship brokers that might appear in some situations. Those
are hired to intermediate negotiations, specially when cargo owners have limited contacts in a
specific country and do not know the quality of the ship owners service.
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The ones that effectively participate in the operation are the ones from Figure 6: ship
owner, terminal operator and cargo owner (which coordinates the product logistics and the
interaction between ship and terminal). Besides those, some other entities may also participate
directly or indirectly in the operation such as harbor pilots (requested in some ports to maneuver
ships inside port region), cargo surveyors (that provide measurement and quality tests) and
agencies (which are hired by the ships to address any bureaucracy needed in shore).

Figure 6: Parties involved in a ship/terminal operation

There are several types of shipping contracts, which are agreements between the
charterer and ship owners (Sun et al., 2021), being “voyage charter party” (VCP) and “time
charter party” (TCP) the most common ones, and those are celebrated by well-established
formats such as ASBATANKVOY (Association of Ship Brokers and Agents (USA), 1977),
SHELVOY and others. Those contracts normally have all the basic financial and efficiency
related information, that should guide further operations and disputes.

One important concept that appears in all those contracts is called laytime, which is the
interval that a ship will be available to handle cargo for a specific freight (Mauri et al., 2016).
The goal of fixing a laytime period and providing demurrage and despatch fees is to penalize
dilatoriness and reward promptitude, which was already approached in the literature by other
researches such as Schofield (2015) and Ribeiro et al. (2016).

The standard laytime defined by the international guide Wordscale (2015) for full tankers
operation is 72 hours for loading in the port of origin and unloading in the port of delivery
(disregarding the shifting between ports), although those terms and conditions can vary from
contract to contract. This is also understood by some as a benchmark that loading/unloading a
full ship should take 36 hours each (or the proportional time depending on the amount carried).
It is common to see this benchmark being used, specially for unloading contracts (PDVSA,
2008; REPSOL). A similar agreement has to be made with the terminal operator, on which
financial benefits and operational obligations are set accordingly to the terminal limitations.

UNCTAD (2020) provides an estimation for ship freights based on both size and area
they navigate. A Suezmax average rate can go from $30,000 per day to $150,000 depending on
oil prices fluctuations, which according to REPSOL, is a good approximation of the demurrage
fee.

TMRC (2021) shows a terminal agreement that sets the throughput, tankage and usage
fees, with prices varying according to quantity operated ($0.55 for each barrel, for the first
2,129,267 barrels, and $0.10 for more volume). Another example would be from Valero Logistics
Operations (2004) which charges $0.30 per barrel, with a minimum commitment of 1,600,000
per month. Contracts with terminals can be occasional (one specific event) or long-term. It is
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common for long term contracts to include a “minimum throughoutput” clause which guarantees
a minimum reward for the terminal independent of the facilities usage.

If more time is needed for completing the operation, someone should be accounted
responsible, as the cargo owner might have a clause on the agreements to pay a demurrage fee
to the ship or terminal for the extra time they were available. In order to control for that, both
ship and terminal have to keep track of what was happening with the operation at all times, and
file a formal complaint when a delay is being perceived due to the other party responsibility.
There is also the case when the contract reward the parties involved in the operation for an
operation performed in less time than expected (despatch rate).

The vast majority of contracts consider a valid Notice of Readiness (NOR) as the start
of laytime period (Sun et al., 2021). For a NOR to be valid, a ship must have reached the correct
proximity to port area and be ready to operate, by the time agreed in the planning period. The
concept of demurrage applies only for VCP contracts, as the ship is hired for a specific voyage.
In case of a TCP contract, there is not a direct fee associated to overtime for each voyage, but
there is a reduction in the overall productivity as less operations are accomplished in the end.

There are a few sorts of disturbances that might cause delays in the system such
as: environmental conditions (e.g. tide, waves, winds which are out of the safety range for
operation), resource restrictions (e.g. lack of operational personnel, damaged pumps), delays
in the arrival of ships, issues with the scheduling and coordination procedure (e.g. how ships
are sequenced, time-window given), as detailed in Rahman et al. (2019). Those disturbances
compromise the flow of operational activities which might generate congestion for a period of
time. Any delay coming from other parties has an impact on terminals operation as they have
to accommodate those uncertainties and provide service according to contractual expectations.

3.3 Chapter Summary

This chapter shows a detailed summary of how ship/shore operations are performed as
well as contractually established. An operation depends on three main figures: cargo owners,
ship owners and terminal operators. The need of cargo transportation of product from point
A to point B triggers a set of contracts that establish safety and efficiency standards. In those
agreements, both earnings and penalties are defined.

The operations considered in this research deals with fixed earning and demurrage
fees, no despatch fees nor demurrage payments from other figures besides terminals, and no
“minimum throughoutput”. Additionally, the scope is focused on the ship/berth operation
considering that there are no restrictions on tanks and pipelines. Many of those definitions
will be discussed further on and used in the conceptual design of the appointment scheduling
problem. The richness of details shows how complex those operations might be, allowing
multiple opportunities for future research.
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4 Terminal Appointment Scheduling

4.1 Problem Setting

Whenever a client wants to operate ships in a certain terminal, formal requests have
to be sent in the previous month containing information about the desired operation, such
as volume, size of the ship, product, type of operation, as well as the dates that should be
considered as possible dates for scheduling the start of operation (translated by an earliest and
latest day). The terminal has to accept/reject the requests, as well as define an appointment
date and time-window on which they are expected to happen (ANP, 2022; Valero Logistics
Operations, 2004). Those decisions can be made in two different time frames: one by one as
requests arrive (dynamic scheduling); or after a certain date (static scheduling) when all clients
are supposed to have shared their demands. Depending on how profitable the operations are
and how overlapped are the requests, more or less ships are accepted to operate.

As the oil industry is highly volatile, is common that clients do not have all those
information so early on (normally volume, earliest and latest are the usually known ones), and
that decisions are made by the terminal under a lot of uncertainties. Whenever a terminal sets
a date and a time-window, there is an underlying agreement that if the operation does not
happen according to that plan, the terminal might be requested to pay a demurrage fee for each
extra day that the ship overstays in the port.

It is important to distinguish the appointment phase, which is the focus of this research,
from the operational phase, which happens one month later according to a berthing rule defined
by the operational team. This berthing rule can be as complex as the terminal understands is
best to organize the berthing sequence. Some terminals use practical rules, such as “first in,
first out” (Cankaya et al., 2019), some follow strictly the sequence given by the scheduling
team (Sabria and Daganzo, 1989), others add a tolerance for delayed arrivals, others use
prioritization schemes according to the importance of the client, size of the ship, limitations
in the berthing/unberthing procedure, etc.

There is a lot of literature, normally under the name of berth allocation or berth
scheduling problem, which focus exactly on defining those berthing sequences considering as
input a pre-defined arrival pattern. This research, on the other hand, requires the definition of
this berthing rule as an input and the output is the appointment plan (which directly affects
the arrival pattern).

The fact that ships are scheduled in certain days do not imply that they are operated
in that exact time. It all depends on the arrival dates (which are uncertain), processing times
(which are also uncertain) and the berthing rule. Therefore, it is important that the scheduler
is aligned with the rules currently being used by the operational team, so the appointment
process is adherent to reality. A decision considering a different operational rule might lead to
less profitable solutions.

The demurrage cost can be divided in two parts: start mismatch (difference between
the real start and the scheduled start, counted only for ships that arrive early/on time) and
operational mismatch (difference between the processing time and the time-window given). The
fact that a ship waits for a berth to get free beyond the scheduled date, can be compensated
by an overestimated time-window, as well as advancing the entrance of a ship can compensate
an underestimated time-window.

The complexity of the problem consists in deciding who to accept/reject and when to
schedule those operations in a stochastic environment which decisions not only impacts the
profit but also the arrivals itself.
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Considering that regulatory bodies, such as the National Petroleum Agency from Brazil,
are currently framing this problem, some combinations of the exposed settings will be modelled
and explored to support this process. Problem 1 presents the “main problem” with most of the
definitions that will be explored over the following ones, as detailed:

• Problem 1: will tackle a static terminal appointment scheduling problem, on which
decisions are to accept/reject requests with an appointment date definition, considering
a FIFO berthing rule and available information about volume, earliest and latest.

• Problem 2: similar to Problem 1 except for the fact that volume information is not
known when scheduling is performed.

• Problem 3: similar to Problem 1 except for the answering time frame which is dynamic
instead of static.

• Problem 4: similar to Problem 1 except for the berthing rule which is “by schedule”
instead of FIFO.

• Problem 5: will tackle a static terminal appointment scheduling problem, giving a FIFO
berthing rule and information about volume, earliest and latest. The decision is reduced
to accepting/ rejecting requests based on the earliest/latest informed by the clients. In
this case a new demurrage and profit calculation will be discussed.

4.2 Mathematical Models and Algorithms

4.2.1 Problem 1

Consider a set of principal ships S = (1, ..., Nships), a unique berth and a set of days on
which ships can be scheduled to operate D = (1, ..., Ndays). Clients have to send their requests
until a specific limit date from the previous month, informing for each desired ship operation
s their volume (vols) as well as the period they are available to be scheduled (between the
earliest (es) and latest (ls) days). The difference as = ls − es + 1 is called availability size and
impacts terminals flexibility when preparing the scheduling plan. As an example, a client wants
to operate Ship s in a specific terminal next month (November). The client should send the
operation request up to the 20th of October, which is the limit date established by the terminal
to receive all requests of Novembers operations. The volume of Ship s should be informed, e.g
300, 000m3, as well as the earliest and latest days on which the ship could be scheduled, e.g
between day 15 and day 18 (meaning that it can be scheduled to start on day 15, day 16, day
17 or day 18).

The terminal has to evaluate all requests focusing on maximizing terminal’s profit and
decide which ships should be accepted/rejected to operate, the date they should be scheduled,
called dxs as well as its expected time-window for completion, called θs. Some terminals use a
fixed and previously determined θs to simplify the appointment scheduling process, which will
also be used in this research. The date when the ship really arrives is uncertain and is called dys,
and the date that it really starts operation is called dzs. There is no restriction on scheduling
more than one ship in the same date even when there is only one berth in the terminal (this
can be the most profitable option when compared, for example, to rejecting a ship).

It is possible that a ship arrives early, late or exactly on time to operate. Additionally,
the operation can start earlier, later or exactly when it was scheduled, as summarized in Figure
7. The operation can only start when the ship arrives to the terminal (dzs ≥ dys) and takes an
uncertain amount of time to finish, called processing time (or ps).
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Figure 7: Arrival and Start Time Cases

All variables are integers and discretized in days (Lalla-Ruiz et al., 2012), and actions
happen at the very first instant of each day. As an example, if the informed dxs is day 6 and
ps is 3 days, means that the ship is scheduled to start its operation in the beginning of day 6
and will be processed in 3 days, meaning that in the beginning of day 9 the terminal will be
available to receive another one. It is also assumed that ships can only start operating after the
first day of the scheduled month (as an example, if a ship is scheduled to operate in November,
but arrives in the end of October, the operation can only start after the first day of November).

The terminal charges Φs dollars per cubic meter transported and incurs in a demurrage
penalty of Ωs dollars per exceeded day, discounting any delay in the arrival of ships. This
cost can be divided in: start mismatch (sms = (dzs − dxs)1

(dys≤dxs), which is the dzs − dxs
considered only when ships are not late) and operational mismatch (ps− θs). As the demurrage
fee is always a cost and never a bonus (in this research), τ+s is defined as the maximum between
zero and the sum of the start mismatch and operational mismatch, which can be calculated as
τ+s = max[(dzs − dxs)1

(dys<dxs) + (ps − θs), 0]. Table 2 shows some examples of how demurrage
days are calculated, which are explained in detail as following:

• Scenario 1: Consider that a ship is scheduled to operate on day dxs = 4 and the
time-window offered to that operation is θs = 2, meaning that the expected end of that
operation is day dxs + θs = 6. The ship arrives early on day dxs = 2 and the berth gets
empty on day dzs = 3, calling that ship to operate earlier than scheduled (dzs−dxs ≤ 0).
The real processing time was ps = 2 and the ship left by day dzs+ ps = 5, one day earlier
than expected. In this first case there is no demurrage to be paid.

• Scenario 2: The only difference from the previous scenario is that the processing time
was ps = 3, one day more than the given time-window for that operation. Due to the
fact that the ship berthed one day earlier, the extra day used to perform the operation is
compensated, and the ship still leaves in the expected day (dzs + ps = 6). No demurrage
is paid.

• Scenario 3: In this scenario, the operation started later than expected (dzs = 5 ≥ dxs =
4), which was compensated by a faster processing time (ps − θs = −1). The ship also left
by day dzs + ps = 6, with no need of demurrage payment.

• Scenario 4: This is similar to Scenario 3 but the processing time could not compensate
the late start (ps − θs = 0), meaning that the ship left on day dzs + ps = 7 and the
terminal had to pay one day of demurrage fee.
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• Scenario 5: The ship is berthed exactly when it arrived (dys = dzs), 2 days earlier than
the scheduled date (dzs − dxs = 2), but the processing time was 3 days more than the
given time window (ps − θs = 3). In this case the ship left on day dzs + ps = 7, and the
terminal also incurred in one day of demurrage fee.

• Scenario 6: Finally the last example shows a different situation on which the ship arrives
late (dys = 5 > dxs = 4). In this case, even if the ship is berthed later on, it does not
have the right to charge the terminal for any dzs−dxs deviation, and the start mismatch
is zero. The only term that is still considered is the operational mismatch (ps−θs = 1), as
the terminal offered an operational time-window of θs = 2 days and the operation lasted
ps = 3 days. In this case, the terminal also incurred in one day of demurrage fee.

Table 2: Days of demurrage

The arrival of ship s is assumed to be dependent on the scheduled date and a random
delay distributed around it (called delays) and is defined as dys = dxs+delays. This dependence
on the scheduled date is what characterizes the endogenous profile. The definition of when the
ship really starts the operation (dzs) is a result of its own arrival, previous operations and the
berthing sequencing policy. This means that dzs is also dependent on the scheduled date.

Assuming that the terminal revenue is only due to berth activities and that the only
variable cost is the demurrage fee, the realised profit (P ) can be calculated as the following:

P =
∑
s∈S

[
Φsvols − Ωs(τ

+
s )

]
1(dxs>0) (1)

τs = (dzs − dxs)1
(dys≤dxs)

start mismatch

+ (ps − θs)

operational mismatch

(2)

If ship s is scheduled, dxs must be between the earliest scheduled date es (Constraint
3) and the latest scheduled date ls (Constraint 4), otherwise is zero. If dxs is zero, means that
the request of ship s is not accepted, then the ship never arrives and dzs should also be zero
(Constraint 5). Those constraints can be defined for any ship s ∈ S as:

dxs ≥ es1
(dxs>0) (3)

dxs ≤ ls1
(dxs>0) (4)
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dzs ≤ Mdxs (5)

As previously explained, dzs depends on the berthing sequencing rule defined externally
by operational teams, which in this problem is set to be FIFO. Considering ms as the sequence
index corresponding to the operation of ship s, a general format for dzs definition when ms > 1
is given by the following recursive expression (maximum between the arrival of that ship and
the end of the previous ship operation):

dzs = max[dys, (dzs′ + ps′)|(ms′ = ms − 1)] (6)

For ms = 1, the calculation of dzs considers that operations can only start after day 1
of the operational month, and is given by:

dzs = max[dys|(ms = 1), 1] (7)

This model considers thirteen input parameters and three variables, which are
summarized as following:

Problem 1/ Model 1

Parameters:

• S= set of ships to be scheduled

• Nships = number of ships to be scheduled

• D = set of days available for scheduling

• Ndays = number of days from the scheduling period

• Φdays = revenue fee in dollars per cubic meter transported

• Ωdays = demurrage fee in dollars per day

• es= expected earliest day that the ship s could arrive to the terminal

• ls= expected latest day that a ship s should departure

• vols= expected latest day that a ship s should departure

• ps= processing time of ship s, which follows a given statistical distribution

• delays= delay of ship s, which follows a given statistical distribution

• θs= time-window scheduled for ship s

• ms= sequence index corresponding to the operation of ship s, which in this case is defined
by the arrival order (FIFO).

