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Abstract

Advances in technology over the last decade have reshaped the way population inter-
act with multimedia content. This fact aroused a significant rise both in generation

and consumption of these data in recent years. Manual analysis and annotation of this
information is unfeasible given the current volume, revealing the necessity of automatic
tools that can help advance from manual working pipelines to assisted or partially auto-
matic practices. Over the last few years, most of these tools for multimedia information
retrieval are based on the deep learning paradigm. In this context, work presented in this
thesis focuses on the audio information retrieval domain. In particular, this dissertation
studies the audio segmentation task, whose main goal is to provide a sequence of labels
that isolates different regions in an input audio signal according to the characteristics
described in a predefined set of classes, e.g., speech, music or noise.

The first part of this thesis dissertation is devoted to the speech activity detection
task. In the last few years, a number of international evaluation campaigns have been
proposing this task as one of their challenges. Among them, Fearless steps challenge
deals with digitised audio coming from the original recordings of the NASA’s Apollo
space missions. For this challenge, we introduce a deep learning solution that is based
on a convolutional recurrent neural network classifier. As the main contribution, a novel
approach combining information from 1D and 2D filters to be processed by a recurrent
neural networks is presented. Motivated by the introduction of the Fearless steps data, an
evaluation of different domain adaptation methods is presented to test how well a speech
activity detection system trained on common datasets can perform on this new domain.
Adaptation techniques described do not require labels in the target domain, facilitating
its use in practical applications. In general terms, methods seeking to minimise the stat-
istical distribution shift between source and target domains provide the most promising
results. Recent advances in self-supervised representation learning have shown signi-
ficant improvements in performance in several speech processing tasks under different
domains. Driven by these advances, we aim to incorporate them in the speech activity
detection task. With last editions of the Fearless steps challenge shifting its focus to test
system generalisation capabilities, the goal is to benefit from large amounts of unlabelled
data to improve robustness. Experimental findings suggest that self-supervised feature
learning allows to build systems that are significantly less sensitive to domain mismatch.

The second part of this manuscript analyses a more general audio segmentation task
that seeks to simultaneously classify audio signals as being speech, music, noise or a
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combination of these. In the context of Albayzín audio segmentation challenge corpora,
an approach based on the combination of recurrent neural networks as the main classi-
fier and a hidden Markov model postprocessing module is proposed. Furthermore, a new
block is introduced in the neural architecture with the objective of removing redundant
temporal information, improving the performance and reducing the number of opera-
tions per second at the same time. This proposal outperformed previous solutions in the
literature and similar approaches based on deep neural networks in both 2010 and 2012
challenge data. While results using self-supervised learning were promising in a binary
segmentation task such as speech activity detection, if applied on multiclass segmenta-
tion tasks some issues arise. Common augmentation techniques applied in training time
force the model to compensate background noises or music. Under these conditions, fea-
tures obtained do not represent accurately classes that are generated in a similar way
as the augmented versions seen in training. This fact limits the overall improvement
observed when using self-supervised features in tasks such as the one proposed by the
Albayzín 2010 evaluation, where both speech and music must be separated.

Last part of this thesis investigated the application of new training objectives in audio
segmentation with the main goal of mitigating the issues derived from a limited train-
ing dataset. New optimisation techniques based on AUC and partial AUC metrics have
been demonstrated to outperform traditional training objectives such as cross entropy in
several detection tasks. Therefore, this dissertation introduces recently proposed AUC
optimisation techniques into the music detection task. Providing that labelled data for
music detection is limited when compared to other tasks such as speech activity detec-
tion, these techniques are applied with themain goal of improving the performance when
using a relatively small training dataset. Most systems utilising AUC optimisation tech-
niques are limited to binary tasks, as this is the typical scenario to apply AUC metrics.
Furthermore, labelling audios with detailed taxonomies involving multiples options is
significantly more complex, resulting in a limited amount of labelled audio for some
multiclass audio segmentation tasks. Therefore, as a natural extension, we propose a
generalisation of binary AUC optimisation techniques so that they can be applied to an
arbitrary number of classes. Two different loss functions are introduced, using as the
starting point for the formulation multiclass variations of the AUC metric proposed in
the literature: one based on a one-versus-one approach, and one based on a one-versus-
rest approach.



Resumen

Los avances tecnológicos acaecidos en la última década han cambiado completamente
la forma en la que la población interactúa con el contenido multimedia. Esto ha

propiciado un aumento significativo tanto en la generación como el consumo de dicho
contenido. El análisis y la anotación manual de toda esta información no son factibles
dado el gran volumen actual, lo que releva la necesidad de herramientas automáticas que
ayuden en la transición hacia flujos de trabajo asistidos o parcialmente automáticos. En
los últimos años, la mayoría de estas herramientas están basadas en el uso de redes neur-
onales y deep learning. En este contexto, el trabajo que se describe en esta tesis se centra
en el ámbito de la extracción de información a partir de señales de audio. Particular-
mente, se estudia la tarea de segmentación de audio, cuyo principal objetivo es obtener
una secuencia de etiquetas que aíslen diferentes regiones en una señal de entrada de
acuerdo con una serie de características descritas en un conjunto predefinido de clases,
como por ejemplo voz, música o ruido.

La primera parte de esta memoria esta centrada en la tarea de detección de actividad
de voz. Recientemente, diferentes campañas de evaluación internacionales han prop-
uesto esta tarea como uno de sus retos. Entre ellas se encuentra el reto Fearless steps,
que trabaja con audios de las grabaciones de las misiones Apollo de la NASA. Para este
reto, se propone una solución basada en aprendizaje supervisado usando una red con-
volucional recurrente como clasificador. La principal contribución es un método que
combina información de filtros de 1D y 2D en la etapa convolucional para que sea pro-
cesada posteriormente por la etapa recurrente. Motivado por la introducción de los datos
del reto Fearless steps, se plantea una evaluación de diferentes técnicas de adaptación de
dominio, con el objetivo de comprobar las prestaciones de un sistema entrenado con da-
tos de dominios habituales y evaluado en este nuevo dominio presentado en el reto. Los
métodos descritos no requieren de etiquetas en el dominio objetivo, lo que facilita su uso
en aplicaciones prácticas. En términos generales, se observa que los métodos que buscan
minimizar el cambio en las distribuciones estadísticas entre los dominios fuente y objet-
ivo obtienen los resultados mas prometedores. Los avances recientes en técnicas de rep-
resentación obtenidas mediante aprendizaje auto-supervisado han demostrado grandes
mejoras en prestaciones en varias tareas relacionadas con el procesado de voz. Siguiendo
esta línea, se plantea la incorporación de dichas representaciones en la tarea de detec-
ción de actividad de voz. Las ediciones más recientes del reto Fearless steps modificaron
su propósito, buscando ahora evaluar las capacidades de generalización de los sistemas.
El objetivo entonces con las técnicas introducidas es poder beneficiarse de grandes can-
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tidades de datos no etiquetados para mejorar la robustez del sistema. Los resultados ex-
perimentales sugieren que el aprendizaje auto-supervisado de representaciones permite
obtener sistemas que son mucho menos sensibles al cambio de dominio.

En la segunda parte de este documento se analiza una tarea de segmentación de au-
dio más genérica que busca clasificar de manera simultanea una señal de audio como voz,
música, ruido o una combinación de estas. En el contexto de los datos propuesto para el
reto de segmentación de audio Albayzín 2010, se presenta un enfoque basado en el uso de
redes neuronales recurrentes como clasificador principal, y un modelo de postprocesado
integrado por modelos ocultos de Markov. Se introduce un nuevo bloque en la arquitec-
tura neuronal con el objetivo de eliminar la información temporal redundante, mejorando
las prestaciones y reduciendo el numero de operaciones por segundo al mismo tiempo.
Esta propuesta obtuvo mejores prestaciones que soluciones presentadas anteriormente
en la literatura, y que aproximaciones similares basades en redes neuronales profundas.
Mientras que los resultados con aprendizaje auto-supervisado de representaciones eran
prometedores en tareas de segmentación binaria, si se aplican en tareas de segmentación
multiclase surgen una serie de cuestiones. Las técnicas habituales de aumento de datos
que se aplican en el entrenamiento fuerzan al modelo a compensar el ruido de fondo o
la música. En estas condiciones las características obtenidas podrían no representar de
manera precisa aquellas clases generadas de manera similar a las versiones aumentadas
vistas en el entrenamiento. Este hecho limita la mejora global de prestaciones observada
al aplicar estas técnicas en tareas como la propuesta en la evaluación Albayzín 2010.

La última parte de este trabajo ha investigado la aplicación de nuevas funciones de
coste en la tarea de segmentación de audio, con el principal objetivo de mitigar los prob-
lemas que se derivan de utilizar un conjunto de datos de entrenamiento limitado. Se ha
demostrado que nuevas técnicas de optimización basadas en las métricas AUC y AUC
parcial pueden mejorar objetivos de entrenamiento tradicionales como la entropía cruz-
ada en varias tareas de detección. Con esta idea en mente, en esta tesis se introducen
dichas técnicas en la tarea de detección de música. Considerando que la cantidad de da-
tos etiquetados para esta tarea es limitada comparado con otras tareas, las funciones de
coste basadas en la métrica AUC se aplican con el objetivo de mejorar las prestaciones
cuando el conjunto de datos de entrenamiento es relativamente pequeño. La mayoría de
los sistemas que utilizan las técnicas de optimización basadas en métricas AUC se limitan
a tareas binarias ya que ese el ámbito de aplicación habitual de la métrica AUC. Además,
el etiquetado de audios con taxonomías más detalladas en las que hay múltiples opciones
posibles es más complejo, por lo que la cantidad de audio etiquetada en algunas tareas
de segmentación multiclase es limitada. Como una extensión natural, se propone una
generalización de las técnicas de optimización basadas en la métrica AUC binaria, de tal
manera que se puedan aplicar con un número arbitrario de clases. Dos funciones de coste
distintas se introducen, usando como base para su formulación las variaciones multiclase
de la métrica AUC propuestas en la literatura: una basada en un enfoque uno contra uno,
y otra basada en un enfoque uno contra el resto.
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state-of-the-art
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“Data are becoming the new raw material of business.”

Craig Mundie

1
Introduction and motivation

1.1 Motivation & context
1.2 Thesis objectives

1.3 Thesis organisation

1.1 Motivation & context

Technological advances over the last few years have completely modified the way
that general public interacts with multimedia content. Technology is currently

present in all of our daily interactions. The evolution of electronic devices such as mobile
phones, cameras or laptops has played a key role in the huge rise in consumption and
generation of multimedia resources observed in recent years. At the same time, these
resources are being made available to the general public through different platforms,
with audio and video on demand systems being extremely popular nowadays. These
large multimedia repositories represent a significant part of the Internet data traffic. In
2017, Cisco annual internet report estimated multimedia streaming traffic to be the 75%
of the IP traffic in the world. According to YouTube most recent copyright transparency
report [1], 500 hours of video per minute are uploaded to YouTube video streaming plat-
form. This is equivalent to 82 years of video content uploaded in a single hour. As of
2022 statistics, 2.6 billion users worldwide interact monthly with the platform generat-
ing a total of one billion hours watched daily. In the audio streaming domain, as of 2022
statistics [2], Spotify platform featured 433 million active monthly listeners. These users
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4 Chapter 1. Introduction and motivation

could choose from a catalogue of around 82 million songs and more than 4 million pod-
casts, with around 2 millions songs more being uploaded every month and 1.2 million
podcasts added in year 2022. In addition to the problem of a dramatically rising amount
of multimedia data volume, the amount of different information that shall be extracted
from a multimedia stream is now bigger than in previous years. A multimedia signal is
intrinsically rich in information, and recent technological advances have also allowed an
increase in the number of information streams that are considered relevant in this kind
of signals. Focusing on the two main information sources present in a multimedia signal,
audio and video, these are some examples of information extraction that can be cited:

• Audio: transcription, speaker recognition, speech activity detection, music detec-
tion, speech pathology detection, etc, ...

• Video: face recognition, object detection, movement detection, scene description,
sentiment analysis, etc, ...

Currently, one themain efforts frommultimedia content providers is to increase value
for its clients by analysing and cataloguing the available content. Manual annotation of
this content in all the possible dimensions mentioned previously has become a really ex-
pensive and time-consuming task. For example, manually transcribing a document may
take up from 4 to 6 times the original length of the document, with its associated cost in
terms of staff. Under these circumstances, there is a need for the advancement of auto-
matic systems that can analyse, index and retrieve information from amultimedia stream
in a fast and accurate way. Research community is specially aware of this issue, devot-
ing huge efforts for several decades in building solutions towards process automation
in multimedia information extraction. The main idea in all these systems is to advance
from manual working pipelines to assisted or partially automatic practices. Over the
last few years a trend can be observed, with most of the current multimedia information
retrieval systems based on the deep learning paradigm. Deep learning is a subset of ma-
chine learning algorithms where several neural networks processing layers are stacked
in order to extract high level features from data [3]. These systems have demonstrated
great performance in different applications dealing with large amounts of data.