Variables:

• dxs is the date ship s is scheduled to arrive and start operation (dxs = 0 means ship s
was not scheduled/accepted to operate)
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• dys is the date ship s arrives at the terminal, defined by dys = dxs + delays

• dzs is the date ship s starts operation

maximize
dxs

E

[∑
s∈S

[
Φsvols − Ωs

(
(dzs − dxs)1

(dys≤dxs) + (ps − θs)
)+

]
1(dxs>0)

]

subject to dxs ≥ es1
(dxs>0) ∀s ∈ S

dxs ≤ ls1
(dxs>0) ∀s ∈ S

dys = dxs + delays ∀s ∈ S

dzs ≤ Mdxs ∀s ∈ S

dzs = max [dys, 1] s|ms = 1

dzs = max[dys, (dzs′ + ps′)|

ms′ = ms − 1] ∀s ∈ S|ms > 1

dxs, dys, dzs ≥ 0 and integers

The problem presented is non-linear in the objective function as well as in some
constraints. The reader is invited to follow the linearization process of most of the constraints
detailed in “Annex 1: Linearization Process of Problem 1/ Model 1” which resulted in the
following parameters and variables:

Problem 1/ Model 1 (Partially Linearized)

Parameters:

• S= set of ships to be scheduled

• Nships = number of ships to be scheduled

• D = set of days available for scheduling

• Ndays = number of days from the scheduling period

• Φdays = revenue fee in dollars per cubic meter transported

• Ωdays = demurrage fee in dollars per day

• es= expected earliest day that the ship s could arrive to the terminal

• ls= expected latest day that a ship s should departure

• vols= expected latest day that a ship s should departure

• ps= processing time of ship s, which follows a given statistical distribution
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• delays= delay of ship s, which follows a given statistical distribution

• θs= time-window scheduled for ship s

• ms= sequence index corresponding to the operation of ship s, which in this case is defined
by the arrival order (FIFO).

• M= very large number

• E= very small number

Variables:

• dxs is the date ship s is scheduled to arrive and start operation (dxs = 0 means ship s
was not scheduled/accepted to operate).

• dys is the date ship s arrives at the terminal, defined by dys = dxs + delays.

• dzs is the date ship s starts operation.

• us is a binary variable which is 1 when ship s is accepted to operate, and 0 otherwise.

• ws is a binary variable which is 1 if dys ≤ dxs and 0 otherwise.

• zs is a binary variable, defined by zs = wsus.

• hs is an integer variable, defined by hs = (dzs − dxs)zs.

• vs is an integer and greater or equal to zero variable, defined by vs = max(hs + (ps −
θs)us, 0).

• ts is a binary variable which is 1 when hs + (ps − θs)us > 0 and 0 otherwise.

maximize
dxs

E

[∑
s∈S

[Φsvols − Ωsvs]

]

subject to dxs ≥ esus ∀s ∈ S

dxs ≤ lsus ∀s ∈ S

dzs ≤ Mdxs ∀s ∈ S

dys = dxs + delays ∀s ∈ S

dxs − dys ≤ Mws − E ∀s ∈ S

dys − dxs ≤ M(1− ws) ∀s ∈ S

zs ≤ ws ∀s ∈ S

zs ≤ us ∀s ∈ S

zs ≥ ws + us − 1 ∀s ∈ S
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hs ≥ −Mzs ∀s ∈ S

hs ≤ Mzs ∀s ∈ S

hs ≥ (dzs − dxs)−M(1− zs) ∀s ∈ S

hs ≤ (dzs − dxs) +M(1− zs) ∀s ∈ S

hs + (ps − θs)us ≤ Mts ∀s ∈ S

−(hs + (ps − θs)us) ≤ M(1− ts) ∀s ∈ S

vs ≥ hs + (ps − θs)us ∀s ∈ S

vs ≥ 0 ∀s ∈ S

vs ≤ hs + (ps − θs)us +M(1− ts)∀s ∈ S

vs ≤ 0 +Mts ∀s ∈ S

dzs = max [dys, 1] s|ms = 1

dzs = max[dys, (dzs′ + ps′)|

ms′ = ms − 1] ∀s ∈ S|ms > 1

dxs, dys, dzs, vs ≥ 0 and integers

us, ws, zs, ts are binary

hs is integer

The only constraints that were not linearized were the ones that define the dzs
calculation. In the case of this research the berthing sequencing rule is defined externally by the
operational team, which adds difficulty on finding a linearized general form for dzs. Additionally,
the literature points out that appointment scheduling problems are computationally intensive
(Zacharias and Pinedo, 2014) which can be explained by its combinatorial nature. Therefore,
heuristics that can deal with those issues will be proposed and implemented in a free-access
Touring-complete environment called “R”. Initially, a methodology to find what will be called
“simulated optimal solution” is presented followed by the definition of a partitioning method
used to reduce resolution time (the terminology will be clear after the following examples).

In that way, the heuristic starts by enumerating all possible combinations of dxs for
all ships considering the es and ls informed by clients (Table 3), including the rejection option
(defined as dxs = NA). As an example, the first ship presented days 4 (earliest), 5 or 6 (latest)
as possibilities for scheduling the operation. The terminal has to consider those options of dates
with the option of not scheduling that ship at all.

32



For each combination of dxs, it is created a set of Nscen scenarios (a thousand, for
example) of delays and ps randomly selected given their distributions, enabling the calculation
of dys = dxs + delays (Table 4). Those scenarios will numerically simulate a sample of events.

Table 3: Numerical example of clients requests

Table 4: Algorithm logic

Having dys, ps and the berthing rule (which in this case is FIFO) defined, the next step
is calculating dzs for each scenario. In this case all ships are indexed by their arrival order, from
the earliest to the latest arrival. The mth ship to operate is the mth arrival. If multiple ships
arrive at the same day, the one that requested operation first (smallest s) will be prioritized.
Table 5 shows an example, in Scenario (a) the first ship to operate is Ship 3, sequenced by
Ship 1 (which although arrived at the same date as Ship 2, has a smaller s) and then Ship
2. It is important to highlight that ship operations can only start after the first day of the
scheduled month, even if they arrive in the end of the previous month. This can be seen in
the dzs = 1|ms = 1 even knowing that dys = −3|ms = 1. The other dzs calculation follow the
dzs = max[dys, (dzs′ + ps′)|ms′ = ms − 1] formulation, being dzs = max[2, 1 + 1] = 2 for m = 2
and dzs = max[2, 1 + 1 + 3] = 5 for m = 3.

Table 5: Fifo Ordering/ Request tiebreaking rule
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A more refined tiebreaking rule is explored in detail in “Annex 3: Tiebreaking rule:
smallest deviation first”, which prioritizes requests with the smallest deviation from the
scheduled date. In this case the highest priority is given to on time ships, followed by early
ones (from the closer to the scheduled date to the one further), and then by the late ones (from
the closer date to the schedule to the one further). Some insights about the impact of those
tiebreaking rules will be explored in the experiments.

Having the dzs calculated for all ships in each scenario, next step is defining the start
mismatch and operational mismatch to calculate the total days of demurrage (τ+s ) considering
τs = (dzs − dxs)1

(dys≤dxs) + (ps − θs). Examples of those calculations were given previously in
Table 2.

Last step is calculating the earnings by Φsvols and discounting the total cost of
demurrage given by Ωs(τ

+
s ) for all ships that were accepted to operate. The expected profit of

each combination is calculated by the average of the Nscen scenarios. The combination with the
highest E[P ] is called the simulated optimal solution.

This technique of creating scenarios and taking the average is also called in the literature
as Sample Average Approximation (SAA).

Summarizing the algorithm presented:

Problem 1/ Algorithm 1:

• Step 1: For all s ∈ S, consider the es and ls information to enumerate all Ncomb =∏
s∈S(as + 1) possible combinations of dxs including ’NA’ which represent rejecting the

operation of that specific ship. Set the counter i = 1.

• Step 2: Having the ith combination, and given s ∈ S, create a set of Nscen scenarios with
randomly selected delays and ps for each ship, considering their distributions.

• Step 3: For all s ∈ S, from all j ∈ Nscen scenarios calculate dys = dxs + delays.

• Step 4: For all s ∈ S, from all j ∈ Nscen scenarios, define an index ms with the order of
arrival of each ship s. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with mins).

• Step 5: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is
given by dzs = max[dys|(ms = 1), 1], and for all s ∈ S|(ms > 1), calculate dzs =
max[dys, (dzs′ + ps′)|(ms′ = ms − 1)].

• Step 6: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, (dzs − dxs)1

(dys≤dxs) + (ps − θs)]

• Step 7: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by the
expression

∑
s∈S [Φsvols − Ωs(τ

+
s )]1(dxs>0).

• Step 8: Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 2,
otherwise goes to Step 9.

• Step 9: The final solution is given by the combination of dx∗s that returns the maximum
expected profit (maxE[Pi]).

It is important to observe that ordering FIFO is one of the simplest berthing rules that
can be defined by operational teams. Although “R” is capable of handling complex algorithms,
depending on the level of detail required, there are commercial softwares capable of creating
actual digital twins, such as ARENA, ProModel, FlexSim, etc. This type of Discrete Event
Simulation tools, although not used for this purpose in this research, can replace the numerical
simulation if properly integrated to the optimizer. More about this topic will be explored later
in this chapter.
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4.2.2 Problem 2

The problem setting is very similar to what was proposed in Problem 1, except for the
fact that volume information is not available to the terminal by the time the appointment plan
is performed.

Without knowing the volume, there is no computation of real earnings which is key to
profit calculation. Therefore, two different solution strategies are proposed. The first one is
using Model 1 with all volumes being equal to the average encountered in the historical data.
The second one is through another model with the same structure as Model 1, considering all
volumes equal to 0. In this second way an additional constraint is needed to avoid the trivial
solution. This constraint sets a minimum number of ships (MinNships

) that should be accepted
to operate, which could also be estimated with historical data, if information is available. This
model is implemented through Algorithm 2 which is defined as the following:

Problem 2/ Algorithm 2:

• Step 1: For all s ∈ S, consider the es and ls information to enumerate all Ncomb =∏
s∈S(as + 1) possible combinations of dxs including ’NA’ which represent rejecting the

operation of that specific ship. Keep only the combinations that have more than or at
least MinN ships. Set the counter i = 1.

• Step 2: Having the ith combination, and given s ∈ S, create a set of Nscen scenarios with
randomly selected delays and ps for each ship, considering their distributions.

• Step 3: For all s ∈ S, from all j ∈ Nscen scenarios calculate dys = dxs + delays.

• Step 4: For all s ∈ S, from all j ∈ Nscen scenarios, define an index ms with the order of
arrival of each ship s. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with mins).

• Step 5: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is given
by dzs = max[dys|(ms = 1), 1], for all s ∈ S|(ms > 1), calculate dzs = max[dys, (dzs′ +
ps′)|ms′ = (ms − 1)].

• Step 6: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, (dzs − dxs)1

(dys≤dxs) + (ps − θs)]

• Step 7: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by the
expression

∑
s∈S [Φsvols − Ωs(τ

+
s )]1(dxs>0).

• Step 8: Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 2,
otherwise goes to Step 9.

• Step 9: The final solution is given by the combination of dx∗s that returns the maximum
expected profit (maxE[Pi]).

The choice of which methodology to use depends on the historical data available, and
the perception of schedulers of which one is more suitable to their context. Insights about the
value of volume information and comparisons between those solutions will be explored in the
experiments.
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4.2.3 Problem 3

This problem tackles a different answering time frame compared to Problem 1 and
Problem 2. In this case, terminals have to answer clients requests immediately, without
having full information about the volume and availability days from the following requests.
For this problem, two solutions are given: one on which past decisions are fixed, meaning that
whatever schedule was set for previous clients can not be changed; and the other one that allows
adjustments in past decisions, considering the earliest/latest information given by clients and a
penalization λ introduced in the objective function.

As an example of the first solution, consider that Ship 1 requests an appointment between
day 2 and 5, and that the decision was to schedule it to operate on dx1 = 2. Then consider
that, later on, Ship 2 requests an appointment between day 1 and 3. The dx2 has to be decided
knowing that dx1 = 2 is fixed.

In the other hand, if the example was from the second solution, the dx2 would be decided
considering that the appointment of Ship 1 could be adjusted for any of the other days within
its earliest and latest. This means that appointments from Ship 1 could be given on dx1 = 2,
dx1 = 3, dx1 = 4 or dx1 = 5, instead of only considering dx1 = 2 as an option. What is never
an option is rejecting a ship that was already accepted previously, or accepting a ship that was
rejected.

The algorithm that does not allow past adjustments is given by Algorithm 3A and the
one allowing past adjustments is given by Algorithm 3B. Both algorithms need the definition of
Snew with all new ships to be considered at each new iteration (for this exercise Snew has only
one ship per iteration). Those are given as following:

Problem 3/ Algorithm 3A:

• Step 1: Set Sall = 0.

• Step 2: For all s ∈ Snew, consider the es and ls information to enumerate all options
of dxs including ’NA’ which represent rejecting the operation of that specific ship. If
Sall = 0, go to Step 5, otherwise go to Step 3.

• Step 3: For all ships s ∈ Sall, consider the dxs = dx∗s that was previously defined in
Step 9.

• Step 4: Enumerate all possible combinations of dxs considering s ∈ (Sall ∪ Snew).

• Step 5: Set the counter i = 1. Define Ncomb = (
∏

s∈Sall
1) ∗ (

∏
s∈Snew

(as + 1)) as the
total number of combinations. Set Sall = (Sall ∪ Snew).

• Step 6: Having the ith combination, and given s ∈ Sall, create a set of Nscen scenarios
with randomly selected delays and ps for each ship, considering their distributions.

• Step 7: For all s ∈ Sall, from all j ∈ Nscen scenarios calculate dys = dxs + delays.

• Step 8: For all s ∈ Sall, from all j ∈ Nscen scenarios, define an index ms with the order
of arrival of each ship s. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with mins).

• Step 9: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is given
by dzs = max[dys|(ms = 1), 1], for all s ∈ S|(ms > 1), calculate dzs = max[dys, (dzs′ +
ps′)|(ms′ = ms − 1)].

• Step 10: For all s ∈ Sall, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, (dzs − dxs)1

(dys≤dxs) + (ps − θs)].
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• Step 11: For all s ∈ Sall, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by
the expression

∑
s∈S [Φsvols − Ωs(τ

+
s )]1(dxs>0).

• Step 12: Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 6,
otherwise goes to Step 13.

• Step 13: The final solution is given by the combination of dx∗s that returns the maximum
expected profit (maxE[Pi]). If there are other requests, redefine Snew being the group of
new ships, and go back to Step 2, otherwise dx∗s is the final solution.

Problem 3/ Algorithm 3B:

• Step 1: Set Sall = 0.

• Step 2: For all s ∈ Snew, consider the es and ls information to enumerate all options
of dxs including ’NA’ which represent rejecting the operation of that specific ship. If
Sall = 0, go to Step 4, otherwise go to Step 3.

• Step 3: For all ships s ∈ Sall, consider the es and ls information of ships that were
previously accepted in Step 9 to enumerate all options of dxs. For the ones that were
already rejected in Step 9, keep the information that dxs = dx∗s = NA.

• Step 4: Enumerate all possible combinations of dxs considering s ∈ (Sall ∪ snew).

• Step 5: Set the counter i = 1. Define Ncomb = (
∏

s∈(Sall|dxs=NA) 1)∗(
∏

s∈(Sall|dxs>0)(as))∗
(
∏

s∈Snew
(as + 1)) as the total number of combinations. Set Sall = (Sall ∪ Snew).

• Step 6: Having the ith combination, and given s ∈ Sall, create a set of Nscen scenarios
with randomly selected delays and ps for each ship, considering their distributions.

• Step 7: For all s ∈ Sall, from all j ∈ Nscen scenarios calculate dys = dxs + delays.

• Step 8: For all s ∈ Sall, from all j ∈ Nscen scenarios, define an index ms with the order
of arrival of each ship s. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with min|s|).

• Step 9: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is given
by dzs = max[dys|(ms = 1), 1], for all s ∈ S|ms > 1, calculate dzs = max[dys, (dzs′ +
ps′)|ms′ = ms − 1].

• Step 10: For all s ∈ Sall, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, (dzs − dxs)1

(dys≤dxs) + (ps − θs)].

• Step 11: For all s ∈ Sall, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by
the expression

∑
s∈S [Φsvols − Ωs(τ

+
s )− λs(|dx ∗s −dxs|)]1(dxs>0).

• Step 12:Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 6,
otherwise goes to Step 13.

• Step 13: The final solution is given by the combination of dx∗s that returns the maximum
expected profit (maxE[Pi]). If there are other requests, redefine Snew being the group of
new ships, and go to Step 2, otherwise dx∗s is the final solution.

Comparisons between those two methodologies will be also explored in the experiments.
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4.2.4 Problem 4

The problem setting is very similar to what was proposed in Problem 1, terminal
answers all clients after having all requests, the goal is to determine who is accepted/rejected
as well as the scheduling date, and information about volume, earliest and latest days are
available. The difference stands in the rule used by the operational team to determine the
berthing sequence. In this case instead of FIFO, ships are operated exactly in the sequence
informed by the schedulers (also called as “by sequence” rule), regardless if the berth is free
and there are ships that could be advanced. If two ships are scheduled to operate in the same
date, two tiebreaking rules are proposed: the first one prioritizing ships by their request order
(the one with the smallest s first), and the second one prioritize ships by its arrival deviation
from the scheduled date (which is explained in “Annex 3: Tiebreaking rule: smallest deviation
first”). Table 6 shows an example of ordering with the “by schedule” rule with the request
order prioritization. In Scenario (a) is possible to see that both Ship 2 and Ship 3 are scheduled
to operate on day 3, and Ship 1 on day 4. In this case, according to the first tiebreaking rule
defined, the sequence on which ships will be operated is Ship 2 first, Ship 3 after and then Ship
1, even knowing that Ship 3 was available before Ship 2 (dy3 = −1 < dy2 = 2).

Table 6: By Schedule Ordering/ Request tiebreaking rule

The algorithm considering the “by schedule” berthing rule is called Algorithm 4 and the
implementation is given as the following:

Problem 4/ Algorithm 4:

• Step 1: For all s ∈ S, consider the es and ls information to enumerate all Ncomb =∏
s∈S(as + 1) possible combinations of dxs including ’NA’ which represent rejecting the

operation of that specific ship. Set the counter i = 1.

• Step 2: Having the ith combination, and given s ∈ S, create a set of Nscen scenarios with
randomly selected delays and ps for each ship, considering their distributions.

• Step 3: For all s ∈ S, from all j ∈ Nscen scenarios calculate dys = dxs + delays.

• Step 4: For all s ∈ S, from all j ∈ Nscen scenarios, define an index ms with the order of
the dxs of each ship s. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with mins).

• Step 5: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is given
by dzs = max[dys|(ms = 1), 1], for all s ∈ S|(ms > 1), calculate dzs = max[dys, (dzs′ +
ps′)|(ms′ = ms − 1)].

• Step 6: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, (dzs − dxs)1

(dys≤dxs) + (ps − θs)]

• Step 7: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by the
expression

∑
s∈S [Φsvols − Ωs(τ

+
s )]1(dxs>0).
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• Step 8: Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 2,
otherwise goes to Step 9.

• Step 9: The final solution is given by the combination of dx∗s that returns the maximum
expected profit (maxE[Pi]).

In the experiments it will be studied the comparison between the “by schedule” and the
FIFO berthing rule, as well as the impact of not having coordination between decision makers
towards which rule is being used.

4.2.5 Problem 5

This last problem setting is also about a static scheduling process, using a FIFO berthing
rule and having information about volume, earliest and latest available. The difference stands
on the fact that the decision made by the terminal is reduced to accepting/rejecting requests, no
longer defining a specific scheduled date for it to happen. In this case, terminals agree that the
ship will arrive uniformly distributed within the availability days (between earliest and latest),
although the real arrival might have some delays. This means that dys is no longer endogenous
and can be calculated by dys = U [es, ls] + delays.

The number of scheduling combinations is now reduced to 2Nships possibilities, as each
ship can only be accepted or rejected. Table 7 shows an example of enumeration for Nships = 3.
For each of those combinations a set of Nscen scenarios is created (a thousand, for example)
of delays and ps randomly selected given their distributions, enabling the calculation of dys =
U [es, ls]+delays, being the uniform distribution just of integer numbers (as the hole problem is
discretized in days). Those scenarios will numerically simulate a sample of events to deal with
the stochasticity of the problem.

Having dys, ps and the berthing rule (which in this case is FIFO) defined, the next step
is calculating dzs for each scenario. In this case all ships are indexed by their arrival order, from
the earliest to the latest arrival. The mth ship to operate is the mth arrival. If multiple ships
arrive at the same day, the one that requested operation first (smaller s) will be prioritized.

For the calculation of the demurrage cost a new setting is suggested, when ships arrive
before es, meaning dys < es, the start mismatch (sms) should be calculated by the difference
dzs − es. If the ship arrives within es and ls, meaning es ≤ dys ≤ ls, the start mismatch
should be calculated by the difference dzs − dys. If the ship arrives after ls, meaning dys > ls,
start mismatch is zero. Next the total days of demurrage is defined by τ+s considering τs =
sms + (ps − θs).

Last step is calculating the earnings by Φsvols and discounting the total cost of
demurrage by Ωs(τ

+
s ) for all ships that were accepted to operate. The expected profit of each

combination is calculated by the average of the Nscen scenarios. The combination with the
highest E[P ] is called the simulated optimal solution.

Table 7: Combination Acceptance/Rejection
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The algorithm used to model this problem is given by Algorithm 5 as the following:

Problem 5/ Algorithm 5:

• Step 1: Considering that each s ∈ S can be accepted (statuss = 1) or rejected (statuss
= NA), enumerate all Ncomb = 2Nships possible combinations of decisions available. Set
the counter i = 1.

• Step 2: Having the ith combination, and given s ∈ S, create a set of Nscen scenarios with
randomly selected delays and ps for each ship, considering their distributions.

• Step 3: For all s ∈ S, from all j ∈ Nscen scenarios calculate dys =U[es, ls]+delays, being
the uniform distribution just of integer numbers.

• Step 4: For all s ∈ S, from all j ∈ Nscen scenarios, define an index ms with the order
of arrival of each ship. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with mins).

• Step 5: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is given
by dzs = max[dys|(ms = 1), 1], for all s ∈ S|(ms > 1), calculate dzs = max[dys, (dzs′ +
ps′)|(ms′ = ms − 1)].

• Step 6: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the start mismatch as the
following: in case when dys < es, sms = dzs − es; or if es ≤ dys ≤ ls, sms = dzs − dys, or
if dys > ls, sms = 0.

• Step 7: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, sms + (ps − θs)]

• Step 8: For all s ∈ S, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by the
expression

∑
s∈S [Φsvols − Ωs(τ

+
s )]1(dxs>0).

• Step 9: Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 2,
otherwise goes to Step 10.

• Step 10: The final solution is given by the combination of dx∗s that returns the maximum
expected profit (maxE[Pi]).

Experiments will explore the comparison between this setting, on which dys is not
endogenous, with Problem 1 setting on which dys is endogenous.

4.3 Complex dzs calculation

Although free-coding environments such as “R” allow rich algorithm coding, there are
some specialized simulation softwares (such as ARENA, ProModel, FlexSim) capable of creating
digital twins with friendly graphic interfaces that can reproduce high level of details encountered
in real scale problems.

This type of simulation have the same purpose as the Numerical Simulation explained in
previous algorithms. It receives a set of scheduled requests with their vols and dxs, and according
to pre-defined operational parameters, delays distribution and the berthing/unberthing logic it
outputs the calculation of dzs. Those results can be compared to the ones from the solver.

The simulation model is based in a case study from a Brazilian oil terminal which
operates four types of product (crude oil, formation water, light derivatives and dark derivatives)
and two types of operation (ship to ship and unloading). The reader is invited to “Annex 5:
Detailing the Simulation Model” for an explanation on the simulation model development.
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4.4 Approximate Methodology for Solving Large Scale
Instances

In the previous subsections different models were presented which were implemented in
“R”. In those cases all combinations of scheduling agenda (considering the particularity of each
problem) are enumerated and profits calculated, in order to find what is the combination that
returns the higher profit (called as simulated optimal solution). The choice of enumerating and
calculating all profits was taken to increase flexibility for the experimentation phase, in which
not only the simulated optimal solution is needed but also other non-optimal solutions (one
great example will be presented in the experiment involving ARENA). The difficulty with this
kind of solution, as well as with most combinatorial problem is the “curse of dimensionality”.
Very small instances can easily get intractable time wise, which might derail the use of it in a
real context (Cankaya et al., 2019).

The appointment scheduling, as it was designed in Problem 1, is of order Nscen
∏

s(as+
1) which is the number of scenarios multiplied by the product of the availability sizes plus one
to incorporate the case when ships are rejected (“NA”). Later on, it will be showed that finding
the solution for a small instance of Nships = 8 ships with as = 5 days can take almost 2 days,
which is completely unacceptable for practical purposes.

In order to get around this timing issue, a clustering based partitioning method is
proposed inspired by the “Cluster First, Route Second” methodology explored in the vehicle
routing setting, adding the complexity that scheduling results of previous clusters impacts
directly the scheduling decisions of the following ones.

Figure 8 illustrates the process. First step, all requests are clustered into smaller groups
given a specific methodology, which will be explained in detail in one of the experiments. Then
each of those clusters is scheduled taking into consideration whatever was scheduled in previous
clusters (Cluster 1 is scheduled first and its result is considered as an input to the scheduling
process of Cluster 2, then the schedule of ships from Cluster 1 and 2 are inputs for Cluster 3,
and so on). The schedule definition set in previous clusters are never changed/adjusted.

Clustering is an important step in this partitioning method, which sets the order that
requests will be considered in the scheduling process, recalling that each ship has a different
reward and introduces a different cost to the system. The probability of rejecting a ship increases
towards the end of the scheduling procedure, as previous ships were already scheduled.

Figure 8: Partitioning Method: First Cluster, Second Schedule

This clusters can be of different sizes which will be identified as the following examples:
[8] (a unique cluster of 8 ships), [4 4] (two clusters of 4 ships), [2 2 2 2] (four clusters of 2 ships),
[1 1 .. 1 1] (eight clusters with 1 ship each), or any combination possible when cluster sizes are
different, for example [5 3] (two clusters, one with 5 ships and the other with 3 ships).

Due to the fact that the clustering method sets the order on which ships will be scheduled,
the best clustering methodology should prioritize ships with higher financial contribution.
Finding this ordering is not straightforward as ships revenue is a function of volume, time
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spent in berth and port’s congestion level (which is a consequence of the scheduling procedure
itself). Therefore, the characteristics that appear to be relevant for the clustering procedure
are volume, earliest/latest and availability size.

For this reason, a total of ten different clustering methodologies will be tested: two
machine learning methodologies, K-means and hierarchical agglomerative clustering (HAC)
which were used previously in appointment scheduling context (Yousefi et al., 2020); and other
practical ordering systems, “Lowest Earliest First” (LEF)/ “Highest Earliest First” (HEF);
“Lowest Volume First” (LVF)/ ”Highest Volume First” (HVF); “Lowest Latest First” (LLF)/
“Highest Latest First” (HLF) and “Lowest Availability First” (LAF)/ “Highest Availability
First” (HAF).

Further on, results from the “Cluster First, Schedule Second” method will show that
one type of clusterization stands for its small gap with base results and easy implementation.
This technique is then selected to incorporate the partitioning method.

4.5 Chapter Summary

Considering the focus recently given by regulatory agencies (ANP, 2022) to design
the best frame to maximize terminals profit, five different problem settings are proposed and
summarized as following:

• Problem 1: will tackle a static terminal appointment scheduling problem, on which
decisions are to accept/reject requests with an appointment date definition, considering a
FIFO berthing rule and available information about volume, earliest and latest. Two
tiebreaking rules are suggested: ordering by the request number (Algorithm 1) and
ordering by the smallest deviation with the scheduled date (Algorithm 1 with the
adjustments explained in Annex 3).

• Problem 2: similar to Problem 1 except for the fact that volume information is not
known when scheduling is performed. This problem will be approached by Algorithm 1
considering the mean historical volume, and Algorithm 2 which does not consider volume
information at all.

• Problem 3: similar to Problem 1 except for the answering time frame which is dynamic
instead of static. This problem will be approach by Algorithm 3A (which does not allow
adjustments in previous appointments) and Algorithm 4 (which allows them).

• Problem 4: similar to Problem 1 except for the berthing rule which is “by schedule”
instead of FIFO. Two tiebreaking rules are suggested: ordering by the request number
(Algorithm 4) and ordering by the smallest deviation with the scheduled date (Algorithm
4 with the adjustments explained in Annex 3).

• Problem 5: will tackle a static terminal appointment scheduling problem, giving a FIFO
berthing rule and information about volume, earliest and latest. The decision is reduced
to accepting/ rejecting requests based on the earliest/latest informed by the clients. In
this case a new demurrage and profit calculation will be discussed. This problem will be
modeled by Algorithm 5.

To deal with computational issues, heuristics where proposed and implemented in a
free-access Touring complete environment called “R”. Initially all solutions are enumerated and
the expected profit of each one is calculated by the mean of Nscen replications to account for
the stochastic variables (delays and processing times). The solution with the highest expected
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profit is considered the simulated optimal solution. This technique is called by the literature as
Sample Average Approximation.

This kind of methodology by itself is time-consuming which led to the development
of a partitioning method called “Cluster First, Schedule Second”. Ten different clustering
methodologies were explored, and further on, experiments will show that one stands due to its
small gap and simplicity in the implementation.

Although “R” can model complex algorithms, there are Discrete Event Simulation
software created specifically to reproduce highly detailed logic, such as ARENA. A simulation
model is then proposed considering restrictions encountered in real congested terminals. This
model will be used to compare results of the dzs calculation with the ones from the optimization
algorithms.
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5 Experiments and Results

5.1 Experiments Design

The following section presents the experiments designed to answer each of the research
questions from the first chapter, exploring topics such as value of information, answering time
frames, berthing rules, levels of uncertainties, coordination among decision makers, etc.

It is expected that depending on the level of congestion faced by terminals, some of
the insights will have more or less impact, which will be differentiated by categorizing the
appointment problems through an index (κ) that captures the degree of overlap among requests.
Therefore three categories are proposed: HO (high overlap), MO (medium overlap) and LO (low
overlap) based on the number of ships and earliest/latest information. The following equation
defines how κ is calculated:

κ =
1

Nships!
2!(Nships−2)!

#pairs

Nships−1∑
i=1

Nships∑
j=i+1

[
(li − ei + 1) + (lj − ej + 1)

(max(li, lj)−min(ei, ej) + 1)
]

Considering the mean availability size of all set of requests, boundaries were empirically
defined as: κ ≤ 0.8 is considered LO, κ ≥ 1.2 is considered HO, and anything in between is
MO. Table 8 shows an example of the categorization for Nships = 3, with requests spread over
the first 11 days of the agenda. In this example, the HO case is characterized by Ship 1 with
availability days from Day 1 to 4, Ship 2 with Day 3 and 4, and Ship 3 with Day 3 to 5. On
the other hand, the LO case is characterized by requests more spread in the agenda on which
Ship 1 requested that the operation should be scheduled within Day 1 to 4, Ship 2 on Day 5 or
6 and Ship 3 from Day 9 to 11.