Driven by the context that has just been introduced, the work presented in this thesis
dissertation focuses on the development of automatic systems that can facilitate the la-
belling and indexing of multimedia documents. Namely, this thesis is articulated around
the audio information retrieval domain, which seeks to extract meaningful information
from audio streams. This field includes several disciplines that aim to automatically ob-
tain different kinds of information from an audio signal. For example, automatic speech
recognition (ASR) seeks to convert an speech signal into its textual transcription. Speaker
identification aims to determine the speaker of an audio fragment. In the field of music
information retrieval (MIR), applications can be find that recognise the genre of a mu-
sical piece, or that estimate the chord being played in a music segment. Among all these
possible applications, this dissertation is devoted to audio segmentation. The goal of a
generic audio segmentation system is to provide a sequence of labels that isolates dif-
ferent regions in an input audio signal according to the characteristics described in a
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predefined set of classes, e.g., speech, music or noise. This definition is really wide, and it
includes several kinds of systems depending on the classes taken into account in the clas-
sification. For example, a speech activity detection (SAD) task is considered if a binary
speech/non-speech segmentation is performed. Another example of audio segmentation
is the speaker diarisation task, that aims to separate different speakers in an audio stream
defining one class per speaker. A more detailed description of the audio segmentation
systems will be provided in Chapter 2.

From an overall perspective, an audio signal can be classified as speech, music or
noise. Several works can be cited that adopt a similar taxonomy [4] [5] [6]. Determin-
ing the segments of an audio stream where speech is being uttered may be interesting
for different reasons. An initial segmentation marking speech fragments can serve as a
guide for other automatic systems that should work only on speech fragments. In fact,
this preprocessing is an essential step before applying other speech information retrieval
applications such as ASR or speaker recognition. The separation of music content in an
audio signal is also relevant from a document information retrieval perspective. Further-
more, in broadcast content, music detection plays a key role in order tomonitor copyright
infringement. Concerning noise separation, it is true that noise may not be as informat-
ive as speech or music but its accurate detection could be relevant seeking to reduce it
by running some enhancement algorithm on the audio signal.

Research work developed in this thesis dissertation has been performed in the Voice
Input Voice Output Laboratory (ViVoLab)1 research group within the Aragón Institute
for Engineering Research (I3A) of the University of Zaragoza, and under the supervision
of Dr. Alfonso Ortega Giménez.

1.2 Thesis objectives

The main goal of this dissertation is the development of new solutions based on deep
neural networks for audio segmentation, evaluating different binary and multiclass tasks
and involving different acoustic classes that need to be separated. Technical develop-
ments in the last decade have significantly improved the performance of automatic in-
formation extraction systems, with deep learning applications being specially relevant
nowadays. In fact, the use of deep learning for automatic labelling and information ex-
traction has become a de facto standard in the audio processing community. Additionally,
current technology capabilities allow its use in industry and other environments outside
research discipline. Despite recent advances in deep learning research, there are still
several issues that need further research.

Generally, deep learning algorithms require large amounts of manually labelled train-
ing examples in order to obtain a reliable model. Under some circumstances, this labelled
data may not available, or its collection may be an arduous task. Research effort in this
dissertation seeks to overcome the problems derived from labelled data availability by
exploring different techniques that can improve audio segmentation performance even

1https://vivolab.i3a.es

https://vivolab.i3a.es
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when these systems are trained with a limited size dataset. Furthermore, the generalisa-
tion issue is also considered in this dissertation. Some of the experiments presented in
this dissertation aim to obtain robust audio segmentation models that can operate under
different domain conditions.

Self-supervised representation learning has recently attracted attention in the re-
search community due to its demonstrated capabilities on several speech and audio pro-
cessing tasks. So far, few works have evaluated the performance of these models in audio
segmentation problems. Part of the work presented in this dissertation aims to benefit
from the knowledge acquired from huge amounts of unlabelled data in order to be applied
to different audio segmentation tasks.

The broad objective of this thesis, consisting of developing new deep learning applic-
ations for audio segmentation tasks, can be divided into the following specific objectives:

• The application of deep learning systems on audio segmentation tasks in order to
evaluate the current limitations of this technology for different scenarios.

• The development and evaluation of techniques that reduce the loss in performance
observed when audio segmentation technologies operate in a data domain different
from the one they were trained on, seeking to efficiently adapt current systems to
new unseen domains.

• The adaptation of self-supervised feature representation models to audio segment-
ation systems as a way to alleviate the need for large amounts of labelled data.

• The introduction of new training objectives in the audio segmentation task that
can improve the results of these systems when dealing with limited training data.

1.3 Thesis organisation

A conceptual map describing the content of this thesis dissertation is presented in Figure
1.1. As shown, this dissertation is divided into fivemain parts. In the first part (Chapters 1,
2, 3 and 4), an introduction to the context and motivation of this dissertation is presented
initially. Then, a review on audio segmentation solutions is provided, as well as a descrip-
tion of the most relevant methods and techniques involved in this dissertation. Finally,
this part describes the datasets used in this dissertation and the metrics commonly ap-
plied in the evaluation of audio segmentation systems. The second part (Chapters 5, 6
and 7) is devoted to the speech activity detection task, presenting a set of experiments
performed in a challenging acoustic environment such as Apollo space missions record-
ings. The third part (Chapters 8 and 9), describes the advances obtained using a recurrent
neural network based approach in a multiclass audio segmentation task that aims to sep-
arate speech, music, noise or a combinations of these. In the fourth part (Chapters 10 and
11), a new optimisation framework based on the area under the ROC curve is applied to
the music detection task. This framework is then extended in order to be used in a mul-
ticlass environment. Lastly, the fifth part, consisting of Chapter 12, summarises the main
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Figure 1.1: Conceptual map of the work presented in this thesis dissertation.

conclusions obtained from this thesis dissertation and introduces some future research
lines. In the following lines a description of the organisation for the different chapters in
this document is provided:

• Chapter 1. Introduction and motivation: in this present chapter, the work
described in this dissertation is contextualised. In addition, the motivation and
objectives of the thesis are presented.

• Chapter 2. State-of-the-art in audio segmentation: this chapter introduces
the concept of audio segmentation and performs a review of the state-of-the-art
for these systems. This review describes the different approaches used in the au-
dio segmentation community, from traditional methods based on distance metrics
or statistical classifiers to more recent solutions based on deep learning. An spe-
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cial focus is made on this last kind of systems being the ones mainly used in this
dissertation.

• Chapter 3. Methods review: this chapter aims to provide an outline of the most
relevant methods and techniques applied in this dissertation. Namely, the focus
is set on two topics: signal representation methods, describing feature extraction
techniques, and sequence modelling techniques, introducing an overview of neural
network classifiers and hidden Markov models.

• Chapter 4. Experimental framework: this chapter characterises the general
experimental framework used in this dissertation. First, a description is presented
for the different datasets used in the experiments of this PhD thesis. Then, an
overview of the possible evaluation methods and metrics for audio segmentation
is provided.

• Chapter 5. Convolutional recurrent neural networks for speech activity
detection: the work presented in this chapter explores the use of convolutional
recurrent neural networks (CRNN) in the SAD task. Several alternatives are eval-
uated using a variety of convolutional processing stages. A novel architecture is
proposed in order to fuse information captured by 1D and 2D convolutional filters.
Models presented were used to participate in the Fearless steps challenge 2020,
featuring a dataset coming from Apollo space missions.

• Chapter 6. Unsupervised domain adaptation of speech activity detection
models: deep learning solutions usually show a significant drop in performance
when test data are different from training data due to the domain shift observed.
Furthermore, machine learning algorithms require large amounts of labelled data,
which may be hard to obtain in real applications. Considering both ideas, in this
chapter we consider different unsupervised domain adaptation techniques in order
to be applied to the SAD task. A baseline system is trained on a combination of
data from different domains and then adapted to a new unseen domain, namely,
data from Apollo space missions coming from the Fearless steps challenge 2020.

• Chapter 7. Self-supervised representation learning for speech activity de-
tection: influenced by the great results obtained in several speech processing tasks
by self-supervised representation learning systems, and building upon our previ-
ous work in Chapter 5, in this chapter we propose the introduction of the self-
supervised representation learning paradigm in the SAD task in order to obtain
new features from audio signals more discriminative than traditional perceptual
features. This approach is evaluated in the datasets released for the 2021 and 2022
versions of the Fearless steps challenge, focused on testing system generalisation
capabilities to varying data conditions.

• Chapter 8. Recurrent neural networks for multiclass audio segmentation:
in this chapter, we introduce an approach based on the use of recurrent neural net-
works to the multiclass audio segmentation task whose goal is to separate audio
fragments containing speech, music, noise or a combination of those. We explore
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different neural architectures introducing temporal pooling layers to reduce the
neural network output sampling rate. This new architecture is also combined with
mixup augmentation, a data-agnostic data augmentation technique. The described
proposal is evaluated in both the Albayzín 2010 and 2012 audio segmentation eval-
uation datasets

• Chapter 9. Wav2vec representation learning for multiclass audio segment-
ation: Considering the previous experiments presented in Chapter 7 as starting
point, the work presented in this chapter describes a study on the use of new self-
supervised representation architectures seeking to jointly model speech and music
fragments of audio signals in the multiclass audio segmentation task introduced in
the previous chapter. Different data conditions and data augmentation policies are
considered in order to maximise the performance of the obtained representations
to describe both speech and music fragments simultaneously.

• Chapter 10. Binary AUC optimisation for audio segmentation: motivated
by recent advances in metric learning, in this chapter we introduce the area under
the receiver operating characteristic (ROC) curve (AUC) and partial AUC (pAUC)
loss functions into the audio segmentation field to improve its performance under
limited training data conditions. The work presented explores different threshold-
independent metric training objectives in a binary audio segmentation task. Fur-
thermore, we propose a novel training objective based on the decomposition of the
AUC as the sum of two pAUCs.

• Chapter 11. Generalising AUC optimisation to multiclass classification: as
a natural extension of the work presented in the previous chapter, in this chapter
we propose a generalisation of the AUC optimisation techniques so that they can
be applied to an arbitrary number of classes. This is done using the multiclass
variations of the AUCmetric proposed on the literature as the starting point for the
formulation of the training objectives. Our proposal is validated experimentally in
a 3 class segmentation task, seeking to overcome the issues derived from a limited
training data scenario.

• Chapter 12. Conclusions & future lines: This final chapter describes the main
conclusions extracted from this thesis dissertation and a proposal of future research
lines.
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2.1 What is audio segmentation?

According to the Cambridge English dictionary, segmentation can be defined as the
division of something into smaller parts. Adapting this definition to the the con-

text of this dissertation, audio segmentation could be defined as the division of an audio
signal into smaller fragments according to a predefined set of rules so that each fragment
contains only information from an specific audio typology. This definition is really wide
and it includes a variety of systems depending on the set of rules used to separate the au-
dio signal. The specifications provided in the set of rules will define the different acoustic
classes that the audio signal will be divided into. Furthermore, the information provided
by each acoustic class will also depend on the set of rules applied.

Considering the description provided, a generic audio segmentation system receives
as input an audio signal and, after performing the needed computations, it generates a set
of labels representing the obtained fragments as output. These labels indicate start time,

11
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Class A Class B Class C Class B

Figure 2.1: Schematic representation of a generic audio segmentation system output on top of a waveform.

end time and the corresponding acoustic class for each fragment. Figure 2.1 represents
graphically this idea, by showing the output of a generic audio segmentation with three
classes (A, B and C) synchronised with the input audio signal.

Suppose an example where a system is needed to separate male and female speech
in an audio stream. An audio segmentation system working under this set of rules will
need to differentiate three acoustic classes: male speech, female speech and non-speech.
Suppose now that the system also needs to differentiate adult speech and children speech.
In this scenario, an audio segmentation system will operate with five acoustic classes:
adult male speech, children male speech, adult female speech, children female speech
and non-speech. According to the example provided, it becomes apparent that one of the
main differences between audio segmentation systems comes from the acoustic classes
that must be differentiated. By increasing the number of classes in the system, acoustic
classes become more specific but audio segmentation is generally harder, as it is the case
with all multiclass classification problems [7].

The final purpose of an audio segmentation system depends then on the acoustic
classes considered. Due to its relevance, some audio segmentation tasks that deal with
certain acoustic classes are named under an specific denomination:

• Speech activity detection (SAD) [8]: SAD systems perform a binary segmenta-
tion whose target is to discriminate audio segments containing human speech.