Table 8: HO, MO and LO Kappa

In order to answer the research questions some different input exercises are defined
(referred as EXA, EXB, EXC, EXD and EXE) which are explored through a HO, MO and
LO perspective. For the static scheduling models, each exercise contain information about a
set of requests (Nships = 8), their respective volume vols and es and ls information, which are
described in Table 10, 11, 12, 13 and 14. The dynamic scheduling models will also consider
some of those input exercises, only that requests are revealed one by one. The volumes and
availability sizes used were based on a statistical analysis performed with data from a real
Brazilian terminal (the ARENA experiment which will be explained later on also used the same
data).
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The time window should be considered fixed to all ships and equal to θs = 2 days (as
the number reported by specialists in interviews). The terminal has a revenue of $0.50 per m3

transported, and it has to pay a daily demurrage fee of $25, 000 for every extra day that a ship
stays in the terminal. Delays are considered normally distributed with mean 0 and standard
deviation of 2 days (to keep the discretization in days). This means, as shown in Figure 9,
that in 19.7% of the cases ships arrive exactly on time, 17.5% arrive 1 day early and the same
percentage arrive 1 day late, 12.1% arrive 2 days early and the same percentage arrive 2 days
late and 0.7% arrive more than 2 days early and the same percentage arrive more than two days
late.

Figure 9: Normal Distribution - Delay

The processing time has also an associated normally distributed function with mean of 2
days and standard deviation of 1 day, with a difference that an operation is never smaller than
one day (meaning that ps is defined by a truncated normally distributed formulation). This
means, as shown in Table 9 that approximately 17.8% of the cases ships take 1 day to operate,
45.5% of the cases ships take 2 days, 28.8% of the cases ships take 3 days and 7.9% of the cases
ships take more than 3 days. Operations start at day 1 of each month, meaning that even if
ships arrive earlier in the end of the previous month, they can only start to operate from the
first day of the next month on. Nscen = 1, 000 scenarios will be performed to account for the
stochasticity of delays and processing times, which number showed converging results.

Table 9: Truncated Normal Distribution - Processing Time

The first exercise, called EXA has all the ships with volume equal to 100, 000m3 which
correspond to an income of $50, 000 per ship, and 3 days of availability size (as =ls − es + 1).
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Table 10: Experiments Layout EXA

The second exercise, called EXB has all the ships with exactly the same es and ls from
EXA (meaning that κ is also the same), but ships can have volumes of 100, 000m3, 200, 000m3 or
300, 000m3. The average volume of all requests increased from 100, 000m3 in EXA to 200, 000m3.
The expected revenue in those cases are 50, 000m3, 100, 000m3 and 150, 000m3 respectively.

Table 11: Experiments Layout EXB

The third exercise, called EXC has all the ships with the same volume as EXB, but the
availability size of each ship can be 3, 4 or 5 days. The average availability size increased from 3
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days in EXB to 4 days. κ is updated according to the new definition of es and ls. This exercise
is closely related to what is encountered in real settings, on which volumes and availability sizes
are normally different among all requests.

It is important to highlight that is not possible to isolate completely the changes from
one exercise to the other, because some parameters are correlated. For example, increasing the
availability size from 3 days to 3, 4 or 5 days can be performed in multiple ways which impact
not only the availability size, but directly the es, ls and κ. Therefore, the index that was chosen
to guide those changes in all exercises was keeping κ at the same range.

Table 12: Experiments Layout EXC

The fourth exercise, called EXD is similar to EXC in terms of volumes but the availability
sizes are all 5 days, which gives more flexibility to the terminal to choose a date in the
appointment scheduling process.
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Table 13: Experiments Layout EXD

The last exercise, called EXE has the same availability sizes of 3, 4 or 5 days from EXC
but the volume is the same as in EXA (equal to 100, 000m3). The average volume is again
reduced to 100, 000m3.

Table 14: Experiments Layout EXE

Table 15 summarises the main differences between all exercises considering their volumes,
availability sizes and earliest/latest definitions.
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Table 15: Differences Experiments

The results from applying EXA, EXB, EXC, EXD and EXE as inputs of Algorithm 1
are showed respectively on Table 16, 17, 18, 19 and 20. Those results will be called as “ Base
Results” as those are the ones that will be used in most experiment comparisons. The running
time increases according to the number of dxs combinations tested (meaning that the greater
the availability sizes, the greater the running time). In EXA and EXB for a set of Nships = 8
ships the running time was between one to two hours, for EXC and EXE was between eight to
nine hours and for EXD between one day and a half to two days.

All experiments were performed using a Microsoft Surface with Intel(R) Core(TM) i5-
1035G4 CPU @ 1.10GHz 1.50 GHz, and 2022.02.3+492 version of R software.

Those tables can be read as following: the first information is that 8 ships are operated
at once (if they were operated in clusters it would be an indication with the number of ships
in each cluster, such as [4 4], [2 2 2 2], etc). Next it is shown the number of scenarios tested
for each combination (Nscen) followed by the report of the total number of dxs combinations.
The solution is the simulated optimal set of dxs that returns the maximum profit (indicated
as E[P]). Next it is showed the mean and standard deviation of dzs − dxs, first for all ships
together, and then stratified by the ones that were early or on time (called E/OT) and the ones
that were late (called LT).

Table 16: Result Base EXA

Table 17: Result Base EXB
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Table 18: Result Base EXC

Table 19: Result Base EXD

Table 20: Result Base EXE

Overall the more spread the requests are over the agenda, the smaller the rejection rates
(which are indicated by “NA” reported in the “Solution” line), going from 25% in cases of HO
to 0% in cases of LO. The mean deviation in operation start (given by dzs−dxs) also decreases
from HO to LO cases. For ships that arrive early/on time this indicator is mostly close to 0,
and for late ships they were greater then 2 days in all exercises.

Having the “Base Results” reported, the next step is going back to the research questions
proposed in Chapter 1 and defining which of the input exercises should be used in each analysis.
Those questions are divided in three categories: Methodological approaches, which are
questions about large sized instances and particularities from the industry; Dynamics between
terminals and clients, which approaches questions about different appointment scheduling
structures and levels of information sharing that involves negotiation between those two parties;
and finally Terminal Operational Structure which explores questions about the operational
process. The design of each category’s questions is defined as follows:

Methodological approaches

The first question is “What is the best clustering technique that can be used in the
partition methodology? And what is the impact of using those partition methods to take
appointment decisions when compared to the optimal profit?”. To answer this question all
exercise settings (EXA, EXB, EXC, EXD and EXE) were considered to test ten different
clustering methodologies. The results were then compared and one of them is chosen to be
the cluster-based partition method proposed. For further reference this experiment will be
called as Clustering Methodology.

The second research question is “What is the value generated by the optimization model
when compared to manually performed appointments?”. This question was answered through an
appointment scheduling game proposed to a real team of schedulers. In this game, they should
perform manually the appointment scheduling of EXA, EXB, EXC and EXE considering the
setting from Problem 1 (static scheduling), and EXC considering the setting from Problem 3
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(dynamic scheduling that allows adjustments in past appointment decisions). The results from
the manual procedure are then compared to the ones given by the solvers (more specifically
Algorithm 1, for the static case, and Algorithm 3A, for the dynamic case). For further reference
this experiment will be called as Optimized versus Manual Appointment Scheduling.

The third question is “Which differences can be acknowledged in the dzs calculation
when comparing a simple terminal to a complex one?”. As previously explained, there are
discrete event simulation systems specialized in the recreation of complex logic decisions. In
this experiment an ARENA model is developed, which reproduces the particularities of a case
study terminal. The base appointment of EXC will be tested as input of the simulation model
and results of expected profit and dzs calculation will be compared. For further reference this
experiment will be called as Complex dzs calculation cases experiment.

Dynamics between terminals and clients

The fourth research question is “What is the value of having the volume information
previous to the appointment scheduling process?”. This answer was given by comparing: 1) the
results of EXB and EXC considering all vols being equal to the average of historical data applied
as inputs of Algorithm 1; 2) the results of EXB and EXC considering all vols being zero applied
as inputs of Algorithm 2; 3) the base results from EXB and EXC. This comparison shows how
valuable is knowing the volume information before the appointment scheduling process. For
further reference this experiment will be called as Value of Volume Information.

The fifth question is “What is the value of having more flexibility given by clients in the
appointment scheduling dates?”. This question is answered by comparing the base results from
EXA with EXE (which have the same volume), and EXB with EXC and EXD (which also have
the same volume). This comparison shows the impact of having more flexibility in the available
days to decide on the appointment scheduling. For further reference this experiment will be
called as Value of More Availability Size.

The sixth question is “What is the impact of answering clients as requests are placed
compared to having all requests before taking those decisions (dynamic x static scheduling)?
What is the impact of allowing adjustments in appointments previously set in the dynamic
scheduling procedure?”. The first part of the question is answered by a comparison between the
base results having EXA, EXB, EXC and EXE as inputs (which considers static scheduling)
with the results of the same exercises tested as inputs of Algorithm 3A (which considers dynamic
scheduling). The difference between those results shows how valuable is having full information
about all requests before taking any appointment decision, when compared to answering each
client without knowing what future requests will be.

The second part of the question compares the results of exercise EXB and EXC
tested as inputs of Algorithm 3B (dynamic scheduling allowing adjustments in previously
set appointments) with the results of the same exercises as inputs of Algorithm 3A (already
calculated for the first part of the exercise). Allowing those adjustments could be considered as
a mid-term solution between answering the clients right away, but allowing the terminal to make
adjustments in that decision that could guarantee better profits. Different ranges of “penalty
cost” for those adjustments are also analysed. This experiment is further referenced as Static
versus Dynamic Scheduling.

The seventh question is “What is the impact of not having dxs defined?”. In this
experiment the base results of EXA, EXB, EXC, EXD, EXE are compared to the results of
the same exercises applied as inputs of Algorithm 5. Both models represent different realities,
in the first one dys is dependent on the definition of dxs and a random variable of delays
and in the second one, there is no definition of dxs and dys is calculated by an uniformly
distributed function over the availability days adding a delays (with the same statistical
properties previously defined). This question tackles the endogenous/ not endogenous arrivals
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topic and their financial impact. For further reference this experiment will be called as dxs
Definition versus Acceptance Only.

Terminal Operational Structure

The eighth question is “Which berthing rule provides higher expected profits?”. This
test will compare the base results from exercises EXB and EXC (that consider FIFO berthing
rule) with results when applying them as inputs of Algorithm 5 (“by schedule” berthing rule),
showing which berthing rule performs best. For further reference this experiment will be called
as Berthing Rules.

The ninth question is “What is the impact of increasing variability in processing and
arrival times?”. This test will compare results from exercises EXB and EXC tested as inputs of
Algorithm 1 with standard deviation of 0, 1, 2 and 3 days in the arrival delays (which is defined
by a normal distribution with mean 0) and the same standard deviations of the associated normal
distribution of the processing times (which is modeled as a truncated normal distribution with
mean of 2 days). The results will show the impact of increasing/decreasing the variability level
of both arrival delays and processing times. For further reference this experiment will be called
as Uncertainty Levels.

The tenth question is “What is the impact of not having coordination between schedulers
and operational teams around the berthing rule?”. For this test the results of exercises EXB
and EXC applied as inputs of Algorithm 1 and Algorithm 4 will be used to compare optimal
and non-optimal solutions. This test is important to quantify the impact of taking appointment
scheduling decisions considering a different berthing rule from the one used by operational teams.
For further reference this experiment will be called as Coordination between schedulers and
operational teams.

5.2 Research Questions

5.2.1 Methodological Approaches

A. Clustering Methodology

The results from EXA, EXB, EXC, EXD and EXE showed that running all combinations
of dxs can be time consuming even for small instances such as Nships = 8 ships. Figure 10
shows that solution time increases with an exponential shape when increasing the number of
combinations. This can be observed when comparing results from EXA/EXB (on which all
ships have availability size of 3 days), with EXC (on which all ships have of 3, 4 or 5 days) and
EXD (on which all ships have 5 days).
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Figure 10: Time and Combinations

In order to reduce the total amount of combinations tested, a partition methodology is
proposed inspired by the “Cluster First, Route Second” used in vehicle routing problems. The
main idea is decomposing the main problem into smaller ones and scheduling them sequentially,
which leads to an approximated result. Table 21 shows an example of a very simple clustering
technique on which a set of Nships = 8 ships are partitioned given their request order (which
are showed in groups separated by a ”/”), called further on as “baseline clusters”.

Table 21: Clustering Order Baseline

Following the “Cluster First, Schedule Second” methodology, each exercise (EXA, EXB,
EXC, EXE) will now have an extra information defining from which cluster cs each ship pertains.
Those exercises are then used as inputs of Algorithm 1 (Partitioned Scheduling) defined in
“Annex 6: Using the cluster based partition method” for the scheduling step.

The results in Figure 11 shows the difference in expected profit between the optimal
solution (running all ships at once - [8]) and the baseline decomposed structures proposed ([4
4], [2 2 2 2] and [1 1 .. 1 1]).

Figure 11: Comparison Partition Sizes
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The experiment shows that in general decreasing cluster size has a negative impact in
the expected profit. In EXA for example, for the HO case the difference between [8] and [4
4] expected profit results is -3.0%, between [8] and [2 2 2 2] is -5.4% and between [8] and [1 1
.. 1 1] is -12.4%. This difference is smaller in MO and LO cases. For EXA in the LO case,
the difference between [8] and [4 4] expected profit results is -0.4%, between [8] and [2 2 2 2] is
-1.6% and between [8] and [1 1 .. 1 1] is also -1.6%.

Although the solution is now approximated when compared to the optimal [8] solution,
the time needed to encounter the solution decreased from more than 8 hours to minutes or even
seconds in partitioned instances, as showed for EXC in Table 22.

Table 22: EXC Times and Combinations

Normally it is expected that the smaller the sizes of the clusters are the greater the gap
when from the base results. There are some exceptions to that, which might happen due to
the myopic nature of this kind of “divide and conquer” methodology. EXC MO is an example,
on which the result of the [2 2 2 2] was $578,045, slightly worse than [1 1 .. 1 1] which was
$583,775. Figure 12 details the reason why those kind of situations might happen.

For the first four ships the results of running Algorithm 1 (Partitioned Scheduling)
considering clusters of two ships was exactly the same as considering clusters of one ship
only. After that, when the schedule of Cluster 3 was being performed via [2 2 2 2], which
has the requests of ship 5 and 6, the best solution encountered (considering the ones previously
scheduled) was dx5 = 6 and dx6 = 13 (with an expected profit of $545,700). Any other solution
was worse than this one, even dx5 = 8 and dx6 = 13 which returns an expected profit of
$544,525.

When compared to scheduling ship 5 and ship 6 via [1 1 .. 1 1], decisions were slightly
different. Because the [1 1 .. 1 1] just have information of one ship at each stage of the scheduling,
the best solution for only scheduling ship 5 (considering the ones previously scheduled) was
dx5 = 8 with expected profit of $427,425. This solution is better when compared to any other,
even dx5 = 6 which returns an expected profit of $425,000. For ship 6 the best schedule was
dx6 = 13.

If there were only those 6 ships, the solution of [2 2 2 2] (which was, up to now, dx1 = 8,
dx2 = 13, dx3 = 2, dx4 = 5, dx5 = 6 and dx6 = 13) would be better than the one given by [1 1
.. 1 1] (which was, up to now, dx1 = 8, dx2 = 13, dx3 = 2, dx4 = 5, dx5 = 8 and dx6 = 13).

But for both there are still 2 ships missing to be scheduled, and because in [2 2 2 2] the
decision made was to schedule dx5 = 6 the possible combinations of scheduling the following
ships have smaller expected profit when compared to the choice made in [1 1 .. 1 1] of scheduling
dx5 = 8.

Summarizing, clustering into smaller problems creates myopic instances which do not
consider information of ships allocated in future clusters to perform the scheduling procedure.
A decision made in a previous cluster, although being the best decision up to that point, can
lead to combinations with reduced expected profit in future steps.
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Figure 12: Myopic Results

The gap in expected profit between [8] and [4 4]/[2 2 2 2]/[1 1 .. 1 1] can be increased/
decreased depending on the clustering method used in the partition. Up to now only clustering
by the request order was presented, but there are multiple ways for clustering that group of
ships. The question that stands is: Which clustering methodology is more convenient for this
kind of problem?

Due to the fact that the clustering method sets the order in which ships will be scheduled
in the second stage, a good clustering methodology should be able to cluster ships in a decreasing
rank of priority, avoiding that ships with higher financial contribution are rejected by the end
of the scheduling procedure. Finding this ordering is not straightforward as ships profit is a
function of volume, time spent in berth and port’s congestion level (which is a consequence
of the scheduling procedure itself). Therefore, ships characteristics that appear to be more
relevant for the clustering procedure are volume, earliest/latest and availability size.

Ten different clustering methodologies will be evaluated, being two machine learning
methodologies, called k-means and hierarchical agglomerative clustering (HAC), and the other
eight are practical ordering systems, called “Lowest Earliest First” (LEF), “Highest Earliest
First” (HEF), “Lowest Volume First” (LVF), “Highest Volume First” (HVF), “Lowest Latest
First” (LLF), “Highest Latest First” (HLF), “Lowest Availability First” (LAF) and “Highest
Availability First” (HAF).

K-means goal is to take data points and group them in a way that members from each
cluster are as similar as possible between each other and different as possible from the ones in
other clusters. The algorithm starts with initially selected centroids (depending on the number
of clusters, k, previously defined), each one representing a different cluster. Then the distance
of each data point to all centroids is calculated and data points are reassigned to the cluster
with smaller distance. Then the centroids are updated as the center of that new group of data
points. This is performed iteratively until no reassignment is made, which defines the final
clusters.

Hierarchical agglomerative clustering is another method with a bottom-up approach.
Initially each data point is considered an unique cluster and distance between all clusters is
calculated (also called dissimilarities). The pair of clusters with smaller distance is then grouped,
forming a unique cluster. Again distance between all clusters is calculated, and the pair of
clusters with smaller distance is grouped. This is performed iteratively until the number of
clusters previously defined is reached.

Both k-means and HAC algorithms are defined in “Annex 4: k-means and HAC
Clustering Algorithms”, which were performed considering a pre defined number of 2 clusters
each. Although the number of clusters is fixed by the user, the number of ships considered in
each cluster might vary (for example [5 3], one cluster with 5 ships and the other with 3 ships).

Multiple versions of those two machine learning techniques were tested given different
input data, which were: 1) only earliest and latest (called E/L); 2) earliest, latest, volume and
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availability (called E/L/V/A); 3) for the exercises on which all requests have the same volume
or availability size it was considered only the information that is different (called E/L/V - when
availability is the same - or E/L/A - when volume is the same). Table 23 summarizes the results
of clustering by k-means and HAC, which are the most elaborated methodologies.

Table 23: Clustering Order

The practical ordering systems have straightforward logic (LEF/HEF, LLF/HLF,
HVF/LVF, HAF/LAF). The case of high volume first (HVF), for example, requests are ordered
by their volume (from the highest to the lowest) and clusterized given a specific number of
groups (such as two groups of four requests [4 4]).

To perform this experiment EXA, EXB, EXC and EXE will be ordered by each of those
clustering rules with the definition of a new column that defines the cluster cs from which each
ship belongs. As an example, Table 24 shows EXC ordered by HVF and clustered in two clusters
of 4 requests each.

56



Table 24: Example of EXC clustered by HVF

Having the clusters defined, next step is applying those exercises as inputs of Algorithm
1 (Partitioned Scheduling). Figure 13 shows a radar chart with the difference in expected profit
from the partitioned methods tested and their optimal solutions. The closer the data is to the
outer perimeter, the closer the difference is to 0%.

HO, MO and LO were analysed separately, and as it can be seen the negative impact of
using different methodologies is more significant for HO cases (with differences up to 21%) and
smaller for LO cases (with differences up to 8%).

In general, HAC E/L and HVF showed better results, with an negative gap of less than
4% for all experiments tested. The ones with worse results for HO were KM2 E/L, LLF, LVF
and LEF and for LO were some results of LLF and HLF.

The HVF was chosen as the clustering methodology for the partition method due to the
fact that it is a very simple rule, as well as intuitive to practitioners, and easy to control the
sizes of clusters.
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Figure 13: Comparison Clustering Methods

The answer for the research question What is the best clustering technique that
can be used in the partition methodology? And what is the impact of using those
approximation methods in the total profit? is that “High Volume First” (HVF) showed to
be a great clustering methodology to be used in the “Cluster First, Schedule Second” partition.
This technique consistently presented a small reduction in the expected profit when compared
to the base solution (less than 2%).

B. Optimized versus Manual Appointment Scheduling

This experiment was proposed to compare the results given when performing the
appointment scheduling manually to the optimal solution suggested by the optimization model.
Therefore a group of schedulers from the case study company was asked to read the Problem
1 setting reported in “Annex 2: Scheduling Game” and follow the instructions given. In total
there were 13 people playing the game separately, which lasted between 1.5 to 2.5 hours.

In the first game, requests from EXC were presented one by one and the schedulers had
to make the decision of accepting/rejecting each ship and setting the dxs, without knowing any
other request from the future (simulating a dynamic scheduling process). First they performed
the HO case, then they performed the MO case, and lastly the LO case.

In the second game, requests from EXA, EXB, EXC and EXE are showed (once per time,
first EXA, then EXB, and so on) and schedulers had to take the decision of accepting/rejecting
ships and setting the dxs knowing all information about each set of Nships = 8 ships (simulating
a static scheduling process).

In the third game, a pre-defined solution is given and the schedulers are invited to
criticize and make suggestions on top of it (this solution is actually the “Base Result” of
EXC, although schedulers don’t have this information). Lastly a post game questionnaire was
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proposed, opening the opportunity for them to share their decision logic along the process, and
insights about the usability of such kind of optimization tool in their daily basis.

Results from Table 25 shows the negative impact that using manual procedure has when
compared to using the solver. For the HO case the expected profit reduced up to 25% and for
LO case it reduced up 4%. The impact is very similar when comparing the results of the static
exercises with dynamic ones.

The post-game questionnaire showed that schedulers had a tendency of accepting most
of the ships and spacing them as much as possible without any fixed rule, considering the es and
ls information. Additionally, there was a common (and natural) understanding that whenever
ships had different volumes, the ones that where bigger should be prioritized and that smaller
ones should be somehow isolated in order to avoid queues. After volume, earliest/latest and
demurrage were considered the most important parameters in the appointment process.

Schedulers showed enthusiasm in working with such tool, specially as base solutions from
which they could perform improvements on top of, incorporating the human knowledge about
the details of operation. It was highlighted the importance of considering inventory and pipeline
constraints and the interaction with refineries, which normally have priority to be served.

Table 25: Results Schedulers Game

Those numbers answer the research question What is the value generated by the
optimization model when compared to manually performed appointments?. It is
possible to observe that specially for HO cases, using the manual procedure has a significant
negative impact (up to 25%) when compared to using the solver. Results are expected to be
better when considering the solver, as it can incorporate stochasticity of parameters in the
calculation.

C. Complex dzs calculation cases

As explained previously, although R and many free-coding environments allow for the
development of complex algorithms, there are specialized softwares capable of creating highly
detailed models such as Discrete Event Simulation tools.

The optimization models proposed from Problem 1 to Problem 5 were developed
considering simpler operations with two types of berthing rules: FIFO and “by schedule”.
Therefore a simulation model based on a real Brazilian oil terminal was built in ARENA to
compare the dzs calculation from the solver and the simulation model, using EXC as an input.
Both techniques consider similar delays and ps means and standard deviation, although the
solver considers discretization in days, while the simulation is continuous.

The simulation model also incorporates complexities such as: the calculation of flow and
time in port dependent on the type of product and type of operation; canal access (only one
ship per time/per direction); minimum interval of 3 hours between harbor masters requisitions;
and berthing/unberthing restrictions during the night (VLCCs/ secondary loaded ships).

Figure 14, Figure 15 and Figure 16 show the results of: the expected profit provided
by the optimization tool from the optimal and sub optimal combinations with 90%, 80%, 70%,
60%, 50% and 25% from the optimal profit; and the results of the same combinations when
implemented in the simulation model.
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First of all, results show similar decreasing slope tendency in both simulation and solver
expected profits. Additionally, it is observed, specially in HO case, that simulation results
oscillate around solver ones, which indicates more randomness.

Although expected profit is an important information, it has to be evaluated together
with the dzs calculation which, in the end, is what changes directly whenever there is a different
rule/logic being used. Results showed that for the HO case, some combinations returned better
expected profits in the simulation, while in others they were better in the solver, with differences
up to 11% in absolute numbers.

In the 90% scenario, this was observed because there were less ships being accounted for
demurrage in the simulation compared to the optimization model. In the 80%, the proportion
of ships that were accounted/ not accounted for demurrage was similar in both simulation and
optimization, but the total start mismatch/operational mismatch perceived by the simulation
was higher.

One important consideration is that there were situations encountered in the LO case,
which showed almost the same expected profit in both (less then 1%), but opposite tendencies
in the calculation of the start and the operational mismatch terms.

This reinforces the fact that it is important to have models able to reproduce the problem
in more detail to avoid any misleading conclusions, increasing precision and reliability in the
results.

Figure 14: EXC HO Simulation versus Optimization HO

Figure 15: EXC MO Simulation versus Optimization
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Figure 16: EXC LO Simulation versus Optimization LO

The answer for the research question Which differences can be acknowledged
in the dzs calculation when comparing a simple terminal to a complex one? was
that it was observed differences in the number of ships that were accounted/not accounted for
demurrage calculation and differences (and even opposite results) in the accountability of start
mismatch and operational mismatch. Those results reinforce the importance of having models
that can incorporate detailed settings, to increase precision and reliability in further decisions.

5.2.2 Dynamics between terminals and clients

D. Value of Volume Information

Next experiment is about the importance of terminals having the volume information
when preparing the scheduling plan. In order to do that EXB and EXC are applied as inputs
of 1) Algorithm 1 considering all volume data available (also called as V0); 2) Algorithm 1 with
all volumes being equal to 200, 000m3, which is the mean volume encountered in the historical
data (called V1); 3) Algorithm 2 (called V2) with minimum number of ships to be operated
also taken from the historical data (for HO it was considered at least 6 ships, for MO 7 ships
and for LO 8 ships).

Results are given in Figure 17 which shows that the impact of knowing this information
previously is higher for HO cases and is dependent on the model used to define the solution
(for V1 was observed a reduction up to 27% and for V2 up to 38%, when compared to V0).
For the LO case not knowing the volumes didn’t show any impact in the total expected profit
regardless of the model used.
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Figure 17: Comparison with and without volume information

The answer for question What is the value of having the volume information
previous to the appointment scheduling process? is: in HO cases knowing volume can
highly impact expected profit (up to 38%) while in LO cases no impact was observed. The
choice of which model to use depends directly in which historical data is available.

E. Value of More Availability Size

This experiment aims to quantify the value perceived by the terminal whenever the
requests have more available days for the scheduling process.

Therefore, EXA will be compared to EXE, and EXB with EXC and EXD. Comparisons
are proposed with experiments that have the same volume, but different availability sizes. In
EXA and EXB all requests have availability size of 3 days; EXC and EXE have 2 requests with
availability size of 3 days, 4 requests with availability size of 4 days and 2 with availability size
of 5 days; finally EXD has all requests with availability size equal to 5 days.

Figure 18 shows that increasing availability size has a positive impact on the expected
profit which is more expressive in the HO cases (between 9% to 21%) than in the MO and LO
ones (less than 3%). It was also observed that from EXC HO to EXD HO, the availability size
was non biding.

Figure 18: Comparison Different Availability Sizes
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The increase in the availability size allows for solutions that are more spread over the
agenda, as the ones from EXA and EXE showed in Figure 19.

Figure 19: Comparison EXA and EXE Availability Sizes

Therefore the research question What is the value of having more flexibility in
the availability dates? also depends on how overlapped are the requests. Results a increase
in expected profit when there is more flexibility on the available days. This increase is more
pronounced in HO cases (up to 21%) than compared to MO or LO cases (less than 3%).

F. Static versus Dynamic Scheduling

Next research question evaluates how expected profit changes if the terminal provides
instant responses to appointment requests, which can be perceived by some clients as a better
service, as opposed to delayed responses.

One way of answering requests instantaneously is using Algorithm 1 (Partitioned
Methodology), with clusters of unique requests (called previously as [1 1 .. 1 1]) in their
request order, which is actually the same as using Algorithm 3A. Every time a new request
arrives, the schedule already prepared (for previous clusters) is assumed as an input which can
not be changed, and is analysed together with the possible combinations of schedule for the new
request.

This experiment was already performed and showed in Figure 11 comparing the baseline
solution for the static scheduling version [8] (in which the 8 requests are scheduled together) to
the dynamic scheduling version [1 1 .. 1 1] (in which request 1 is answered, then request 2, then
request 3 and so on, exactly in the order they arrive). The results showed an error up to 14%
depending on the inputs used.

The difference in expected profit between answering one client per time and accumulating
all to answer together is highly dependent on the order those requests arrive to the terminal.
Just as an example, consider another situation on which requests are exactly the same as the
ones from EXA but instead of arriving as the baseline shows, they arrive in a different order, as
an example for the HO case: [request 1 = “baseline request 4”, request 2 = “baseline request
8”, request 3 = “baseline request 2”, request 4 = “baseline request 6”, request 5 = “baseline
request 3”, request 6 = “baseline request 5”, request 7 = “baseline request 7”, request 8 =
“baseline request 1”]. This is the same order as if baseline requests were ordered by the lowest
earliest first (LEF).

Figure 20 shows that the difference in expected profit for answering requests that arrived
in LEF order was almost -25% (MO case) when compared to “baseline results”, which was the
higher reduction observed among all the experiments.
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This reduction in expected profit is not the same for HO, MO and LO cases and the
explanation is similar to the one given for myopic results (Figure 12). Decisions made in
previous clusters (which here would be “for the previous requests”) have a direct impact in the
total expected profit when considering future requests.

Figure 20: Comparison between requests arrival in the baseline order or LEF order

One possible solution that could be offered to clients is to answer requests as they
come, allowing the terminal to perform minor adjustments later on within the earliest/latest
requirements (only if necessary). In this situation requests that were already accepted can not
be refused, and the ones that were refused can not be considered as possibilities. This new
model (which was implemented as Algorithm 3B) takes advantage of previous findings about
clustering properties and ordering to recalculate if any rescheduling is needed.

The idea is that every new request is evaluated together with all possible combinations
of appointments from previously scheduled ships (considering their es and ls). An additional
cost is introduced in the objective function penalizing the deviation from previous appointment
definitions. This is a way of discouraging the terminal from performing too many changes that
could somehow impact their relationship with the clients.

To overcome the timing issue, the partition method is utilized. In every stage, the new
request together with the ones already scheduled are clustered over HVF methodology in groups
of 4 or less requests. As an example, consider the setting of EXB HO, on which the optimal
solution proposed for dx1 = 4. When the second request arrives, all combinations for scheduling
request 1 (minus the “NA”, as this ship can’t be rejected anymore) are considered together with
the combinations for request 2. A cost of $3, 125 is introduced to penalize every day that the
new schedule of ship 1 deviates from the previous schedule (day 4). This cost is considered
initially equivalent to 1/8 of the demurrage fee ($25, 000/8 = 3, 125).