• Music detection [9]: In a similar task to SAD but considering music instead of
speech, music detection systems aim to separate music and non-music audio frag-
ments.

• Speaker diarisation [10]: the aim of speaker diarisation is to segment an audio
signal so that different speakers can be separated. In this case, one acoustic class
per speaker is needed.
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In addition, in this work we present an audio segmentation task that could be seen as a
combination of SAD and music detection with a third class modelling noise. This task,
proposed originally in the Albayzín 2010 challenge [11], aims to detect segments con-
taining music, noise, speech or a combination of the three. A more detailed description
of this task will be provided in Chapter 4.

In this dissertation, we use the concept “audio segmentation” to refer to the described
task. However, some other notations can be found in the literature for similar tasks. For
example, the concept “sound event detection” (SED) [12] is also used to describe tasks
that have a similar goal of recognising at what temporal instances different sounds are
active within an audio signal. Unlike audio segmentation, in general terms, SED systems
tend to deal with non-speech and non-music sounds [13]. This makes these systems
differentiate from more established speech and music analysis tasks, towards the field of
environmental sound analysis.

Other terminologies associatedwith audio information extraction tasks such as “acous-
tic scene classification” [14] or “audio tagging” [15] strongly differ with the task we refer
to as audio segmentation due to the use of weak labels as output. Weak labels only inform
about the presence of an acoustic class in the whole input audio, without providing start
or end times for that acoustic class. Labels used in audio segmentation are considered
as strong labels because the annotation contains temporal information for each acoustic
class, namely its start and end times.

2.2 Paradigms in audio segmentation

Most literature reviews on audio segmentation tend to differentiate two paradigms ac-
cording to how the segmentation is performed: the segmentation & classification ap-
proach and the segmentation by classification approach [16]. The first approach can also
be described as distance based segmentation due to the use of a distance metric to com-
pute class boundaries. Obtained segments are then classified in a posterior stage. On
the other hand, the second approach obtains its segmentation hypothesis directly as a
sequence of decisions over the input audio. In the following lines a more detailed de-
scription for both paradigms is provided:

2.2.1 Segmentation & classification

Segmentation & classification algorithms compute ametric between two audio fragments
with the objective of deciding if an acoustic class change occurs between both fragments.
That is the reason why they are also known as distance based audio segmentation meth-
ods. These kind of systems separate fragments sharing a common acoustic class without
providing an explicit labelling for them. Suppose two audio segments 𝑖 and 𝑗 with feature
sequences 𝑋𝑖, 𝑋𝑗 of length 𝑁𝑖 and 𝑁𝑗 respectively. In some approaches, a third audio seg-
ment can be generated by concatenating 𝑖 and 𝑗 , with a feature sequence 𝑋𝑖𝑗 = {𝑋𝑖 ∪ 𝑋𝑗 }.
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According to the provided definitions, a distance based segmentation system can gener-
ate two different hypotheses:

• Hypothesis 𝐇𝟎, or null hypothesis, affirming that segments 𝑖 and 𝑗 belong to the
same acoustic class.

• Hypothesis𝐇𝟏, or alternative hypothesis, affirming that a change in acoustic class
exists between segments 𝑖 and 𝑗 .

Therefore, the main goal of segmentation & classification methods is finding a distance
𝐷(𝑖, 𝑗) between segments 𝑖 and 𝑗 in order to determine wich one is the correct hypothesis
𝐻0 or 𝐻1. The metric obtained will be compared with a threshold 𝜖 to select one of the
two hypotheses, as shown in Equation (2.1)

𝐷(𝑖, 𝑗)
𝐻1
≷
𝐻0

𝜖 . (2.1)

The application of this strategy over consecutive audio frames may lead to a noisy
estimation of changes in the acoustic class. In order to improve the accuracy, distance
is usually computed using a window considering 𝐿 frames from the audio signal. As a
final remark, it is worth mentioning that distance based segmentation systems provide as
output a set of segments that do not belong to any specific acoustic class. An additional
processing step will be needed in order to assign a class to each one of the segments.

Distance metrics

A number of distance criteria can be found in the audio segmentation literature. In the
following lines we describe the most widespread metrics applied in segmentation & clas-
sification approaches:

• Bayesian information criterion (BIC) [17]: This metric assesses the goodness
of fit of a given statistical model considering its complexity measured in number of
parameters. Given a set of samples 𝑋 obtained from a random process and a model
𝜃 describing these samples, BIC can be defined according to Equation (2.2)

BIC(𝑋 |𝜃) = log (L(𝑋 |𝜃)) − 𝜆
1
2
#(𝜃) log𝑁 . (2.2)

The first term of the equation represents the log likelihood of the data 𝑋 given the
model 𝜃. The second term aims to penalise the considered model 𝜃 according to its
complexity. #(𝜃) represents the number of free parameters of the model 𝜃 and 𝜆 is
a modifiable weight for the penalisation term.
BIC can be easily applied to determine if a change in acoustic class occurs between
two segments 𝑖 and 𝑗 . Two BIC values need to be computed: a first value consid-
ering hypothesis 𝐻0, where both segments can be correctly described by a single
model 𝜃𝑖𝑗 , and a second value that assumes hypothesis 𝐻1, where data from each
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segment should be explained by a different model, 𝜃𝑖 and 𝜃𝑗 , respectively. To obtain
a distance metric, the difference between both values is computed, obtaining what
is usually known as ΔBIC [18], as described in Equation (2.3)

ΔBIC(𝑋) = BIC(𝑋 |𝐻1) − BIC(𝑋 |𝐻0) . (2.3)

As some examples of application of this metric, the work described in [19] applies a
ΔBIC segmentation to separate languages in a multilingual audio stream. Authors
in [20] use BIC applied to the speaker change detection task.

• Generalised likelihood ratio (GLR) [21]: Given the already presented two audio
segments 𝑋𝑖, 𝑋𝑗 and the concatenation of both 𝑋𝑖𝑗 , this metric is calculated as the
likelihood ratio between hypothesis 𝐻0, with both segments belonging to the same
class, and hypothesis𝐻1 where segments are assumed to belong to different classes.
Equation (2.4) shows the computation performed to obtain the GLR metric:

GLR(𝑋) =
L(𝑋𝑖𝑗 |𝐻0)
L(𝑋𝑖𝑗 |𝐻1)

=
L(𝑋𝑖𝑗 |𝜃𝑖𝑗 )

L(𝑋𝑖𝑗 |𝜃𝑖)L(𝑋𝑖𝑗 |𝜃𝑗 )
, (2.4)

where L(𝑋 |𝜃) represents the likelihood of data 𝑋 given a model 𝜃.
GLR distance has been applied in different works. For example, the use of GLR
is proposed in [22] to separate speakers in an audio stream. A variation on the
GLR metric is used to perform online speaker segmentation and polyphonic music
segmentation in [23].

• Others: some other examples of distance metrics can be found in the literature.
The use of self-similarity matrices is proposed in [24] to perform media segment-
ation. The work presented in [25] uses cosine distance in combination with self-
similarity analysis to detect music and speech transitions. Authors in [26] use the
symmetric Kullback-Liebler distance as a first preprocessing step in order to evalu-
ate acoustic similarity. More recent work has introduced the use of neural distance
metrics, such as the one proposed in [27] for speaker change detection, or the audio
novelty measure described in [28] using an autoencoder architecture.

2.2.2 Segmentation by classification

In contrast to distance based audio segmentation systemswhere only boundaries between
segments are detected, the segmentation by classification approach classifies each audio
frame as belonging to one specific acoustic class. This classification is performed accord-
ing to a model that contains a priori information representing each acoustic class. Due to
the use of these models, the segmentation by classification paradigm can be also referred
to as model based segmentation.

One of the main characteristics of model based segmentation systems is that they
have two different working phases. First, in the training phase, the system adjusts its
parameters in order to describe the a priori distribution of the available data. Once this



16 Chapter 2. State-of-the-art in audio segmentation

process is over, the system can operate in inference mode. In this phase, new unseen data
is presented to the systemwith the objective of obtaining an estimation of the most likely
acoustic class using the information learned in the training phase. Several modelling
approaches have been applied in the context of audio segmentation. In the following
lines a description is provided for some of the most common modelling techniques used
in audio segmentation tasks:

• Gaussian mixture model (GMM): a Gaussian mixture model represents a prob-
ability distribution obtained through the weighted sum of different Gaussian distri-
butions. GMMs were widely adopted as an efficient way of modelling multimodal
distributions. Given a feature vector 𝑥 , the probability distribution for a GMM can
be defined according to Equation (2.5):

𝑃(𝑥|𝜆) =
𝐾

∑
𝑘=1

𝜔𝑘N(𝑥|𝜇𝑘 , Σ𝑘) , (2.5)

where 𝐾 is the number of components in the mixture and 𝜆 = {𝜔, 𝜇, Σ} is the set of
parameters of the model. For these parameters, 𝜔𝑘 , 𝜇𝑘 , Σ𝑘 represent, respectively,
the weight, the mean and the covariance matrix of component 𝑘 from the mixture.
A number of examples of the use of GMMs on audio segmentation tasks can be
cited. In [29], a GMM classifier is used to perform real time speech and music
segmentation. GMMs are used together with a maximum entropy classifier in [30]
to separate speech and non-speech frames in YouTube videos.

• HiddenMarkovmodels (HMM): a Markov chain models a state sequence where
the state transition probability depends exclusively on the previous state. In the
context of HMMs, this idea is further evolved in order to model stochastic se-
quences as Markov chains. In this case, the sequence of states is not directly ob-
servable, only the output of the stochastic processes for each state can be observed.
Due to the use of these models done in part of the experiments described in this
dissertation, a more detailed explanation of HMMs is provided in Section 3.3.
HMMs have been applied to audio segmentation for different purposes. Authors
in [31] presented a hierarchical approach to the separation of speech, music and
different environmental sounds. The system presented in [32] applied an HMM
classifier to discriminate speech and music excerpts. Something similar is done
in [33], that proposed the use of wavelet features as input to an HMM system.

• Joint factor analysis (JFA) [34]: JFA is a statistical technique used in signal pro-
cessing and machine learning for analysing multivariate data sets. The JFA model
assumes that each observation can be represented as a combination of factors,
where the factors are shared across multiple datasets. By jointly modelling the
distribution of the datasets, JFA is able to capture the underlying structure and re-
lationships between the variables. The choice of the basic underlying statistical
distribution depends on the specific characteristics of the data and the require-
ments of the application, but it is often based on GMMs. Under this consideration,
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a GMM is estimated for each target class. These models are usually obtained by
maximum a posteriori (MAP) adaptation of a universal background model (UBM)
that represents the distribution of all possible feature vectors that might be en-
countered in a given application. The means for all the components of the adapted
GMMs are concatenated to obtain high dimensionality supervectors that can be
decomposed into a number of different parts that represent the different sources
of variability in the data under analysis. JFA uses a number of hidden variables
that tie together the means of the Gaussians in the adaptation process [35]. Then,
the supervector 𝑀𝑖𝑠 for an audio segment belonging to class 𝑖 and with session
conditions 𝑠 is decomposed according to Equation (2.6):

𝑀𝑖𝑠 = 𝑚 + 𝑉𝑦𝑖 + 𝑈𝑥𝑠 + 𝐷𝑧 , (2.6)

where 𝑚 is the UBM means supervector, 𝑉𝑦𝑖 is the term modelling the interclass
variability through a low rank matrix 𝑉 and the vector 𝑦𝑖 associated with the class
identity 𝑖. Term 𝑈𝑥𝑠 is used to model the session variability through a low rank
matrix 𝑈 and the vector 𝑥𝑠 associated with session conditions 𝑠. Finally, term 𝐷𝑧
aims to model residual variability that could not be captured by the class and ses-
sion terms. This is usually done through a diagonal matrix 𝐷 and the residual
variability vector 𝑧.
JFAmodels were initially developed for the speaker identification and speaker veri-
fication tasks [36] [37], yet they have also been applied successfully in audio seg-
mentation tasks in broadcast data environments [38] [39].

• Neural networks: A neural network is a computational learning system that uses
a network of functions to understand and convert a set of inputs of one form into a
desired set of outputs, usually in another form. All the audio segmentation experi-
ments described in this dissertation have been performed using neural networks as
the main element of the system. Due to its relevance for this work, a more detailed
explanation on the different neural network architectures and the different learn-
ing methods will be provided on Section 3.2. Furthermore, an extensive review of
the state-of-the-art of neural network systems and deep learning methods in audio
segmentation tasks is presented in Section 2.3.

• Others: More algorithms and pattern recognition techniques have been applied to
the audio segmentation task. Some examples can be cited such as support vector
machines (SVM) [40], decision trees [41], or fuzzy logic [42].

2.3 Deep learning for audio segmentation

Since the early 2010s, scientific community has experienced the exponential growth of
neural networks and deep leaning applications due to the advances in hardware and the
higher availability of data for training. These models have been increasingly applied in
audio and speech processing tasks, gradually replacing previous approaches based on
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statistical methods. The audio segmentation field has also been influenced by the irrup-
tion of deep learning, with most segmentation by classification systems moving towards
these kind of models. Intial neural network models for audio segmentation were based
on feed forwards neural networks. Research in [26] presents a multilayer perceptron
classifier integrated in a system that combines SAD, speaker segmentation and cluster-
ing. Authors in [43] use a multilayer perceptron to detect speech segments seeking to
improve the performance in a speaker verification task. A multilayer perceptron model
is implemented to discriminate speech and music fragments in [44].

Recurrent neural networks and convolutional neural networks

Feed forward neural networks show strong limitations to capture temporal dependen-
cies. Recurrent neural networks solve this issue by introducing a feedback loop between
the input and the output of the system. These networks have been applied successfully
in several audio processing tasks including audio segmentation. In particular, several
examples applying LSTM networks can be found in the literature. The first approach
to SAD using LSTM networks was presented in [45], where authors demonstrated the
feasibility of this approach in a real-life noisy speech from Hollywood movies. A similar
neural architecture is used in [46] to implement a noise-robust vowel based SAD. Further-
more, GRU networks, a lightweight version of the LSTM network, have also been applied
to audio segmentation. Authors in [47] analyse the results of a phoneme segmentation
system based on GRU cells. The work presented in [48] applied a GRU model to perform
singing voice detection.

Convolutional neural networks (CNN), commonly related to the image processing
field, were also progressively introduced in different audio processing task with signific-
ant results. These kind of models usually rely on time versus frequency representations
of the audio signal that are treated as channels in an analogy with image processing sys-
tems. Audio segmentation literature also relates several segmentation by classification
approaches that are based on these architectures. A fully convolutional architecture is
presented in [49] for simultaneous speech andmusic segmentation. A CNNmodel featur-
ing kernels based on the Mel scale is used for the music detection task in [50]. Similarly,
the work described in [51] separates speech and music in audio streams using a CNN
trained in a semi-supervised way. Concerning the SAD task, authors in [52] evaluate a
CNN system in mismatched acoustic conditions. CNNs are also typically used to auto-
matically learn and identify important features from audio signals [53] [54]. In this con-
text, an observed common practice in the literature is to combine convolutional blocks
that can learn relevant information from data, with the capability of RNNs to deal with
temporal series. These models are usually known as convolutional recurrent neural net-
works (CRNN) and have also been applied in several audio segmentation tasks. Authors
in [55] compared different deep learning models for audio segmentation, demonstrating
the good performance of CRNNmodels in a speech versus music separation task. Results
described in [56] show a similar trend, with CRNNs outperforming other models for both
speech and music detection. The system employing CRNNs presented in [57] ranked first
among all submissions to the 2019 Fearless steps challenge SAD task.



2.3 Deep learning for audio segmentation 19

A unified approach seeking to combine low level features from CNNs and high level
temporal representations from RNNs was presented with the temporal convolution net-
works (TCN) [58]. These models were initially proposed for activity segmentation in
video processing applications, but they have been widely adopted in audio processing
and, specifically, in audio segmentation. The study presented in [59] extends TCN mod-
els to also capture non causal dependencies within the framework of speech and music
detection for broadcast content. A residual TCN model is applied to estimate music re-
lative loudness in [60]. Research described in [61] uses a TCN model to jointly perform
sound event detection and direction of arrival estimation.

Attention and self attention models

The introduction of attention in sequence modelling architectures [62], originally pro-
posed formachine translation, solved the problem of capturing alignments between input
and output sequences in the common encoder-decoder architecture. RNNs were com-
bined with these attentionmodels seeking to let the network infer how each output token
is influenced by some specific parts of the input sequence. Some examples can be cited
of the use of attention models in audio segmentation. For instance, attention is applied
in [63] in combination with an LSTM network for the SAD task. Heart sounds are seg-
mented bymeans of a bidirectional LSTMnetworkwith an attentionmodule in [64]. Both
a temporal and a frequential attention model are implemented in [65] to segment rare oc-
curring sounds in audio recordings. As a further step, the presentation of the transformer
architecture [66] in the deep learning community shifted research efforts in audio pro-
cessing towards purely self attention based models. These kind of models are also being
introduced in audio segmentation tasks. In most audio segmentation works using self
attention mechanisms, it is usual to discard the decoder block from the original trans-
former architecture, finding one or more transformer encoder blocks. Concerning the
SAD task, the multihead self attention mechanism is used in [67] to detect speech frag-
ments in noisy conditions. Work in [68] splits acoustic features into patches to further
introduce locality to the transformer architecture. Transformers have also been applied
in the speaker diarisation task, with special relevance in end-to-end approaches [69].

Unsupervised feature representation and self-supervised learning

In recent years, audio and speech research landscape has been disrupted by the advances
in unsupervised and self-supervised representation learning [70] [71]. These models be-
nefit from huge amounts of unlabelled data in order to obtain new audio representation
that can later be applied in different specific applications. Motivated by the good perform-
ance observed across several speech processing tasks, some researchers are starting to
apply these models to audio segmentation applications. WavLM features are considered
in [72] to detect overlapped speech fragments and separate male and female speech. Au-
thors in [73] tested self-supervised representations for the SAD task under domain shift
conditions. A representation learning algorithm is combined with a clustering algorithm
to improve diarisation performance in [74]. Even tough, the amount of work considering
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these new representations is still limited in the audio segmentation field. Furthermore,
most works are limited to speech related tasks, with few systems using them in more
general audio segmentation tasks.

Multimodality in deep learning models

In addition to unsupervised and self-supervised learning, multimodality is also playing
a key role in the development of recent deep learning models. A number of works aim
to integrate different modalities apart from audio in a single unified model so that it can
benefit from this additional information. Considering those that combine audio with
image or video information, authors in [75] introduced the audiovisual segmentation
task, where the goal is to generate a pixel segmentation of the object that produces the
sound. Similarly, audiovisual diarisation seeks to separate an stream according to differ-
ent identities by marked by face and speech information. Several research works have
been developed recently targeting this task [76] [77]. Concerning the combination of
audio and text modalities, SAMU-XLSR model [78] seeks to describe audio and text in
a single multimodal and semantically aligned space. Other works have also developed
methods to unify representations from speech and text modalities [79] [80]. Some works
have also explored more complex combinations, bringing together audio, text and image
modalities [81].
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Designing an audio segmentation system requires considering two main issues: de-
ciding how to represent the raw audio signal in themost appropriate way, and then,

given the provided representation, finding a way to properly model the information con-
tained in the feature sequence. According to the information extracted from that model,
a decision on the segmentation is given. The first idea presented is usually known as fea-
ture extraction and it is the first block in most conventional audio segmentation systems.
For the second issue presented, audio segmentation systems based on the segmentation
by classification approach rely on a classifier. These kind of systems need a training phase
where the most relevant information from the feature sequences is extracted and used to
adjust the parameters of the classifier underlying model.

In this section, we provide a review on some of of the most well-known methods for
feature extraction and sequence modelling that are relevant for this dissertation. For fea-
ture extraction, we mainly focus on the description of short-term analysis and some sets
of features used in this work such as those based on Mel filter-banks and chroma fea-
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tures. Concerning sequence modelling, we provide an overview of the neural network
classifiers, ranging from the different architectures employed, to some of the most relev-
ant techniques. This family of classifiers have been the main element for all the audio
segmentation systems developed in this work. Furthermore, we also provide a descrip-
tion of another sequence modelling method, the hidden Markov models, that is used as
a smoothing technique in some parts of this dissertation.

3.1 Feature extraction

Feature extraction is usually defined as the set of transformations applied to a dataset in
order to maximise its discriminative properties, seeking to adapt this data in the most
suitable format for the task that is going to be performed. Audio signals are usually
considered to be non stationary signals. That is the reason why all the common feature
extraction techniques applied in the audio processing field rely on the use of short-term
analysis. The use of short temporal windows (25 - 50 ms) allows to assume a quasi-
stationary behaviour. The general description for short-term analysis is shown in Equa-
tion (3.1):

𝑄𝑛 =
∞

∑
𝑘=−∞

𝑇 (𝑥[𝑛]𝑤[𝑛 − 𝑘]) , (3.1)

where 𝑥[𝑛] is the audio signal being analysed, 𝑤[𝑛] is the 𝐾 samples length window
applied to the signal, and 𝑇 (⋅) is the transformation performed. Some of the most com-
mon transformations applied are the Fourier transform, Mel filter-bank energies, Mel
frequency cepstrum coefficients (MFCC) [82], or perceptual linear prediction (PLP) [83].

3.1.1 Perceptual features: MFCCs and Mel filter-bank energies

In the following lines we provide a more detailed description for MFCCs and Mel filter-
bank energies. These two transformations have been used in several task among the
speech and audio processing community, becoming one of the most common choices for
feature extraction in these kind of signals. Both transformations are derived from the
concept of cepstral analysis. A brief introduction to this topic is also provided.

Cepstral analysis is a common processing technique for speech signal representation.
The most interesting property of cepstral analysis is the fact that it transforms a convolu-
tion in the temporal domain into a sum in the cepstral domain, as shown in Equation (3.2):

𝑥1[𝑛] ∗ 𝑥2[𝑛]
cepstrum
======⇒ 𝑥1[𝑛] + 𝑥2[𝑛] . (3.2)

A common framework for modelling a speech signal is considering a signal, 𝑣[𝑛], as an
excitation 𝑒[𝑛] being convolvedwith a filter, ℎ[𝑛], that represents the vocal tract, resulting
in 𝑣[𝑛] = 𝑒[𝑛] ∗ ℎ[𝑛]. By applying the mentioned cepstral analysis techniques, this
becomes 𝑣̂[𝑛] = 𝑒[𝑛] + ℎ̂[𝑛] in the cepstral domain, resulting in a representation that can
be manipulated in a simpler way.
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Let 𝑥[𝑛] be the audio signal being analysed, the complex cepstrum of 𝑥[𝑛] can be
defined according to Equation (3.3):

𝑥̂[𝑛] =
1
2𝜋 ∫

𝜋

−𝜋
ln (𝑋(𝑒𝑗𝜔𝑛))𝑒𝑗𝜔𝑛𝑑𝜔 , (3.3)

where𝑋(𝑒𝑗𝜔𝑛) is the Fourier transform of 𝑥[𝑛]. Therefore, the complex cepstrum of 𝑥[𝑛] is
defined as the inverse Fourier transform of the natural logarithm of the Fourier transform
of 𝑥[𝑛]. In audio signals, most relevant information is usually in themodulus of its Fourier
transform, that is why phase information is sometimes discarded. In order to consider
this fact, Equation (3.4) describes the expression of the real cepstrum that only considers
the magnitude information of the Fourier transform.

𝑐[𝑛] =
1
2𝜋 ∫

𝜋

−𝜋
ln (|𝑋(𝑒𝑗𝜔𝑛)|)𝑒𝑗𝜔𝑛𝑑𝜔 . (3.4)

MFCCs are based on the Mel frequency scale. This scale represents the frequency
axis linearly up to 1000 Hz and in a logarithmic way from that point on. This scale is
derived from the human audition perception model, whose frequency discrimination is
bigger for low frequencies than for high frequencies [84]. Conversion from the linear
frequency scale obtained by the Fourier transform is performed by appling a filter-bank
with a narrow bandwidth for low frequencies and a wider bandwidth for high frequen-
cies. An example of a typical Mel scale filter-bank is depicted in Figure 3.1. This particular

Figure 3.1: Example of a typical filter-bank used for conversion to Mel scale spectrogram.

configuration uses 20 Mel filters and a sampling rate of 16 kHz. In order to obtain the
Mel scaled spectrogram the Fourier transform magnitude is forwarded through each one
of the filters. Then the average energy is computed for the output of each filter. As a
last step to obtain the MFCC features, the discrete cosine transform (DCT) is applied.
This transformation is used mainly seeking to obtain a decorrelated set of features. Ac-
cording to the provided explanations, Figure 3.2 shows the block diagram for MFCCs
feature extraction. By applying a similar processing pipeline but considering the output
one step before applying the DCT, another set of features based on the Mel perceptual
scale can be obtained. These features are usually known as Mel filter-bank energies. The
main difference observed with MFCCs is that, by not applying discrete cosine transform,
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𝑥[𝑛]
FFT(⋅) Abs(⋅) Mel filter-bank ln(⋅) DCT

𝑐[𝑘]

Figure 3.2: Block diagram for Mel frequency cepstrum coefficients feature extraction.

the correlation among coefficients is preserved. The block diagram associated with Mel
filter-bank coefficients extraction is depicted in Figure 3.3.