The optimal solution considering those combinations are dx1 = 4 and dx2 = 2. Then
the third request arrives, again all combinations for ship 1 and 2 are considered (minus the
“NA”) together with combinations of request 3, and the additional costs for rescheduling ship
1 and ship 2. The optimal solution is dx1 = 4, dx2 = 2 and dx3 = 5. Until now rescheduling
was not a profitable option.

Next, request 4 arrives and the process is repeated. The optimal solution is dx1 = 6,
dx2 = 2, dx3 = 5 and dx4 = 3. This time the model chose to reschedule request 1 in order to
accept request 4 and have a greater expected profit, being penalized by (6− 4) ∗ 3, 125 = 6, 250
dollars.

As explained before, as the algorithm enumerates all possible solutions every time a new
ship is added, the resolution time grows exponentially. This is the reason why the partitioned
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version of the Algorithm is used, considering HVF ordering and clusters of 4 requests (or less).
Until now ordering was being performed, but it didn’t change the solution as all ships were
being scheduled at the same time.

Continuing the example, consider that request 5 arrives, now all ships are ordered by
HVF and separated in two clusters, one with the first 4 requests and the other with the remaining
1 request. All combinations are tested (minus “NA” for ships that were not rejected before)
considering the rescheduling cost. The optimal solution for those 5 ships is dx1 = 6, dx2 = 2,
dx3 = 5, dx4 = 3 and dx5 = 5. This routine is repeated for every new ship and the problem is
now solved with reduced solution time.

Figure 21 compares the difference in expected profit between the optimal solution [8],
the 8 ships problem partitioned in [4 4] - HVF, the [1 1 .. 1 1] baseline and [1 1 .. 1 1] allowing
past corrections with rescheduling fees of $6, 250, $3, 125 and $0 (multiples of the demurrage
fee) for EXB and EXC.

The results show that running [1 1 .. 1 1] with past corrections is not always better
than [1 1 .. 1 1] baseline, not even if the cost for rescheduling is $0. As an example, results
for EXC LO shows the solution [20 4 27 11 30 2 17 9] with expected profit of $71, 9325 for the
[1 1 .. 1 1] baseline and [21 2 26 11 30 5 17 10] with expected profit of $71, 8950 for the [1 1
.. 1 1] with past corrections (and rescheduling cost of $0). This recalls the discussion about
how different ordering and clustering methodologies can impact the solution. In the [1 1 .. 1 1]
baseline, ordering is based on request arrivals, and in [1 1 .. 1 1] with past corrections HVF is
used.

Figure 21: Comparison Dynamic Scheduling Results

Also, it is normally expected that [1 1 .. 1 1] allowing past corrections with $0 penalty
has the same solution as [4 4] - HVF, as observed in EXB LO, on which both solutions are [3
20 5 25 12 8 17 28]. This is due to the fact that in the end of running [1 1 .. 1 1] with past
corrections, the structure of information is equivalent to [4 4] - HVF (as both use the same
ordering and clustering methodology and penalty of $0 applied to alterations). This is not the
case when a ship is rejected (or even accepted when it was not supposed to) by the [1 1 .. 1 1]
with past corrections, as the example EXB HO with $0. In the [4 4] - HVF case the solution is
[6 4 NA 2 5 4 5 NA], Figure 22 shows that when this experiment is performed under [1 1 .. 1
1] allowing past corrections, the third ship is accepted in the third stage, and dx3 = 5, which
can not be rejected anymore. That is the reason why in those cases [4 4] - HVF and [1 1 .. 1
1] with past corrections do not have the same results.
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Figure 22: Examples Rescheduling

Figure 23 shows that rescheduling starts to be a considered option if the penalty is
around 1/8 of the demurrage fee. Additionally, it depends on the es and ls available and
in which ships were already accepted/rejected along the scheduling process, showing that the
number of reschedules can vary among HO, MO and LO cases. Overall the differences comparing
[1 1 .. 1 1] with [1 1 .. 1 1] allowing past corrections were lower than 6%.

Figure 23: Number Reschedules

The research question What is the impact of making decisions without having
full information about future requests (dynamic x static scheduling)? What is the
impact of allowing past corrections in the dynamic scheduling procedure? is answered
as following: terminals might consider answering clients right away although it might incur in a
financial impact up to 25%. As a mid-term solution it was proposed a dynamic scheduling that
allows past corrections, which ensures an instant response to the client, and more flexibility to
the terminal searching for solutions with greater profit. The solution given by this new method
showed to be slightly better (up to 6%) than [1 1 .. 1 1] depending on the penalty cost used,
considered only started to be an option when the penalty was around $3, 125.

G. dxs Definition versus Acceptance Only

The idea of this research question is to compare two different realities. The first one
considers the main setting on which ships are accepted/rejected, dxs is defined and dys is
endogenous (this problem was modelled by Algorithm 1). The second one considers a setting
on which the decision is reduced to only accepting/rejecting ships, with dys given by an uniform
distribution within the availability days added to a normal distributed delay (this problem was
modelled by Algorithm 5).

As in the second case there is no dxs definition, the demurrage calculation also changes
in Algorithm 5. Whenever a ship arrives before the es, the terminal should consider es as the
reference for start mismatch calculation. If dys arrives within the availability days, the start
mismatch is accounted from the moment it arrives to the terminal. If the ship arrives after ls,
there is no start mismatch accountability.
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Figure 24 shows the results of EXA, EXB, EXC, EXD and EXE applied as inputs in
Algorithm 1 (referred as P1 in the graph) and Algorithm 5 (referred as P5). Those results
show that defining an appointment date, specially in overlapped cases is better than just
accepting/rejecting that ship to operate. The first reason is because dxs definition sets what is
the best day to maximize terminals profits, and allowing arrivals to largely deviate from it, is
obviously sub optimal. The second reason is that accepting a ship to arrive in any day of the
available days increase the period that the ship can have start mismatch accounted.

Figure 24: Impact of endogenizing dys

As explored in the experiment about availability sizes, the increase in the availability
period shows an increase in expected profits (or at least the same results). The opposite tendency
is observed when comparing EXA and EXE MO and LO cases, as well as EXB, with EXC and
EXD MO and LO cases applied as inputs to Algorithm 5. In those cases, actually increasing
the availability size increases the period on which the ship can be accounted for start mismatch,
which reduces profit.

The answer for the research questionWhat is the impact of not having dxs defined?
is that terminal’s profit might decrease when there is no dxs definition (depending of course in
how the demurrage cost is calculated). The extreme results were perceived in EXE HO case
with a reduction in expected profit of around 43% and in EXB LO 8%. All other results were
in between those values.

5.2.3 Terminal Operational Structure

H. Berthing Rules

Next experiment focus on comparing two different practical berthing rules used by
terminals: FIFO and “by schedule”. FIFO is the typical procedure that focus on maximizing
berth utilization and is encountered, for example, in many Brazilian public ports. The “by
schedule” rule focus on following the sequence of operation defined by schedulers. Those rules
will be analyzed considering two different tiebreaking rules, the first one prioritizes ships by
their order of request (smallest s first) and the second one focus on prioritizing ships with the
smallest deviation from the scheduled date (first ships that are on-time, then early ones, then
late ones).

The FIFO rule is represented by Algorithm 1 and the FIFO with priorities (as it will be
called by addressing the second tiebreaking rule instead of the first) is represented by Algorithm
1 with the adjustments from “Annex 3: Tiebreaking rule: smallest deviation first”. The “by
schedule” berthing rule is represented by Algorithm 4 and the “by schedule” with priorities is
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represented by Algorithm 4 with the adjustments from “Annex 3: Tiebreaking rule: smallest
deviation first”.

Figure 25 compares the expected profit results from EXB and EXC applied as inputs
in the four algorithms (FIFO/ “by schedule” and FIFO with priorities/ “by schedule” with
priorities). The first result observed is that having a “by schedule” rule in HO and MO cases
can reduce the expected profit up to 16% when compared to using FIFO. In those situations on
which there is high demand for berth utilization, losing time by waiting ships to arrive instead
of advancing whoever is already in the terminal can propagate demurrage as a domino-effect.

The LO case has a different response, actually the “by schedule” showed slightly better
results (up to 3%), when compared to FIFO. In this situation, advancing ships result in an
unneeded risk for paying demurrage in a context with reduced berth utilization.

The use of the second tiebreaking rule shows to outperform (or at least give the same
result) as the first one, with a greater impact in the “by schedule” cases. This rule prioritizes
the operation of on-time/ early ships, which are the ones that actually incur in start mismatch.

Figure 25: Comparison Different Scheduling Operational Rules

Due to the fact that the “by schedule” rule strictly follows the sequence defined by the
schedulers, some terminals apply tolerances to deal with the variability in ship arrivals. This
“by schedule with tolerance” rule sets that if the ship arrives until the scheduled date plus a
tolerance, they are operated according to the “by schedule rule”, otherwise they loose their
preference and will be operated whenever the terminal understands there is no impact in other
operations. As those type of rules might incur in differences on the demurrage calculation, it is
suggested as future research.

The answer to theWhich berthing rule provides higher expected profits? question
also depends on how overlapped is the system. For HO and MO cases the FIFO rule showed
better results by prioritizing berth utilization (up to 16%). In the other hand, in LO cases the
“by schedule” rule showed slightly better results by not advancing operations that could wait
(up to 3%). The tiebreaking rule that considers the deviation to the scheduled date showed
better results (or at least the same ones) by prioritizing ships that arrive on-time and early,
which are the ones that actually incur in demurrage.

I. Uncertainty Levels

In this experiment it will be explored the impact of different uncertainty levels in the
processing times and in the arrival delays. Therefore, EXB and EXC will be applied as inputs of
Algorithm 1 considering standard deviations of 0, 1, 2 and 3 days in the processing time (which
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is modelled as a truncated normal distribution with mean of 2 days) and in arrival delays (which
was modelled as normal distribution with mean of 0 days).

Figure 26 shows the results for processing times. The greater the variability, the greater
is the impact on the expected profit.

Figure 26: Comparison Different Standard Deviation in Processing Times

However, it is important to observe that those results were a consequence of not only a
change in the variability but also in the means of the processing times. Table 26 shows that a
change in the variability of the associated normal distribution has a direct impact in means and
standard deviation of the actual truncated normal distribution, which is calculated in R via the
’rtruncnorm’ formulation. This formulation requires the following parameters: the number of
samples to be created (in this case N = 1, 000), the inferior limit (a = 1), the superior limit
(b = Infinite), the mean of the associated normal and its standard deviation.

Table 26: Truncate Normal Distribution

In the case of the arrival delays, the results were surprising. Figure 27 shows that
increasing the variability in the arrival delays increase the expected profit observed by terminals.

Figure 27: Comparison Different Standard Deviation in Arrival Delays

The explanation can be verified in the example of Figure 28 on which it is presented the
results of dz − dx and operational mismatch means, stratified by: ships that are early/on time
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and late; and by when the demurrage terms are accounted or not (accounted means that the
total demurrage was greater than 0). Those results compared information about EXB HO with
standard deviation of 2 days (SD2) and EXB HO with standard deviation of 3 days (SD3).

The reasoning behind the increase in expected profit from SD2 to SD3, is given by the
fact that the mean deviation of early/on time ships that have their start mismatch accounted,
reduced from 6 days to 4.37 days.

Whenever there is more uncertainty in the arrival, more ships will arrive way earlier or
later than in a situation with less uncertainty. For ships that are late, the fact that they arrive
even later does not have a direct impact in start mismatch, as late ships do not account for that
term. On the other hand, ships that arrive earlier, give the terminal more flexibility to advance
their operations, reducing possible payments of start mismatch which impacts the total profit.

Figure 28: Example EXB HO with different Uncertainty Levels

Next research question What is the impact of having uncertainties, in arrival
and processing times? is answered as following: increasing the standard deviation of
processing times reduces the expected profit. This impact was a result of the difference in means
and standard deviation from the truncated normal distribution used to model the processing
times. On the other hand, increasing the standard deviation of arrival delays increase the
expected profit, which is a result of how the start mismatch term is calculated. On those
situations more ships arrive earlier and later. Later ships do not account for start mismatch,
while earlier ships give more flexibility to advance operations.

J. Coordination between schedulers and operational teams

Next experiment tests what is the impact of not having alignment between the scheduling
team and the operational team about the berthing rule. In those cases the scheduling team might
consider a different rule which might impact the appointment result and its expected profit.
The exercise will compare the expected profits of using the appointment provided considering
a FIFO berthing rule in settings that do not follow FIFO (such as FIFO with priorities, “by
schedule” and “by schedule” with priorities).

In this case the same four algorithms used to answer research question about different
berthing rules will be used again: Algorithm 1 (representing FIFO), Algorithm 1 with the
adjustments from “Annex 3: Tiebreaking rule: smallest deviation first” (representing FIFO
with priorities), Algorithm 4 (representing ”by schedule”) and Algorithm 4 with the adjustments
from “Annex 3: Tiebreaking rule: smallest deviation first” (representing “by schedule” with
priorities).

Figure 29 shows with filled colors the actual expected profit for the solution proposed
by the FIFO model, when other operational rules are used in reality. The complement of those
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columns, which are indicated with a dot pattern, shows the additional expected profit in case
schedulers had used the proper berthing rule.

The greater differences were observed in cases on which FIFO is used in a “by
schedule”/“by schedule with priorities” setting. As an example, in EXB HO case using the
base schedule in a context with a “by schedule with priorities” rule reduces the expected profit
in up to 15% if compared to the case on which they use the correct rule. Overall in the LO
cases the impact is smaller.

Another result is that in the FIFO with priorities case, considering the proper rule or
the FIFO one, did not impact the expected profit.

Figure 29: Comparison Coordination Problem

The answer for What is the impact of not having coordination between
schedulers and operational teams around the berthing rule? depends on how overlapped
is the problem, and how different the actual rule is from the one considered by the schedulers.
Using FIFO in settings that follows a “by schedule” rule has greater impact when compared to
using FIFO in a FIFO with priorities context. This difference is even greater when using FIFO
in a “by schedule” with priorities setting. This impact is significant in HO and MO cases (up
to 15%), but not very significant in LO cases.

5.3 Chapter Summary

This chapter is dedicated to answering the research questions proposed in Chapter 1.
Therefore a set of experiments were initially designed as well as the exercises that should be used
as inputs for the algorithms developed in Chapter 4, which were categorized in three different
topics. As there are terminals that operate with different levels of congestion, an overlap index
is proposed to capture any differences that those settings might have.

The result of comparing manual solutions to the simulated optimal shows the impact
that such appointment scheduling tools can have, specially for HO and MO cases. Those kind
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of tools are able to consider multiple variables from a non linear problem and incorporate
stochasticity in calculations, which is an advantage when compared to the manual procedure.

In order to solve those problems faster, a cluster based partition method was proposed
in Chapter 4 and results from experiment two showed that “Highest Volume First” (HVF) had
a great performance. Interestingly, ordering ships by their volumes was also observed when
schedulers performed the manual appointment scheduling exercise.

Over the experiments a lot of attention was given to test the value of information in
the appointment scheduling process. Results showed that volume and more flexibility in the
availability days have significant impact, specially in HO cases.

It was also calculated the negative impact of answering clients right away, compared
to waiting up to a certain limit date. One alternative solution explored was answering clients
right away, although allowing adjustments to the scheduling previously made. Results from this
alternative solution didn’t show major differences in results, not even in the HO case.

Considering the operational aspect, FIFO showed better results for HO and MO cases
by prioritizing berth utilization. For LO cases it was observed that the “by schedule” rule
showed slightly better results by not advancing ships with early arrivals. Another experiment
showed the financial impact that the lack of coordination between schedulers and operational
teams can cause, which showed to be significant in HO and MO cases, but not very significant
in LO cases.