𝑥[𝑛]
FFT(⋅) Abs(⋅) Mel filter-bank ln(⋅)

𝑏[𝑘]

Figure 3.3: Block diagram for Mel filter-bank coefficients feature extraction.

Seeking to represent in an accurate way temporal variations on the input signal, first
and second derivatives of the cepstral parameters are usually computed and concatenated
to the static coefficients. In a similar way, input signal energy is also useful for the feature
extraction pipeline and can also be concatenated to the original features to provide more
information.

3.1.2 Chroma features

Part of the work described in this manuscript is based on the detection and segmentation
of music or a combination of music with different acoustic classes. Mel based features
have also been successfully applied in a number of music related task, but when consid-
ering the representation of audio signals with musical content there exist other options
that can capture its intrinsic properties in a better way. One of the most common repres-
entation it is the chromagram [85] [86], describing the temporal evolution of the chroma
features in an audio signal.

The theoretical basis of chroma features is that human perception of pitch is peri-
odic. This means that two pitches are perceived as similar if they differ by an octave.
According to this idea, a pitch can be then separated in two components, which we refer
to as tonal height and chromatic component [87]. Assuming the equal-tempered scale as
used in Western music notation, chroma components are usually associated to the set {C,
C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B} that consists of twelve different pitch spelling attrib-
utes1. Under this representation, chroma and height can be described according to the
frequency helix model, shown in Figure 3.4.

Chroma features combine the information belonging to a chroma component for all
the possible tonal heights. Therefore, a chroma feature is a 12-dimensional vector, one
for each chroma component. By performing this process for all the audio signal, through

1In the equal-tempered scale, different spellings of the same pitch such as F♯ or G♭ identify the same chroma
component.
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Figure 3.4: Height and chroma components representation in the frequency helix model.

short-time analysis, a sequence of coefficients is obtained that expresses how the energy
is spread across the 12 chroma components defined.

The property of identifying pitches differing by an octave is what makes chroma fea-
tures highly robust to variations in timbre, showing a strong correlation with the musical
aspect of harmony. That is the reason why chroma features have been applied in several
musical information retrieval tasks such as chord recognition [88] or synchronisation of
musical sequences [89].

3.2 Neural networks

Neural networks describe a computation paradigm based on learning non linear trans-
formations of the input through examples. Neural network parameters are then modified
consequently according to the information provided by those examples. The concept of
neural network is not novel, in fact, first models were introduced in the forties [90]. Most
algorithms and techniques related with this field were developed in the seventies and in
the eighties. However, scientific community had to wail until around year 2010 in order
to be able to benefit from the full potential of neural networks. This was mainly due
to important advances in hardware and the bigger availability of data needed for train-
ing. Neural networks became state-of-the-art in many pattern matching fields such as as
computer vision [91] or automatic speech recognition [92].
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3.2.1 Neural network architectures

Feed forward neural network

The term feed forward is normally used to refer to themost basic neural network architec-
ture. Unlike more complex architectures, in this kind of systems there is no feedback loop
between the input and the output. Feed forward networks are also called perceptrons or
multilayer perceptrons (MLP) in case the system has multiple layers stacked. Some other
notations based on its connectivity structure refer to them as dense or fully connected
networks.

Feed forward neural networks are built by combining a number of basic processing
units called neurons. Figure 3.5 represents one of these basic neurons. As it can be seen, it

𝑥1

𝑥2

𝑥𝑛

..
. Σ

−1

𝑓 (⋅) 𝑦

𝑤1

𝑤2

𝑤𝑛

𝜃

ℎ

Figure 3.5: Basic neuron processing unit in a neural network.

receives 𝑛 different inputs, 𝑥𝑗 , that may come from an external source or from the output
of a previous neuron. Then, a linear combination of the inputs is performed with a set of
weights, 𝑤𝑗 , considering also a constant term 𝜃 in this combination. This term is usually
known as bias. This leads to the expression for the term ℎ described in Equation (3.5):

ℎ(𝑥, 𝑤, 𝜃) =
𝑛

∑
𝑖=1

𝑤𝑖𝑥𝑖 − 𝜃 . (3.5)

The final output of the neuron, 𝑦, is obtained by applying the function 𝑓 (⋅) to the term ℎ,
as expressed in Equation (3.6):

𝑦 = 𝑓 (ℎ) = 𝑓
(

𝑛

∑
𝑖=1

𝑤𝑖𝑥𝑖 − 𝜃
)

. (3.6)

For simplicity, matrix notation is commonly used to describe this expression. Assuming
a vector 𝐗 = {𝑥1, 𝑥2, ... , 𝑥𝑛} representing the inputs, and a vector 𝐖 = {𝑤1, 𝑤2, ... , 𝑤𝑛}
representing the weights, a compact expression of the basic neuron in matrix format is
shown in the following equation:

𝑦 = 𝑓 (𝐗𝐖𝑇 − 𝜃) . (3.7)

The function 𝑓 (⋅) applied over the weighted average of the input is defined as activation
function. Several implementations for this function can be found in the literature, all
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of them sharing the non linear behaviour. Two of the most widespread options are the
sigmoid function and the hyperbolic tangent function.

The union of several basic neurons builds a neural network. Figure 3.6 shows an
example multilayer perceptron architecture with a single hidden layer. As it can be seen,

Figure 3.6: Multilayer perceptron with a single hidden layer.

neurons work in parallel forming layers and computing its outputs. These outputs may
serve as input to the next layer, showing a dense interconnection where the output of a
neuron in the layer 𝑖 serves as input for all the neurons in the layer 𝑖 + 1. Furthermore,
Figure 3.6 serves also to illustrate the different kinds of layer forming a neural network.
Neurons in red represent the input layer, while neurons in blue are associated with the
output layer. Neurons in green form a hidden layer. The amount of hidden layers in a
neural network defines its modelling capabilities and its complexity.

The introduction of supervised learning techniques allowed for the effective applica-
tion of neural networks in real solutions. Two main components need to be introduced:
gradient descent optimisation techniques that iteratively update the model weights ac-
cording to an objective function, and the backpropagation algorithm to efficiently calcu-
late the gradients in complex architectures. Due to the relevance of this topic for all the
neural network architectures explained in this section, a more detailed explanation for
supervised learning techniques is provided in Section 3.2.2.

Recurrent neural networks

Recurrent neural networks (RNN) are a special kind of neural network that are able to
model temporal dependencies by introducing feedback loops between the input and the
output of the network. Figure 3.7 shows a general representation of a recurrent neural
network, describing the two possible ways to interpret its way of working. On the left,
we can see the already mentioned concept of an RNN being described using a feedback
loop between the input and the output. On the right part of the figure, an equivalent
version can be observed with the RNN being described as multiple copies of a neural
network, each one of them passing a message to the next one. This idea is based on one
of the commonly used algorithms for training RNNs, known as backpropagation trough
time (BTT) [93].
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Figure 3.7: General representation of a recurrent neural network. Adapted from [94]

Despite recurrent neural networks being able to capture long-term dependencies the-
oretically, this does not occur in practice. It has been demonstrated that they suffer from
a number of problems associated to gradient computation such as vanishing gradient and
exploding gradient [95]. That is the reason why several improved versions of the basic
RNN model were developed to address this issue. One of the most widespread variants is
the long short-term memory (LSTM) network, whose main difference is the introduction
of a new structure known as memory cell.

Long short-term memory networks LSTM networks [96] are an evolution over the
basic RNN model that are able to capture simultaneously long and short term depend-
encies on an input sequence. Compared to the basic RNN, this kind of model shows a
significant increase in computational complexity. LSTM networks compute several in-
terconnected intermediate steps in an specific structure, the LSTM memory cell. Figure
3.8 shows the definition of the mentioned LSTM memory cell.

𝜎𝐟𝐭 𝜎
𝐢𝐭
tanh 𝜎

× +

× ×

tanh
𝐨𝐭

𝐶𝑡−1

ℎ𝑡−1

𝑥𝑡

𝐶𝑡

ℎ𝑡

𝑦𝑡

Figure 3.8: Overview of an LSTM memory cell structure. Adapted from [94]

The key element of LSTMnetworks is the cell state (𝐶𝑡 ), a memory unit that is propag-
ated through time. LSTM networks are able to modify this cell state, adding or removing
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information, by applying an specific structure usually named as gate. These gates are
built using a neural layer with sigmoid activation (output between 0 and 1). An LSTM
memory cell is made of three different gates:

• Forget gate (𝐟𝐭): this gate combines information from the current input, 𝑥𝑡 , and
the previous output, ℎ𝑡−1, in order to decide the amount of information from the
previous cell state, 𝐶𝑡−1, that must be removed.

• Input gate (𝐢𝐭): this gate updates the current cell state, 𝐶𝑡 , deciding the amount of
information from the current input, 𝑥𝑡 , that is included in the memory cell.

• Output gate (𝐨𝐭): this gate generates the current output of the memory cell by
calculating a filtered version of the cell state, 𝐶𝑡 , guided by the current input, 𝑥𝑡 .

A further evolution on the idea of the LSTM network is the bidirectional LSTM net-
work (BLSTM). In this architecture two LSTM networks operate on the same sequence.
The first one considers the sequence as it is and the second one works on a reversed
version of the sequence. This allows to capture simultaneously causal and anticausal de-
pendencies at the expense of increasing the complexity of the model and not being able
to work in real time. In addition to LSTM networks, it is also worth mentioning the gated
recurrent units (GRU) [97], a lightweight variant of the LSTM architecture that uses only
two gates instead of three.

Convolutional neural networks

The theoretical foundations of convolutional neural networks (CNN) [98] are similar to
those described for feed forward networks. Both consist of a set of trainable parameters
and perform a non linear transformation of its inputs. The main difference comes from
the fact that, in convolutional neural networks, each neuron is connected only to a small
region of the input, performing a localised analysis of the input. This is done applying
a convolution operation instead of a matrix multiplication as done in feed forward net-
works. By sharing the weights among all the small regions of the input, this kind of
architectures can significantly reduce the number of trainable parameters and the risk of
training overfitting. CNNs were originally designed to work with 2D matrices as input,
namely images. There are also other variants that can work with 3D or 1D data, these
last ones being specially relevant in the audio processing community.

In order to build these networks, an architecture like the one shown in Figure 3.9 is
usually followed, where convolution layers and pooling layers are combined. Final clas-
sification is usually performed using one or more dense layers as it is also shown in the
figure. Convolution layers are the core element of CNNs. They are made of a number
of different trainable filters that process the input signal and extract a feature map from
it. An schematic overview describing the working mechanism of a convolution layer is
presented in Figure 3.10. As it can be observed, the filter (depicted in gray) is overlapped
with the input signal and then the corresponding part of the output is generated consid-
ering only the region delimited by the filter size and applying a convolution operation.
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Figure 3.9: Convolutional neural network architecture example.

The filter is then moved along the signal dimensions using a sliding window to generate
the full output feature map. Dashed squares represent the padding added to signal in
order to maintain the same size in the output.
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Figure 3.10: Overview of a convolution layer. Adapted from [99]

The application of the convolution operator is a linear procedure. In order to be
able to capture complex relationship in data, a non linear activation function is usually
implemented after each convolution. One of the most commonly applied non linearities
in the context of CNNs is the rectified linear unit (ReLU) [100]. This function is linear if
the input is positive or zero, and is zero for negative inputs.

Pooling layers perform a subsampling of the input data in order to reduce its dimen-
sionality. The purpose of this reduction its twofold. By reducing the dimensionality of
the intermediate representations, a lower computational load and processing time is ob-
tained in the overall model. Also, this mechanism reduces the probability of the neural
network overfitting to training data. The most common pooling mechanisms are max
pooling and mean pooling. An example of the application of both of them is presented in
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Figure 3.11. As it can be observed, both provide an output that is smaller than the input.
The output feature map aggregates the most relevant statistics of the input by computing
maximums or means, respectively, from 𝑁 × 𝑀 regions from the input. An interesting
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Figure 3.11: 2x2 max pooling and 2x2 mean pooling example.

property of CNNs that is a result of pooling operations is the translational invariance,
meaning that representations obtained are not sensitive to positions in the input signal.

Self attention mechanisms and transformer architectures

While RNNs have demonstrated its great performance in sequence modelling tasks, one
of the main drawbacks of this kind of structure comes from its sequential nature, that
strongly limits the parallelisation. Attention models emerged in order to overcome this
issue [62]. The transformer architecture [66], originally proposed in 2017, was the first
system to entirely rely on attention for sequence modelling. The original paper reached a
new state-of-the-art on the text translation task while allowing for more parallelisation,
significantly reducing the training time. In recent years, transformers are being suc-
cessfully applied to several sequence modelling problems such as ASR [101], language
modelling [102] or video recognition [103].