One unexpected finding was that increasing the levels of uncertainty in arrivals actually
increases the expected profit. This result is due to the design of the demurrage calculation which
is different for early and late ships. A similar test was performed varying the standard deviation
of processing times, which showed an expected tendency on which increasing variability
decreases expected profit.

Another experiment compared a setting on which dxs is defined by the scheduler and dys
is an endogenous variable, with another setting on which dxs is not defined and dys is expected
to be distributed around the es and ls with some delays. In this situation as the demurrage
calculation is different, allowing for a more spread arrival pattern increases the start mismatch
period that can be accounted, resulting in a high and negative effect in the expected profit.

The results from the solver were also compared to results from a simulation system which
reproduces some of the complexities encountered in terminals. The deviation in dzs calculation
showed the importance of incorporating the most details possible so the results are adherent to
the terminal’s reality.
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6 Conclusions and Future Research

This research was proposed with three main goals: the first one was framing the
appointment scheduling problem under different perspectives to help the designing process of
resolutions such as ANP (2022). The second one was providing appointment scheduling models
that could support terminals in the optimization process imposed by such resolutions. The third
one is exploring managerial insights about the value of information, different scheduling time
frames, coordination between scheduling and operational teams, different agenda congestion
profiles, uncertainty levels, berthing scheduling rules, among others.

Those objectives were accomplished through five different problem settings which were
discussed in Chapter 4 and defined as the following:

• Problem 1: will tackle a static terminal appointment scheduling problem, on which
decisions are to accept/reject requests with an appointment date definition, considering a
FIFO berthing rule and available information about volume, earliest and latest. Two
tiebreaking rules are suggested: ordering by the request number (Algorithm 1) and
ordering by the smallest deviation with the scheduled date (Algorithm 1 with the
adjustments explained in Annex 3).

• Problem 2: similar to Problem 1 except for the fact that volume information is not
known when scheduling is performed. This problem will be approached by Algorithm 1
considering the mean historical volume, and Algorithm 2 which does not consider volume
information at all.

• Problem 3: similar to Problem 1 except for the answering time frame which is dynamic
instead of static. This problem will be approach by Algorithm 3A (which does not allow
past corrections) and Algorithm 4 (which allows past corrections).

• Problem 4: similar to Problem 1 except for the berthing rule which is “by schedule”
instead of FIFO. Two tiebreaking rules are suggested: ordering by the request number
(Algorithm 4) and ordering by the smallest deviation with the scheduled date (Algorithm
4 with the adjustments explained in Annex 3).

• Problem 5: will tackle a static terminal appointment scheduling problem, giving a FIFO
berthing rule and information about volume, earliest and latest. The decision is reduced
to accepting/ rejecting requests based on the earliest/latest informed by the clients. In
this case a new demurrage and profit calculation will be discussed. This problem will be
modeled by Algorithm 5.

Each problem was approached via different optimization models capable of solving the
appointment scheduling setting considering stochasticity in both arrivals and processing times.
Additionally a clustering based partition method was provided to reduce the resolution time of
large scale instances, which was detailed in Chapter 4.

Finally, in Chapter 5 experiments and analysis were based on the models proposed,
allowing the answering of all research questions, and interesting managerial insights about
value of information, different scheduling time frames, coordination between scheduling and
operational teams, different agenda congestion profiles, uncertainty levels, berthing scheduling
rules.

Highlighting some of the findings and further recommendations, results show that
specially overlapped terminals can have significant improvements in profit by using solvers
such as the ones presented. Also, giving incentives to customers could be studied to get more
up front information about the operation as well as to increase flexibility in the available days.
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Answering clients statically showed better results, as the terminal is able to take the
decision with full information. In case clients value dynamic answers, a suggestion would be
offering it as a premium service to reduce the overall impact.

In terms of berthing rules, FIFO presented good results for terminals with congested
agendas, while by schedule rule was better in low overlap situations. In case of simultaneous
arrivals, prioritizing by smallest deviations is recommended.

One surprising result is that uncertainties in arrivals can, in some cases be beneficial,
but accepting time windows instead of a scheduled date is not. And lastly we showed the
importance of detailed simulations whenever decisions depend on the results and not only on
general tendencies.

There is no knowledge up to now about models that approached terminal appointment
scheduling problems under stochastic settings which also considered endogenous arrivals. The
fact that this problem is current being reviewed by the industry shows the great potential of
academic evolution on the topic.

Among future researches identified, the following ones can be highlighted:

• Including iterative negotiation with clients

• Allowing for appointments outside the time windows, no-shows and cancellations (Gocgun
and Puterman, 2014)

• Including despatch fees that bonify the terminal for faster operations

• Including multiple berths and integrating with berth allocation systems

• Exploring other berthing rules such as “by schedule with tolerance”

• Adding inventory and pipeline restrictions, which was highlighted in the results of the
Scheduling Game

• Developing algorithms capable of solving the problems with reduced scenarios

• Allowing set up between different operations (Cunha et al., 2020) and tanks cleanup
(Cankaya et al., 2019)

• Allowing spot operations that were not scheduled before, as explored by Ala and Chen
(2022) in hospital settings

• Integration with other types of simulation models
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7 Annex

7.1 Annex 1: Linearization Process of Model 1

Step 1: Define a new binary variable called us which is 1 when ship s ∈ S is accepted
to operate, and 0 otherwise. Update Equation 3, 4 and 1 by Equation 8, 9 and 10 respectively,
having defined us = 1(dxs>0):

dxs ≥ esus (8)

dxs ≤ lsus (9)

P =
∑
s∈S

[Φsvols − Ωs(τ
+
s )]us (10)

Step 2: Define a new binary variable called ws which is 1 if dys ≤ dxs and 0 otherwise.
The well function of ws is guaranteed by the addition of two constraints. If ws = 0, Equation
11 shows that dys ≥ dxs. If ws = 1, Equation 12 shows that dxs ≥ dys.

dxs − dys ≤ Mws − E (11)

M is considered a very large number

E is considered a very small number

dys − dxs ≤ M(1− ws) (12)

Update Equation 2 using ws = 1(dys≤dxs).

τs = [dzs − dxs]ws

start mismatch

+ (ps − θs)

operational mismatch

(13)

The merge of Equations 10 and 13 result in Equation 14, which non-linearity
(multiplication of two binary variables wsus) is handled in the next step.

P =
∑
s∈S

[Φsvols − Ωsmax[(dzs − dxs)wsus + (ps − θs)us, 0]] (14)

Step 3: Define a new binary variable called zs = wsus. The well function of zs is
guaranteed by the addition of three constraints. If ws = 0 or/and us = 0, zs is 0 by Equation
15 or 16. If ws = 1 and us = 1, zs is 1 by Equation 17.
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zs ≤ ws (15)

zs ≤ us (16)

zs ≥ ws + us − 1 (17)

Update Equation 14 using zs = wsus.

P =
∑
s∈S

[Φsvols − Ωsmax[(dzs − dxs)zs + (ps − θs)us, 0]] (18)

Now the challenge is to tackle the non-linearity caused by the multiplication of the
integer variable (dzs − dxs) and the binary variable (zs) from Equation 18, handled in the next
step.

Step 4: Define a new variable called hs = (dzs − dxs)zs. Four other constraints are
added which guarantee the well function of hs. In the case zs = 0, hs = 0 is assured by Equation
19 and 20. In the case zs = 1, hs = (dzs − dxs) is assured by Equation 21 and 22.

hs ≥ −Mzs (19)

hs ≤ Mzs (20)

hs ≥ (dzs − dxs)−M(1− zs) (21)

hs ≤ (dzs − dxs) +M(1− zs) (22)

Update Equation 18 using hs = (dzs − dxs)zs.

P =
∑
s∈S

[Φsvols − Ωsmax[hs + (ps − θs)us, 0]] (23)

The following step will be linearizing the max[hs + (ps − θs)us, 0] from the objective
function (Equation 23).

Step 5: Define a new variable called vs = max[hs+(ps−θs)us, 0] (which can be seen as
vs = max[a, b]). Also define a binary variable called ts, which is 1 when hs+(ps−θs)us > 0 (a >
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b) and 0 otherwise. Six new constraints are added to ensure the well function of vs and ts. In the
case ts = 1, Equation 26 and 28, guarantee that vs = max[hs+(ps−θs)us, 0] = hs+(ps−θs)us.
In the case ts = 0 , Equation 27 and 29, guarantee that vs = max[hs + (ps − θs)us, 0] = 0.

hs + (ps − θs)us − 0 ≤ Mts (24)

0− (hs + (ps − θs)us) ≤ M(1− ts) (25)

vs ≥ hs + (ps − θs)us (26)

vs ≥ 0 (27)

vs ≤ hs + (ps − θs)us +M(1− ts) (28)

vs ≤ 0 +Mts (29)

Update Equation 23 using vs = max[hs + (ps − θs)us, 0].

P =
∑
s∈S

[Φsvols − Ωsvs] (30)

This partially linearized model has the following variables and constraints:

Problem 1/ Model 1 (Partially Linearized)

Parameters:

• S= set of ships to be scheduled

• Nships = number of ships to be scheduled

• D = set of days available for scheduling

• Ndays = number of days from the scheduling period

• Φdays = revenue fee in dollars per cubic meter transported

• Ωdays = demurrage fee in dollars per day

• es= expected earliest day that the ship s could arrive to the terminal

• ls= expected latest day that a ship s should departure

• vols= expected latest day that a ship s should departure
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• ps= processing time of ship s, which follows a given statistical distribution

• delays= delay of ship s, which follows a given statistical distribution

• θs= time-window scheduled for ship s

• ms= sequence index corresponding to the operation of ship s, which in this case is defined
by the arrival order (FIFO).

• M= very large number

• E= very small number

Variables:

• dxs is the date ship s is scheduled to arrive and start operation (dxs = 0 means ship s
was not scheduled/accepted to operate).

• dys is the date ship s arrives at the terminal, defined by dys = dxs + delays.

• dzs is the date ship s starts operation.

• us is a binary variable which is 1 when ship s is accepted to operate, and 0 otherwise.

• ws is a binary variable which is 1 if dys ≤ dxs and 0 otherwise.

• zs is a binary variable, defined by zs = wsus.

• hs is an integer variable, defined by hs = (dzs − dxs)zs.

• vs is an integer and greater or equal to zero variable, defined by vs = max(hs + (ps −
θs)us, 0).

• ts is a binary variable which is 1 when hs + (ps − θs)us > 0 and 0 otherwise.
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maximize
dxs

E

[∑
s∈S

[Φsvols − Ωsvs]

]

subject to dxs ≥ esus ∀s ∈ S

dxs ≤ lsus ∀s ∈ S

dzs ≤ Mdxs ∀s ∈ S

dys = dxs + delays ∀s ∈ S

dxs − dys ≤ Mws − E ∀s ∈ S

dys − dxs ≤ M(1− ws) ∀s ∈ S

zs ≤ ws ∀s ∈ S

zs ≤ us ∀s ∈ S

zs ≥ ws + us − 1 ∀s ∈ S

hs ≥ −Mzs ∀s ∈ S

hs ≤ Mzs ∀s ∈ S

hs ≥ (dzs − dxs)−M(1− zs) ∀s ∈ S

hs ≤ (dzs − dxs) +M(1− zs) ∀s ∈ S

hs + (ps − θs)us − 0 ≤ Mts ∀s ∈ S

0− (hs + (ps − θs)us) ≤ M(1− ts) ∀s ∈ S
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vs ≥ hs + (ps − θs)us ∀s ∈ S

vs ≥ 0 ∀s ∈ S

vs ≤ hs + (ps − θs)us +M(1− ts)∀s ∈ S

vs ≤ 0 +Mts ∀s ∈ S

dzs = max [dys, 1] s|ms = 1

dzs = max[dys, (dzs′ + ps′)|

ms′ = ms − 1] ∀s ∈ S|ms > 1

dxs, dys, dzs, vs ≥ 0 and integers

us, ws, zs, ts are binary

hs is integer
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7.2 Annex 2: Scheduling Game

Problem Setting

This exercise aims to reproduce terminals appointment scheduling procedure considering
uncertainties in the arrival and processing times of ships. Clients have to send their requests,
called s, until a specific limit date from the previous month of the ship operation, informing their
volume (vols) as well as the period they are available to be scheduled (between the earliest (es)
and latest (ls) days). The difference ls − es + 1 is called availability size and impacts terminals
flexibility when preparing the scheduling plan. As an example, a client wants to operate a ship
s in a terminal next month, which is November, so until the 20th of October a request should
be sent, informing the volume of the operation, e.g 300,000 m3, and the earliest and latest days
on which the ship could be scheduled, e.g between day 15 and day 18 (meaning that it can be
scheduled to start on day 15, day 16, day 17 or day 18).

The terminal has to evaluate all requests focusing on maximizing its profit and decide
which ships should be accepted/rejected to operate, as well as the date they should be scheduled,
called dxs. The date when the ship really arrives is uncertain and is called dys, and the date
that it really starts operation is called dzs.

It is possible that a ship arrives early, late or exactly on time to operate. Additionally,
the operation can start earlier, later or exactly when it was scheduled. The operation can only
start when the ship arrives to the terminal (dzs ≥ dys) and takes an uncertain amount of time to
finish, called processing time (ps). All those information will be used to calculate the demurrage
paid by the terminal for every extra day that a ship stays in the terminal, discounting any delays
on ship arrivals.

Figure 30: Arrival and Start Time Cases

Consider that the terminal has a revenue of $0.50 per m3 transported, and it has to pay
a daily demurrage fee of $25, 000 for every extra day that a ship stays in the terminal. The extra
days that a ship stays in the port is calculated by the sum of two parts: the start mismatch
(dzs - dxs), which is the difference between the real start and the scheduled start, only counted
when ships arrive early or on time (late ships are responsible for their own delays and can not
charge terminals for start mismatch); and the operational mismatch (ps − θs), which is the
difference between real processing time and the time window scheduled for that operation. The
time window considered for this exercise will be fixed to all ships and equal to 2 days, meaning
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the terminal is scheduling 2 days of time window to finish any operation. The total profit is
calculated by the sum of revenues (volume times the revenue fee per m3) minus the costs of
demurrage (total number of extra days times the demurrage fee) for all accepted ships. Table
27 shows some examples on how to calculate those extra days:

Table 27: Days of demurrage

The fact that ships are scheduled in certain days do not imply that they will be operated
in that order. It is important to distinguish the scheduling phase, focus of this exercise, with
the operational phase, which happens one month later, with ships arriving around the schedule
dates and being operated given a sequence defined by the operational team. Consider to this
exercise a “First Come, First Serve” operational policy.

The arrivals dys are normally distributed around dxs with a standard deviation of 2
days. This means, as shown in Figure 31, that in 19.7% of the cases ships arrive exactly on
time, 17.5% arrive 1 day early and the same percentage arrive 1 day late, 12.1% arrive 2 days
early and the same percentage arrive 2 days late and 0.7% arrive more than 2 days early and
the same percentage arrive more than two days late.

Figure 31: Normal Distribution - Delay

The processing time is also based on a normally distributed with mean of 2 days and
standard deviation of 1 day, with a difference that an operation is never smaller than one day.
This means, as shown in Table 28 that 17.8% of the cases ships take 1 day to operate, 45.5%
of the cases ships take 2 days, 28.8% of the cases ships take 3 days and 7.9% of the cases ships
take more than 3 days. Operations start at day 1 of each month, meaning that ships scheduled
in November are never anticipated to operate in October.
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Table 28: Truncated Normal Distribution - Processing Time

The process of accumulating all requests up to a limit day and then defining who is
accepted/rejected and when they are scheduled, is called static scheduling. There is also another
version, called dynamic scheduling, on which clients receive answers immediately as they place
their requests. The difference between those methodologies is that, in the first case, terminals
take decisions with full information about clients requests, and in the second case, terminals
make decisions once at a time, without knowing if further requests will bring more or less profit.

Exercise Instructions

Now you will play the role of the scheduler and make the scheduling decisions considering
all the information previously introduced.

The first exercise will be a dynamic scheduling exercise on which requests information
(volume, earliest and latest days) will be placed one by one, and you will have to accept or
reject them; and if accept, define the scheduled date. In this exercise ships will have volumes
of 100,000 m3, 200,000 m3 or 300,000 m3 and availability sizes (ls − es+1) of 3 days, 4 days or
5 days.

If you accept the operation, you should mark an “X” in the date that ship should be
scheduled. If you don’t accept that ship, please leave it blank. Remember that your goal is to
maximize terminals profit. Although there is only one berth in this terminal, you are allowed
to schedule ships at the same day if you believe this will return more money in the end. In
some situations operations are so profitable, that you prefer to schedule ships at the same date,
knowing that you will incur in demurrage and some clients will wait, than loosing the deal.
We are not worried in this exercise if those decisions will have any impact in the long term
relationship between clients and terminals.

Further on, there will be 5 static scheduling experiments, but this time you will know
all the information at once to place your decisions.

Remember that deciding the scheduling dates will impact the arrival pattern of ships,
triggering demurrage disputes in case ships overstay. Also take into account that further on
the operation itself will be adjusted to a “First Come, First Serve” policy to maximize berth
utilization. Feel free to order the columns of the excel sheet (to do so you can select the lines
you want to order (including the header) > Go to ’Data’ > Go to ’Create a filter’), if you believe
ranking the ships somehow will help you answer your exercise.

As the last exercise, it will be showed the scheduling plan recommended by a system,
and you are asked to propose adjustments (if you believe they are needed) that could increase
the total profit. Finally you will answer a quick post game questionnaire.

Post Game Questionnaire

1. In the dynamic scheduling game, what was your strategy choosing the ships you
should accept or reject? Did your strategy changed over the exercise (you started to reject
more or less as the game continued)?

2. In the static scheduling game, what was your strategy choosing the ships you should
accept or reject?

3. Considering now both static and dynamic exercises, did you have any fixed strategy
to set the scheduled date for the accepted ships?
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a) Early start schedule (schedule close to the early date)
b) Late start schedule (schedule close to the late date)
c) Medium point start schedule (schedule close to the medium point between early and late
dates)
d) Consider one of the above + the time window information. (Please inform which one of
the above!)
e) Consider one of the above + number of ships already scheduled to operate. (Please inform
which one of the above!)
f) Another strategy. (Please inform which one of the above!)

4. Rank the factors that were more important to you in the overall process:
□ Earliest/ Latest
□ Availability size
□ Volume
□ Processing time
□ Arrival time
□ Demurrage
□ Other (Please inform which ones!)
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7.3 Annex 3: Tiebreaking rule: smallest deviation first

There is another possibility of tiebreaking rule used by operational teams that prioritize
requests with the smaller deviation from the scheduled date. In this case the highest priority
is given to on time ships, followed by early ones (from the closer to the scheduled date to the
further), and lastly by the late ones (from the closer to the scheduled date to the further). In
this case the step from the algorithm that defines the tiebreak rule should be substituted by: “If
there is a tiebreak, consider priors = dxs − dys and order them as following: [s|dxs − dys = 0,
s|min(prior+s ), ..., s|max(prior+s ), s|max(prior−s ), ..., s|min(prior−s )]”.

Figure 32 shows an example of FIFO berthing rule with the tiebreaking rule based on
the smaller deviation. In this case in Scenario (a) both Ship 1 and Ship 2 arrived at the same
time, but as dx1 − dy1 = 2 and dx2 − dy2 = 1, the order of the tiebreak is first Ship 2 (with the
smallest deviation to the scheduled date) and then Ship 1.

Figure 32: Fifo Ordering/ Smaller Deviation to Scheduled tiebreaking rule

Figure 33 shows an example of “by schedule” berthing rule with the tiebreaking rule
based on the smaller deviation. In this case in Scenario (a) both Ship 2 and Ship 3 were scheduled
to operate in the same date, but as dx2 − dy2 = 3 − 2 = 1 and dx3 − dy3 = 3 − (−1) = 4, the
order of the tiebreak is first Ship 2 (with the smallest deviation to the scheduled date) and then
Ship 3.

Figure 33: By Schedule Ordering/ Smaller Deviation to Scheduled tiebreaking rule

7.4 Annex 4: K-means and HAC Clustering Algorithms

Those two techniques are used as possible options of clustering methodologies, which
have pre-defined libraries in R. By the end those clusters should be order by decreasing mean
volume of ships from each cluster. The codes utilized in those cases were the following:

Hierarchical Agglomerative Clustering (HAC)
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Figure 34: HAC clustering algorithm

K means

Figure 35: K means clustering algorithm

7.5 Annex 5: Detailing the Simulation Model

A simulation is a simplified and controlled version of reality. The first step is designing
the logic of the flow process and determining which are the entities flowing through the model,
the resources used at each moment, the processes that the entities go through, the queuing
positions, as well as the decisions that are made at each point.

The ships are the main entities of the system, which arrive, wait to berth, operate and
leave. Those ships can be principals or secondaries (also called ’pairs’) and can operate different
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types of product with tanks (loading and unloading), or between themselves (ship to ship or
transshipment).

This model was built to allow operation with two berths, but as all the optimization
models consider the appointment scheduling of a unique berth, the second berth is always
considered “out of operation” for the experiment proposed. This will allow future research with
multiple berths.

As soon as a principal ship enters the system, given a schedule or an arrival distribution,
it goes to a common queue and wait until the berth is empty in a ’first in first out’ order. There
is a berthing rule that if the vessel is a VLCC full of cargo, it can only enter if there is enough
time to reach the berth before the sunset, due to safety reasons. As the sunrise/ sunset vary
during the year, a simplification is used fixing the entrance time window between 5 am to 15
pm for those ships to enter.

If the berth is free and there are restrictions to enter, the system calls for the next ship
with no restrictions in order to maximize berth utilization. If a berth is free and the ship has
no restriction, a harbor master is requested to maneuver the ship through the port access until
it is completely berthed.

Figure 36 shows the first sequence of modules that represent this logic. The simulation
was prepared to read the information of ships (product, type of operation, dimension, etc...)
in three different ways: the first one is by reading the respective distribution and randomly
selecting the characteristics of each particular ship through them; the second one is by reading
the operational information of each ship from an excel file; and the third one, which will be
used in the thesis, read the vols and the dxs information, and select from distributions the rest
of the operational characteristics and a delays rounded from the normal distribution with mean
0 and standard deviation of 2 days also used in the optimization model.

One of the characteristics read is the number of pairs that each ship will operate with.
This information is used to create the secondary ships by duplicating the principal ship. Those
ships read their own information and wait a call from the principal ship whenever it is finished
berthing.

Principal ships are separated into two different queues: one for ships that have restriction
to berth and the others that don’t.

87



Figure 36: ARENA framework - Part 1

This simulation is agent based, meaning that there is an entity which is called decider
who is always checking all the ships requests for berthing and unberthing and taking decisions
on who should be prioritized. There is a priority sequence followed by that agent for taking
actions, which is given as follows:

1. Secondary ships requesting to berth for STS operation

2. Any ship performing STS requesting to unberth that has restriction to exit

3. Any ship performing transshipment requesting to unberth that has restriction to exit (this
feature was implement but not used as multiple berths are not studied in this research)

4. Any ship performing loading/unloading requesting to unberth that has restriction to exit

5. Principal ships requesting to berth with restrictions to enter

6. Principal ships requesting to berth without restrictions to enter

7. Any ship performing loading/unloading requesting to unberth that does not have
restriction to exit

8. Secondary ships requesting to berth for transshipment operation (this feature was
implement but not used as multiple berths are not studied in this research)

9. Any ship performing STS requesting to unberth that does not have restriction to exit

10. Any ship performing transshipment requesting to unberth that does not have restriction
to exit (this feature was implement but not used as multiple berths are not studied in
this research)

Figure 37 shows the logic of the agent. This entity waits until some ship needs to
be berthed or unberthed to trigger the rest of the logic. Is possible that multiple ships are
requesting berth/unberth at the same time, in this case the agent follows the enumerated order
presented above, attending first the ships that have restriction to enter or exit the port, and
then the ones that don’t. Ships are signalized if they should proceed with berthing/unberthing,
or if they should wait.
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Figure 37: ARENA framework - Part 2

When an agent is processing a specific request, the ship under analysis is moved to
another flowchart, on which, depending on the answer given by the agent, it either proceeds to
berth, first signalizing to the secondary ships that the operation will happen (if there are any
secondary ships) and then calling the harbor master; or it waits until there is no restriction
to request berth again (those are shown in Figure 38). It is important to highlight that those
“moves” happen in the flowchart, but physically the ship is just anchored waiting for further
instruction.

Figure 38: ARENA framework - Part 3

In this simulation the harbor master, mooring team, tanks and berths are considered
resources. Having the harbor master onboard, the ship maneuvers from the queuing region to
the berth, requests the mooring team and the berthing procedure begins. When the berthing is
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complete, harbor master and mooring team are released. There is a rule that the harbor master
can only be called once every 3 hours, meaning that even when shifting and berthing takes less
than 3 hours, the harbor master can not be requested again until this period is finished.

Figure 39: ARENA framework - Part 4

The secondary ships (when there are any) are sent to the flowchart of Figure 40 when
warned that their operation will start, they wait until the berth is available and request their
entrance to the agent.

Figure 40: ARENA framework - Part 5

The agent (Figure 37) goes through the same process as explained before, and decides
if the secondary ship can or can not berth. Depending on its decision the secondary ship waits
until there is no restriction anymore to request again, or continues to request the harbor master
as showed in Figure 41. The secondary ship enters the flowchart of Figure 39, requests assistance
of the mooring team, berths and releases the harbor master and mooring team when finished.
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Figure 41: ARENA framework - Part 6

If the operation performed is loading/unloading, none of this last part dedicated to
secondary ships is needed. In this type of operation the next step followed by the principal
ship is the pre-transfer process, shown in Figure 42 where basically all the documentation,
sampling and measurement of product onboard is executed. Next, the pipelines/tank of the
specific product transported are requested so transfer can be performed. Next it is the post-
transfer procedure, which is really similar to the pre-transfer (documentation, sampling and
measurement). Finally the ship is ready to request unberth. Unberthing has also a restriction
which says that full VLCC and full secondary ships operating STS, can only unberth between
5 am to 17 pm.

Figure 42: ARENA framework - Part 7

Whenever the agent analyses the request (and goes through the flowchart of Figure 37),
the ship moves to the flowchart of Figure 43 and if the unberth is not accepted due to restrictions
the ship has to wait to request again, or it continues to seize the harbor master and mooring
teams to unberth.
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Figure 43: ARENA framework - Part 8

If the ship operating is a STS the flowchart is slightly different (Figure 44). While the
principal is advancing with its pre transfer procedure, the secondary is being shifted and berthed.
The transfer can only start when both ships finished their pre-transfer. After transferring, both
ships have their post-transfer process. If there are still other pairs to operate, the principal ship
goes back to the beginning of the process and prepares the pre-transfer for the next secondary.
The secondary that already operated requests to unberth. Whenever the agent considers this
request, the secondary ship goes to the flowchart of Figure 43 and if accepted to unberth it
seizes the harbor master and mooring team.

Figure 44: ARENA framework - Part 9

The last case would be if the vessel is performing a transshipment, which although
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modeled to allow future research, is not considered for the experiments of this research. In
this case, after berthing, the principal can also start its own pre-transfer before the secondary
but has to wait the secondary shift, berth and perform its own pre-transfer so they are ready
to transfer cargo, as it is showed in Figure 45. After finishing the cargo transfer there is the
post-transfer. Whoever finishes first can leave, unless the principal is operating with other
secondaries in sequence. In that case the principal goes back in the same flowchart, starts the
pre-transfer again, while waiting the first secondary to leave and the second to enter and go
through the initial process. The ship that requests to unberth triggers the decision of the agent
(Figure 37), which should define if it has to wait until there is no restriction to request unberth
again, or if it can proceed to unberth (which is showed in Figure 43).

Figure 45: ARENA framework - Part 10

This simulation model was built using an academic license from software Arena, version
16.00.00003 and it has both logic and graphic interface. All major inputs are registered in an
Excel file, which is read by Arena in the beginning of each replication and the outputs are
written in a .csv file, allowing further data analysis.

7.6 Annex 6: Using the cluster based partition method

The following algorithm includes the extra steps needed to incorporate the cluster based
partition method proposed in Chapter 4 to solve the appointment scheduling problem faster.
In order to do that the vols, es, ls and cs should be given as input parameters. Being cs the
cluster from which each ship belongs defined by the clustering algorithm. Nc the total number
of clusters, and Nk is the total number of ships in cluster k. Figure 29, shows the example of
cs definition for EXC HO, considering [4 4], [2 2 2 2] and [1 1 .. 1 1] clustered via HVF.
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Table 29: Example of HVF clustering for EXC HO

Problem 1/ Algorithm 1 (Partitioned Methodology):

• Step 1: Set Sall = 0. Set k = 1. Set Nk =
∑

s∈S|cs=k 1.

• Step 2: For all s ∈ S|cs = k consider the es and ls information to enumerate all options
of dxs including ’NA’ which represent rejecting the operation of that specific ship. If
Sall = 0, go to Step 4, otherwise go to Step 3.

• Step 3: For all ships s ∈ Sall, consider the dxs = dx∗s that was previously defined in
Step 9.

• Step 4: Enumerate all possible combinations of dxs considering Sall ∪ (s ∈ S|cs = k).

• Step 5: Set the counter i = 1. Define Ncomb = (
∑

s∈Sall
1) ∗ (

∏
s∈S|cs=k(as + 1)) as the

total number of combinations. Define Sall = Sall ∪ (s ∈ S|cs = k).

• Step 6: Having the ith combination, and given s ∈ Sall, create a set of Nscen scenarios
with randomly selected delays and ps for each ship, considering their distributions.

• Step 7: For all s ∈ Sall, from all j ∈ Nscen scenarios calculate dys = dxs + delays.

• Step 8: For all s ∈ Sall, from all j ∈ Nscen scenarios, define an index ms with the order
of arrival of each ship. If there is a tiebreak, order first the one that requested operation
first (in other words the ship with min|s|).

• Step 9: For all j ∈ Nscen, consider that for the s|ms = 1 the calculation of dzs is given
by dzs = max[dys|(ms = 1), 1], for all s ∈ S|ms > 1, calculate dzs = max[dys, (dzs′ +
ps′)|ms′ = ms − 1].

• Step 10: For all s ∈ Sall, from all j ∈ Nscen scenarios, calculate the exceeded days of
demurrage by τ+s = max[0, dzs − dxs)1

(dys≤dxs) + (ps − θs)]

• Step 11: For all s ∈ Sall, from all j ∈ Nscen scenarios, calculate the profit, called Pi,j by
the expression

∑
s∈S [Φsvols − Ωs(τ

+
s )]1(dxs>0).
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• Step 12: Take the expectation of the total profit from all scenarios of ith combination,
called E[Pi] =

∑
j∈Nscen

Pi,j/Nscen. Set i = i + 1. If i ≤ Ncomb goes back to Step 6,
otherwise goes to Step 13.

• Step 13: The solution for ships s ∈ Sall considering cluster k is given by the combination
of dx∗s that returns the maximum expected profit (maxE[Pi]). If k < Nc go to Step 14,
otherwise dx∗s is the final solution.

• Step 14: Set k = k + 1. Set Nk =
∑

s∈S|cs=k 1. Go back to Step 2.

The same adjustments performed to Algorithm 1 can be used to the other algorithms
proposed.
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