An attention model is characterised as the mapping process of a query and a set of
pairs, key and value, to an output. This output is obtained by computing a weighted av-
erage of the values, where the weight for each value is estimated by a function involving
the query and the corresponding key. In general terms, if queries are generated from
a different sequence than keys and values then we refer to this mechanism as cross at-
tention. If keys, values and queries come from the same sequence, then it is called self
attention.

The key element of the transformer architecture is the multihead self attention (MSA)
mechanism. The main idea is to perform a number ℎ of self attention mechanisms in
parallel. In the following lines, we first provide an explanation of the dot self attention
mechanism, used as building block of the MSA algorithm. The overview of a single self
attention mechanism is presented in Figure 3.12. As observed, the input 𝐱 is projected
through 3 different linear layers to obtain the queries 𝐐, keys 𝐊 and values 𝐕. This
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Figure 3.12: Overview of the dot product self attention mechanism.

projection is described in Equation (3.8)

𝐐 = 𝐱 ⋅ 𝐖𝑄 , 𝐊 = 𝐱 ⋅ 𝐖𝐾 , 𝐕 = 𝐱 ⋅ 𝐖𝑉 , (3.8)

where𝐖𝑄 ,𝐖𝐾 and𝐖𝑉 represent the learnable weight matrices used to project the input
and obtain𝐐,𝐊 and𝐕 respectively. Then a softmax activation is applied on the sequential
axis, combining information from𝐐 and𝐊 using a dot product. The result of this softmax
is usually known as self attention matrix and is computed as described in Equation (3.9):

𝐀 = softmax(
𝐐 ⋅ 𝐊𝑇
√
𝑑𝑘 ) , (3.9)

where 𝑑𝑘 is the dimension of the key and query vectors. Final output is then computed
with another dot product between the self attention matrix and the values, as follows:

𝐎 = 𝐕 ⋅ 𝐀 . (3.10)

In the MSA mechanism, the process just explained is repeated in parallel ℎ times.
Results obtained for each head are concatenated and then projected once again to obtain
the final results. The expression describing the final results for the MSA mechanism is
introduced in Equation (3.11):

MSA = [𝐎1 , 𝐎2 , ... , 𝐎ℎ] ⋅ 𝐖MSA , (3.11)

where 𝐎ℎ is the output of the self attention head ℎ, and 𝐖MSA is the learnable weight
matrix that projects the concatenation of all the heads outputs to obtain the final MSA
representation. The intuition behind MSA is that multiple attention heads will allow the
system to attend to parts of the sequence in different ways, e.g., long term dependencies
versus short term dependencies.
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3.2.2 Supervised learning techniques

Themost commonly used learning strategywhen using neural networks is the supervised
learning paradigm. In this scenario, we assume a dataset consisting of a set of features
𝐗 = {𝑥1, 𝑥2, ... , 𝑥𝑛} and its associated labels 𝐘 = {𝑦1, 𝑦2, ... , 𝑦𝑛}. As explained previously,
all neural network architectures consist of a set of parameters that needs to be learned.
This learning process can also be expressed as an optimisation problem according to
Equation (3.12):

𝐖̂ = argmin
𝐖

𝐽 (𝐖) . (3.12)

As observed, the goal of this optimisation is to find the parameters 𝐖̂ that minimise the
function 𝐽 (𝐖). This function is usually known as loss function or cost function. It serves
to measure the difference between the output of the network, 𝑦̂𝑖, and the expected value
described by the labels, 𝑦𝑖. In classification tasks such as audio segmentation, cross en-
tropy (CE) loss is the most widely adopted cost function to optimise a neural network. A
common practice is to feed the last layer of the neural networks to a softmax activation
layer in order to obtain a class probability distribution. These probabilities are then com-
pared to the actual class desired output, which is 1 for the labelled class and 0 for the rest.
CE loss penalises the probability based on how far it is from the actual expected value.

There exist several algorithms that could solve this optimisation problem, however,
the preferred choice to optimise the parameters of a neural network are the gradient
descent solutions. These family of algorithms seeks to minimise in an iterative way an
objective function by updating the parameters in the opposite direction of the gradient
of that objective function with respect to the parameters. The general expression for
parameters update through a gradient descent algorithm is described in Equation (3.13)

𝐖𝑛+1 = 𝐖𝑛 − 𝛼 ∇𝐖 𝐽 (𝐖) , (3.13)

where𝐖𝑛 are the parameters in the current iteration, and ∇𝐖 𝐽 (𝐖) is the gradient of the
loss function with respect to the parameters𝐖. The value 𝛼 that multiplies the gradient
term is an hyperparameter known as learning rate used to control the convergence speed
of the optimisation task. As explained, the descent direction is extracted from the gradient
of the loss function, but the learning rate determines how large the step in that direction
is taken. Gradient descent methods need to compute the gradient of the loss function
with respect to all the parameters of the neural network. Current deep learning setups
with neural networks featuring millions of parameters, reveal the necessity of efficient
algorithms to compute those gradients. The backpropagation algorithm [104] is able
to solve this issue, facilitating the learning process in deep neural architectures. This
algorithm computes the gradient of the loss function with respect to each parameter of
the network by using the chain rule. Gradients are computed layer by layer, performing
an iteration in backward direction from the last layer. A usual training loop for a neural
network involves then two main steps: the forward step, where the outputs of each layer
are computed, and the backward step where the gradients for each layer are obtained
applying the backpropagation algorithm.
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A large number of optimisation methods can be found in the literature, each one pro-
posing improvements over the basic gradient descent optimisation described. One of the
most commonly extended nowadays is the adaptative moment estimation (Adam) [105],
that uses per parameter learning rates adapted according to first and second order mo-
ment estimations of the gradients.

3.2.3 Self-supervised representation learning

In the last decade, deep learning solutions have allowed the advance of several signal
processing applications. While supervised learning algorithms have been essential for
the development of these deep learning applications, labelled data is not always easy to
obtain. This problem is becoming more and more relevant as models grow faster in size
and computational requirements. In this context, self-supervised representation learning
solutions [106] emerged in order to alleviate the need for labels. Representation learning
is defined as a set of algorithms that aim to extract features that describe the underlying
explanatory factors for the observed input. The obtained features can then be used for the
desired application using a small amount of labelled data. In the case of self-supervised
representation leaning, current trends expose a model to huge amounts of unlabelled
data, with this objective of understanding the data source by learning tomake predictions
related to it.

Self-supervised representation learning has been an active research topic since the
1990s. Early work relied on clustering algorithms such as k-means to extract patterns
from data [107]. In recent years, self-supervised representation learning shifted towards
neural networksmodels, showing increasingmodelling capabilities. First approximations
were presented for discrete sources such as text, forcing the network to predict the next
items [96]. When dealing with real valued signals, the idea was initially approached by
minimising the reconstruction error of the signal [108]. Some evolution on this idea were
proposed, such as the reconstruction of missing or corrupted fragments [109]. However,
greater gains have been obtained by constructing pretext tasks, where the objective of
the system is to solve a prediction as a classification. In many works, this objective is
to select an unseen fragment of the signal among other randomly selected distractor
fragments [110].

This last idea is usually referred to as contrastive learning. In contrastive approaches,
the pretext task is to maximise latent space similarity between an anchor sample and
positive samples and, simultaneously, minimise the similarity between the anchor sample
and negative samples. This concept was first introduced in a metric learning framework
applied to a face verification task [111]. Since then, contrastive loss has been formulated
in several ways in the literature, such as in simCLR [112] or in infoNCE [110]. In the
following lines we describe the infoNCE formulation due to its relevance for posterior
work. Supposing an observed input 𝑥𝑡 , the proposed model in [110] maps this input into
a sequential latent representation 𝑧𝑡 = 𝑔enc(𝑥𝑡). Then, an autoregressive model gathers
the information from 𝑧𝑡 into a contextual latent representation 𝑐𝑡 = 𝑔ar(𝑧𝑡). Seeking to
predict a future fragment of the signal 𝑥𝑡+𝑘 , the infoNCE contrastive loss can be defined
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according to Equation (3.14):

L𝑁 = −𝔼𝑋[ log
𝑓𝑘(𝑥𝑡+𝑘 , 𝑐𝑡)

∑𝑥𝑗∈𝑋 𝑓𝑘(𝑥𝑗 , 𝑐𝑡)]
, (3.14)

where 𝐗 = [𝑥1, ... , 𝑥𝑁 ] is a set of 𝑁 samples with 1 positive sample and 𝑁 − 1 negative
samples, and 𝑓𝑘(𝑥𝑡+𝑘 , 𝑐𝑡) represents a density ratio between 𝑥𝑡+𝑘 and 𝑐𝑡 , as follows:

𝑓𝑘(𝑥𝑡+𝑘 , 𝑐𝑡) ∝
𝑝(𝑥𝑡+𝑘 |𝑐𝑡)
𝑝(𝑥𝑡+𝑘)

, (3.15)

where ∝ means “proportional to”. Several options could be possible that yield a positive
real score, but the implementation in [110] uses a log-bilinear model:

𝑓𝑘(𝑥𝑡+𝑘 , 𝑐𝑡) = 𝑒𝑧
𝑇
𝑡+𝑘𝑊𝑘𝑐𝑡 . (3.16)

As it can be seen, prediction from 𝑐𝑡 is performed using a linear transformation that is
different for every step 𝑘. More complex methods such as recurrent neural networks
could also be used for this prediction. Constrastive learning mechanisms have been suc-
cessfully implemented for large scale tasks with good results for image [113] and speech
recognition [114] [115].

With the increasing interest of contrastive self-supervised representation learning,
new approaches have been observed recently. Novel solutions, such as the ones proposed
in the HuBERT [116] or w2v-BERT [117] models, predict discrete targets of masked re-
gions. Particularly, HuBERT uses an unsupervised clustering step to obtain a prediction
loss over a masked region of the input signal. A step further is proposed in the wavLM
approach [118], where some inputs are corrupted with noisy or overlapped speech and
the target is to predict a pseudo-label on the masked region such as done in HuBERT.
WavLM models have been tested in a variety of speech processing tasks with competit-
ive results, achieving state-of-the art performance on the SUPERB benchmark [119].

3.3 Hidden Markov models

Hidden Markov models (HMM) are a powerful statistical method to describe discrete
temporal information sequences. The basic theory detailed in this section was initially
published by Baum et al. in a series of classic papers [120] [121].

HMMs became one of the most common methods for processing speech signals. Its
principles have been applied in several speech processing tasks such as speech recog-
nition, pitch tracking or speech synthesis. In this dissertation, HMMs have been used
as a post processing method for smoothing the output of audio segmentation systems.
Results obtained were specially relevant in the experiments that consider simultaneous
speech, music and noise segmentation.
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3.3.1 The Markov chain

Let 𝐙 = [𝑍1, 𝑍2, ... , 𝑍𝑛] be a sequence of random variables. Based on the Bayes’s rule, the
joint probability of observing the sequence 𝐙 can be written according to Equation (3.17):

𝑃(𝑍1, 𝑍2, ... , 𝑍𝑛) = 𝑃(𝑍1)
𝑛

∏
𝑖=2

𝑃(𝑍𝑖 | 𝑍 𝑖−1
1 ) , (3.17)

where 𝑍 𝑖−1
1 = [𝑍1, 𝑍2, ... , 𝑍𝑖−1]. Random variables 𝑍 are said to form a first-order Markov

chain if they satisfy the following condition:

𝑃(𝑍𝑖 | 𝑍 𝑖−1
1 ) = 𝑃(𝑍 | 𝑍𝑖−1) . (3.18)

Equation (3.18) is usually defined as the Markov assumption. According to it, the condi-
tional probability of a random variable at a given time depends only on the value at the
preceding time. This way, Equation (3.17) can be rewritten in the form of a first-order
Markov chain.

𝑃(𝑍1, 𝑍2, ... , 𝑍𝑛) = 𝑃(𝑍1)
𝑛

∏
𝑖=2

𝑃(𝑍𝑖 | 𝑍𝑖−1) . (3.19)

By discarding the time index 𝑖, the Markov chain can be used to model stationary events.

𝑃(𝑍𝑖 = 𝑠 | 𝑍𝑖−1 = 𝑠′) = 𝑃(𝑠 | 𝑠′) . (3.20)

Therefore, by associating an state 𝑠 to 𝑍𝑖, the Markov chain can be represented through
an stochastic finite state machine. Transitions between states are associated with the
probability 𝑃(𝑠|𝑠′). By considering this description, from Equation (3.19) it can be inferred
that the probability of the Markov chain being in an specific state at a given time only
depends on the state in the preceding time.

Given a Markov chain with 𝑁 states, let 𝑠𝑡 be the state of the markov chain at time 𝑡.
Parameters defining this chain are expressed in Equations (3.21) and (3.22):

𝑎𝑖𝑗 = 𝑃(𝑠𝑡 = 𝑗 | 𝑠𝑡−1 = 𝑖) 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , (3.21)

𝜋𝑖 = 𝑃(𝑠1 = 𝑖) 1 ≤ 𝑖 ≤ 𝑁 , (3.22)

where 𝑎𝑖𝑗 is the transition probability between state 𝑖 and state 𝑗 , and 𝜋𝑖 is the probab-
ility of the chain initial state being the state 𝑖. Both probabilities verify the following
restrictions:

𝑁

∑
𝑗=1

𝑎𝑖𝑗 = 1 1 ≤ 𝑖 ≤ 𝑁 , (3.23)

𝑁

∑
𝑗=1

𝜋𝑗 = 1 . (3.24)

According to the provided description this Markov chain can be referred to as Markov
observable model, because the outcome of the process is the set of states at each time
𝑡, with each state being associated with an observable event 𝑍𝑖. In all cases there is a
one-to-one correspondence between the observable events and the state sequence of the
Markov chain.
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3.3.2 Definition of the hidden Markov model

Let’s suppose now a Markov chain where the observation is no longer a deterministic
value but a random variable 𝑋 , that is generated according to a probability distribu-
tion associated with each state. Under this condition there is no unique correspondence
between the output sequence and the state sequence. In other words, the state sequence
is hidden. That is the reason why these kind of models are usually called hidden Markov
models. Formally, a hidden Markov model is defined by the following parameters:

• 𝐒 = [1, 2, ... , 𝑁 ]: a set of states that characterise the model.

• 𝐀 = {𝑎𝑖𝑗 }: a transition probability matrix, where 𝑎𝑖𝑗 is the probability of transition-
ing from state 𝑖 to state 𝑗 .

• 𝐵 = {𝑏𝑖}: a set of probability distributions, where 𝑏𝑖 is the observation probability
distribution at state 𝑖.

• Π = {𝜋𝑖}: A initial state probability, where 𝜋𝑖 is the probability of the state 𝑖 being
active at the initial time 𝑡 = 1.

In the first-order hidden Markov model just discussed there are two assumptions:

1. The Markov assumption for the Markov chain:

𝑃(𝑠𝑡 | 𝑠𝑡−11 ) = 𝑃(𝑠𝑡 | 𝑠𝑡−1) , (3.25)

where 𝑠𝑡−11 represents the state sequence [𝑠1, 𝑠2, ... , 𝑠𝑡−1]. This assumption implies
that the probability of finding the system in a state 𝑠 at a given time 𝑡 only depends
on the previous state at a time 𝑡 − 1.

2. Output independence assumption:

𝑃(𝑋𝑡 | 𝑋 𝑡−1
1 , 𝑠𝑡1) = 𝑃(𝑋𝑡 | 𝑠𝑡) , (3.26)

where 𝑋 𝑡−1
1 is the output sequence [𝑋1, 𝑋2, ... , 𝑋𝑡−1]. Under this assumption the

emission probability of a determined symbol at a given time 𝑡 depends only on the
state 𝑠𝑡 and is independent of past observations.

These two assumptions limit the memory of hidden Markov models. However, in prac-
tice, theymake working with these kind of models feasible and efficient, without strongly
affecting its modelling capabilities. Furthermore, due to the mentioned assumptions, the
number of parameters that needs to be estimated is significantly reduced.





“In the spirit of science, there really is no such thing as a failed
experiment. Any test that yields valid data is a valid test.”

Adam Savage

4
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4.1.1 Databases for speech activ-
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4.1.2 Databases for multiclass

segmentation

4.1.3 Databases for music detection
4.2 Evaluation metrics

4.2.1 Collar-aware evaluation
4.2.2 Evaluation metrics for au-

dio segmentation tasks

Once an audio segmentation system has been designed and its main components have
been chosen, there are yet two key elements that need to be considered in order to

properly describe a complete experiment: the data used in the training and test phases
of the system, and the evaluation metrics that need to be analysed to describe the per-
formance of the system. This chapter presents a description of the overall experimental
framework of this thesis dissertation by providing first a review of the datasets used
across the three parts of this work: speech activity detection, multiclass segmentation,
and music detection. Then, this chapter introduces some key aspects of the evaluation
protocol for audio segmentation and the most relevant evaluation metrics for audio seg-
mentation systems that have been used in our experiments.
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4.1 Databases description

4.1.1 Databases for speech activity detection

In the last few years, a number of international evaluation campaigns have been propos-
ing the speech activity detection task as one of their challenges, seeking to advance this
kind of systems in a variety of challenging domains. In this context, aiming to motivate
the research effort on a demanding domain such as audio from Apollo space missions, a
series of annual challenges is being held since 2019 [122] proposing the SAD task among
other speech related tasks. This initiative has resulted in the digitisation of the original
analog recordings from the space missions. Part of this data has been made available
through the Fearless steps (FS) corpus, consisting of a cumulative 19,000 hours of con-
versational speech coming from the Apollo 11 mission [123]. Audio data belongs to 30
different communication channels, with multiple speakers in diverse locations. Most
channels show a strong degradation with transmission noise or noise due to tape ageing.

Experiments performed in this work for the speech activity detection task rely on the
data released for the different editions of the Fearless steps challenge. For each annual
version of the challenge, the organisation released new manually labelled datasets. The
work described in this thesis is developed mainly using the datasets released for the Fear-
less steps challenge phase II (2020), Fearless steps challenge phase III (2021), and for the
Fearless steps challenge phase IV (2021). Fearless steps data was made available to the
challenge participants. The three partitions used in this work are not publicly available.
However, theymay be requested to their respective authors through the challenge official
contact email: fearlesssteps@utdallas.com .

Fearless steps phase II dataset

The inaugural version of the Fearless steps challenge, that was held in 2019, encouraged
its participants to develop speech processing systems with limited resource availability.
A total of 80 hours of audio were provided, from which only a subset of 20 hours were
human verified ground truth labels. As a natural progression and following the successful
first edition of the challenge, the Fearless steps challenge phase II [124] changed its focus
to the development of supervised systems, releasing around 80 hours of human labelled
data through the training and development datasets. The fact that a larger amount of in-
domain annotated data is available in this version opens a new possibility for supervised
approaches such as some of the ones proposed in this work.

Released data consist of 3 different partitions, all of them manually labelled: a train
subset with 62.5 hours of audio, a development subset with 15 hours of audio and an
evaluation subset with 20 hours of audio. Note that evaluation labels were not released
and the scoring was performed by the organisers of the challenge.



4.1 Databases description 41

Fearless steps phase III and phase IV datasets

As a continuation over the the previous versions of the challenge, the 3rd and 4th phases
of the challenge (Fearless steps challenge phase III and phase IV), held in 2021 and 2022,
focused again on the development of single channel supervised learning strategies. In
these mentioned editions, the novelty introduced was in the new aim to test system gen-
eralisation to varying channel and mission data. While train and development subsets
remained similar as the ones released in previous editions, new data was included in the
evaluation subsets. Besides the 20 hours of Apollo-11 evaluation data already released,
evaluation data for the phase III of the challenge was complemented with 5 hours of un-
seen channel evaluation data and 5 additional hours of blind-set Apollo-13 mission. In
the case of phase IV, more data from Apollo-8 mission was also incorporated. The new
evaluation susbsets for these editions featured, as described, more than 30 hours of audio
in total from different channels and missions. This fact indicates that a larger mismatch
between development and evaluation results could be observed. Again, evaluation labels
were not released and the scoring was performed by the organisers of the challenge.

Additional datasets for unsupervised domain adaptation

In addition to the use of the Fearless steps data, experiments reported in Chapter 6 used
different datasets coming from three specific domains: broadcast, telephone channel and
meetings. For the broadcast domain data was combined from two different sources. First,
the system included data coming from previous Albayzín evaluation campaigns, mainly
from Albayzín 2010 dataset [11] (explained in more detail in subsection 4.1.2) and Al-
bayzín 2018 dataset [125], with audio from the main Spanish public service broadcaster.
Furthermore, audio from theMulti-Genre broadcast (MGB) challenge [126] was also used.
The MGB challenge was organised by the British Broadcast Corporation (BBC) releasing
data across four television channels for different speech processing tasks. For the meet-
ings domain, the AMI [127] and ICSI meetings [128] corpora are used. Finally, in order to
represent the telephonic domain, the summed partition of NIST 2018 speaker recognition
evaluation (SRE) is used.

One more extra dataset for each domain is reserved for evaluation purposes. These
dataset are the Albayzín 2020 dataset [129] for the broadcast domain, CALLHOME data-
set [130] for telephonic domain, and the dataset originally released for the NIST rich
transcription (RT) 2009 evaluation for the meetings domain. A more detailed explana-
tion on the use of the different datasets introduced will be provided in Chapter 6.

Concerning the availability of these datasets, Albayzín 2018 and 2020 datasets are
available upon request through the challenge organisation website1. AMI corpus is pub-
licly available2. ICSI Meetings corpus is available at the Linguistic Data Consortium
(LDC) under catalogue numbers LDC2004S02 and LDC2004T04 for audio and transcripts
respectively. CALLHOME dataset can also be found on the LDC under the catalogue
numbers LDC97S42 and LDC97T14 for audio and transcripts respectively.

1http://catedrartve.unizar.es/albayzindatabases.html
2https://groups.inf.ed.ac.uk/ami/download/

http://catedrartve.unizar.es/albayzindatabases.html
https://groups.inf.ed.ac.uk/ami/download/
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4.1.2 Databases for multiclass segmentation

The Albayzín evaluation campaigns have proposed several speech and audio processing
related tasks in the last decade. Audio segmentation is one of the proposed tasks from
2010 to 2014, focusing mainly on separating speech, music and noise. For this purpose,
two datasets were released: the 3/24 TV dataset [11], released for the 2010 evaluation
and coming from broadcast television domain, and the CARTV dataset [131], used in
the 2012 evaluation and obtained from radio recordings. They share a set of common
characteristics and some minor differences that are explained in this subsection. Both
datasets are available from their respective authors on reasonable request.

Albayzín 2010 database

The Albayzín 2010 database is part of a set of broadcast news recordings televised ori-
ginally in 2009 by the Catalan TV channel 3/24 TV. Data was originally collected by the
TALP Research Centre from the Universitat Politècnica de Catalunya. The full database
includes around 87 hours of manually annotated audio sampled at 16 kHz and it is di-
vided in 24 files of around 4 hour length each. Two thirds of the database are available for
training, making a total of 58 hours in 16 different sessions, while the remaining third, 29
hours in 8 sessions, is used for test purposes. The evaluation plan defines five different
acoustic classes distributed as follows: 37% for clean speech (sp), 5% for music (mu), 15%
for speech over music (sm), 40% for speech over noise (sn) and 3% for others (ot). The
class “others” is not evaluated in the final scoring. In the following lines a description
is provided for each of the acoustic classes defined: the class “speech” contains speech
under studio recording conditions using a close microphone. The “music” class contains
music understood in a general sense. The “speech over music” class is defined as the
overlap of classes “speech” and “music”. The “speech over noise” class contains all the
speech that is not recorded under studio conditions or overlapped with any kind of noise.
Two voices overlapping are also defined as “speech over noise”. Finally, “others” contains
any audio that does not match the four previously defined classes.

As it can be appreciated, there is a clear unbalance in the class distribution because
most of the data contains speech (92% combining speech, speech over noise and speech
over music). However, classes that contain music are underrepresented (only 20% com-
bining music and speech over music). The main language of the 3/24 TV channel is
Catalan, with the 87% of the speech segments coming from Catalan speakers and the re-
maining 13% coming from Spanish speakers. Concerning the gender distribution, 63% of
speech fragments are from male speakers and 37% are from female speakers.

Albayzín 2012 database

Additionally, a new dataset was released for the Albayzín 2012 audio segmentation eval-
uation. The new audio introduced in this version is taken from Aragón radio archive,
separated in 3 different subsets: two developments sets of 2 hours each (dev1 and dev2),
and a test set consisting of 18 hours. All the audio is sampled at 16 kHz. The use of
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previous data released in the 2010 version was allowed in order to train segmentation
systems for the 2012 Albayzín evaluation. As in the 2010 Albayzín evaluation, the main
goal is segmenting an audio document indicating where speech, music and/or noise are
present. However, in the 2012 version no prior classes are defined and amultiple labelling
format is proposed, allowing 3 possible overlapped classes, speech, music and noise, to
be present at any time in the audio document. This format slightly differs with the ex-
perimental setup presented for the Albayzín 2010 evaluation, but it is equivalent to a
multiclass segmentation task if a set of non-overlapped labels are generated considering
the different combinations of speech, music and noise. This would results in 8 different
classes: “speech”, “music”, “noise”, “speech and music”, “speech and noise”, “speech and
music and noise”, “music and noise”, and “silence”. Due to the similarity with the class
defined as “others” in the Albayzín 2010 evaluation, we decided to combine “music and
noise”, “noise” and “silence” (they represent only the 3% of the total time in the database)
in a single class that we also name as “others”. Therefore, we can see this problem in a
similar way to the task in the Albayzín 2010 dataset, but including a new class “speech
and music and noise” that was not present in the 2010 version of the evaluation.

4.1.3 Databases for music detection

When compared to SAD datasets, the amount of publicly available data labelled for mu-
sic detection is relatively low. Most music datasets come from the music information
retrieval community and aim to extract relevant information from music excerpts such
as genre, chords, or tempo. In these cases, music is not usually mixed with any other
acoustic classes, limiting its use in the music detection task. Some datasets suitable for
music detection such as the one proposed by Scheirer et al. [132] are too small to be used
for training audio segmentation systems in the context of deep learning applications.
Furthermore, other released datasets such as MUSAN [133] do not provide strong labels,
being annotated with a single label for the whole audio file. In the following lines a de-
scription is provided for the two datasets used in this dissertation. both of them belong
to the broadcast domain, where it is common to find music in combination with speech
or other acoustic classes.

OpenBMAT

The OpenBMAT dataset [134] contains 27 hours of television broadcast audio from dif-
ferent countries labelled for the music detection task under two different scenarios: a
binary condition where audio is annotated as containing music or not containing mu-
sic, and a multiclass setup where audio is separated into foreground, background and no
music fragments. All audios were cross-annotated by 3 different annotators providing
high inter-annotator agreements ratios. In average, labels contain a 51% of music and a
49% of non-music in the binary annotation. For the 3 class annotation schema, 16.60% of
the audio belongs to foreground music, 34.45% belongs to background music and 48.94%
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belongs to no music. The OpenBMAT dataset can be downloaded for non-profit purposes
upon request to their respective authors 3.

DAFX’07 music detection dataset

This dataset was originally presented in the paper “Automatic Music Detection in Tele-
vision Productions” [135]. It consists of around 9 hours of television recordings from the
Austrian national broadcasting corporation that were manually labelled as music or non-
music. There is a great variety of genres, ranging from soap operas to documentaries or
talk shows. The data distribution is close to be equally distributed, with 42% of the time
being music and 58% of the time being non-music. This dataset can be downloaded for
research purposes upon request to their respective authors. 4

4.2 Evaluation metrics

A really important part of the working pipeline for any machine learning model is the
evaluation of its results. In the context of the experimental framework, the use of the ap-
propriate evaluation metrics allows to correctly asses the performance of the evaluated
systems. A number of evaluation metrics can be found in the literature aiming for spe-
cific purposes and showing benefits and drawbacks. In this subsection, we first describe
the collar-aware evaluation protocol, a commonly used technique for the evaluation of
audio segmentation tasks that considers time margins around changes in the reference
for evaluation. Then, a description is provided for those metrics that are more relevant
in the different audio segmentation tasks considered in this work.

4.2.1 Collar-aware evaluation

In the evaluation of audio segmentation systems, the use of time margins around changes
in the reference segmentation has become a common practice among different tasks. This
idea is usually known as collar-aware evaluation, with the word collar referring to that
small amount of time that is not evaluated. Collar-aware evaluation is done in order to
consider possible inconsistencies in the human annotation of databases and in order to
consider the uncertainty about when an acoustic class begins or ends.

Figure 4.1 presents a graphical representation of the evaluation protocol performed
when using collars in an audio segmentation task. As it can be observed, both the
segmentation system hypothesis and the reference labels are presented. The reference
shows a change between class A and class B. For that time stamp 𝑇change, defined as the
change between class A and class B, a region of the hypothesis defined by the interval
[𝑇change − collar, 𝑇change + collar] will not be considered in the evaluation of the audio seg-
mentation system. The size of the collar may vary among tasks and evaluation protocols.

3https://zenodo.org/record/3381249
4http://www.seyerlehner.info/joomla/index.php/datasets

https://zenodo.org/record/3381249
http://www.seyerlehner.info/joomla/index.php/datasets
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Reference Class A Class B

Hypothesis Evaluated Not
evaluated Evaluated

-collar +collar
𝑇change

Figure 4.1: Schematic representation of collar-aware evaluation and regions excluded for evaluation.

For example, the collar used in the multiclass audio segmentation task from the Albayzín
2010 evaluation was of 1 second, while the collar used in the Fearless steps challenge
for speech activity detection was of 0.5 seconds. The collar-aware evaluation protocol
described in the previous lines can be applied to all the evaluation metrics described in
this document.

4.2.2 Evaluation metrics for audio segmentation tasks

Some of the audio segmentation tasks described in this document deal only with two
different acoustic classes so they can be considered binary problems. Under these cir-
cumstances, the goal of any segmentation system is to separate two different sets: tar-
gets, also named as positive examples, and non-targets, also named as negative examples.
Table 4.1 shows the four possible outcomes of a binary segmentation system considering
the predicted values by the system and the real values according to the labels.

Predicted value
Positive Negative

Real value
Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Table 4.1: Possible system outcomes in a binary problem considering predicted and real values.

In the mentioned table, the green positive diagonal represents correct predictions,
while the red negative diagonal shows incorrect predictions. Focusing first on the cor-
rect cases, a true positive (TP) is a positive example that is correctly classified as a positive
example, also referred to as a hit. Alternatively, a true negative (TN) is a negative example
that is correctly classified as a negative example, making it a correct rejection. Concern-
ing the two possible errors, a false positive (FP) happens when a real negative value is
wrongly labelled as a positive value. This scenario is also defined as a type I error or a
false alarm. If a real positive value is incorrectly classified as a negative value, then that
is considered a false negative (FN). This condition is usually described as a type II error
or a miss.
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Precision, recall and F1-measure

Considering the possible outcomes described in Table 4.1 a number of metrics can be
defined. Some of the most widespreadmetrics to evaluate segmentation systems is the set
formed by precision, recall and F1-measure. On the one hand, precision aims to provide an
intuition on the proportion of positive classifications that was actually correct. Precision
is defined as the number of true positives over the total number of predicted positive
examples (true positives plus false positives), as expressed in Equation (4.1):

Precision =
TP

TP + FP . (4.1)

On the other hand, recall tries to describe the proportion of actual positive examples
that was identified correctly. It is formally defined as the number of true positives over
the total number of real positives examples (true positives plus false negatives), as shown
in Equation (4.2):

Recall = TP
TP + FN . (4.2)

The F1-measure combines bothmetrics by computing the harmonic mean of precision
and recall, as shown in Equation (4.3):

F1 = 2
precision ⋅ recall
precision + recall . (4.3)

Furthermore, the F1-measure can also be seen as an specific case of a more general
evaluation metric, the F𝛽-measure, described according to Equation (4.4):

F𝛽 = (1 + 𝛽2)
precision ⋅ recall

(𝛽2 ⋅ precision) + recall , (4.4)

where a positive real factor 𝛽 is used so that recall is considered 𝛽 times as important as
precision. The four metrics described can take values in the interval [0, 1], with a higher
value being associated with a better performance.

False positive rate, false negative rate and detection cost function

Another common set of metrics in binary segmentation tasks that can be inferred directly
from Table 4.1 is the pair formed by false negative and false positive rates. These two
metrics have been commonly used in binary tasks such as speech activity detection in
order to measure the two possible type of errors, misses and false alarms.

The false positive rate (FPR) is calculated according to Equation (4.5):

FPR =
FP

FP + TN . (4.5)

As it can be seen, it is defined as the ratio between the number of negative examples
wrongly classified (false positives) and the total number of real negative events (false
positives plus true negatives). Thismetric can be interpreted as the probability ofwrongly
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classifying a negative example as positive. That is the reason why false positive rate is
also usually referred to simply as false alarm rate.

Similarly, the false negative rate (FNR) is calculated according to Equation (4.6):

FNR =
FN

TP + FN . (4.6)

As in the false positive rate case, this metric is calculated as the ratio of two elements:
false negative examples and the sum of true positive and false negatives, namely, the total
number of real positive examples. Therefore, it can be interpreted as the probability of
incorrectly assigning a positive label to a negative example. Usually, false negative rate
is also mentioned as miss rate. FPR and FNR can take values in the interval [0, 1]. As
these metric are measuring error rates, a lower value is usually associated with a better
performance.

In addition, the detection cost function (DCF) is a metric that combines both false
positive and false negative rates according to Equation (4.7):

DCF = 𝐶FA FPR + 𝐶MISS FNR , (4.7)

where 𝐶FA and 𝐶MISS are the associated costs to the false alarm errors and miss errors
respectively. These two values can be used in order to give more importance to each one
of the two possible errors. As an example, the DCF metric is used in the Fearless steps
challenge, where the organisation decided that miss errors are more important than false
alarms in the speech activity detection task. That is why in this evaluation 𝐶FA takes a
value of 0.25 and 𝐶MISS takes a value of 0.75.

Confusion matrix

So far all the metrics presented have been derived from Table 4.1, that describes the
possible outcome of a binary system. If the system being evaluated considers more than
two classes for segmentation, a similar analysis of the different outputs of the system can
be performed for the classes present in the task. This analysis is usually summarised using
a confusionmatrix. Figure 4.2 shows an example of a confusionmatrix for a problemwith
4 classes. As it can be seen, each row of the matrix represents the instances in an actual
class while each column represents the instances in a predicted class. This representation
simplifies the detection of commonly mistaken classes in a segmentation system, making
explicit the amount of instances from one class that are being incorrectly labelled as a
different one.

Area under the ROC curve and DET curve

Metrics described up to this point operate under the assumption that an specific threshold
has been chosen in a previous stage to the evaluation, fixing the operating point of the
system. In some scenarios, it may be interesting to evaluate an audio segmentation sys-
tem for different thresholds, and even to summarise the performance of the system for all
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Figure 4.2: Example of a confusion matrix for a multiclass problem with four classes.

possible thresholds with a single measure. For that purposes, in this section we introduce
two metrics widely adopted in the literature: the receiver operating characteristic (ROC)
curve and the detection error trade-off (DET) curve. In order to illustrate this description
an example of both of them is presented in Figure 4.3.

First, concerning the ROC curve, this graphical representation describes the perform-
ance of a system for different thresholds by comparing false positive rates on the x axis
versus true positive rates on the y axis. While this curve allows to show the general cap-
abilities for various operating points, in some conditions it is needed to summarise the
performance in a single number. A widely used metric is the area under the ROC curve
(AUC) [136]. Since the AUC is obtained as a part of the unit square, its value is always
between 0 and 1. Furthermore, no realistic classifier should report an AUC below 0.5,
which is the case associated with random guessing. One of the most interesting proper-
ties of AUC is that the AUC value of any classifier is equivalent to the probability that

AUC

(a) ROC curve and area under the ROC curve. (b) DET curve and EER point.

Figure 4.3: Example illustration of threshold dependent curves: from left to right: (a) ROC curve and area under
the ROC curve. (b) DET curve and EER point.
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this classifier ranks a randomly chosen positive example higher than a randomly chosen
negative example. According to this the AUC metric can be formulated as:

AUC =
1

𝑁 +𝑁 −

𝑁+

∑
𝑖=1

𝑁−

∑
𝑗=1
1(𝑠

+
𝑖 > 𝑠−𝑗 ) , (4.8)

where 𝑠+𝑖 represents the classifier scores for positive examples, 𝑠−𝑗 represents the classifier
scores for negatives examples, 𝑁 + and 𝑁 − represent the number of positive samples and
the number of negative samples respectively, and 1(⋅) is equal to ‘1’ whenever 𝑠+𝑖 > 𝑠−𝑗 and
‘0’ otherwise. Despite AUC metric is designed for binary classification tasks, a number
of extensions of this metric have been proposed in the literature in order to deal with
problems with more than two classes. Two of the most common approaches are the one-
versus-one, where all possible pairs of classes are considered to compute an average AUC
metric, and the one-versus-rest, where a binarisation solution is applied to compute an
average AUCmetric. A more detailed explanation on these multiclass extensions of AUC
will be provided in Chapter 11.

Alternatively to the ROC curve, the DET curve shows the two possible error rates,
FNR associated withmisses and FPR associated with false alarms, for different thresholds,
describing the variation observed for different operating points. In the case of the DET
curve a normal deviate scale is applied usually. By doing this, if both targets and non-
targets were sampled from a Gaussian distribution, DET obtained would be a line perpen-
dicular to the bisector of the represented quadrant. In this case, a generally used metric to
summarise the findings of the DET curve is the equal error rate (EER) point [137]. Math-
ematically, this point is defined as the intersection of the DET curve with the FNR = FNR
line and it represents the point where the false alarm rate is equal to the miss rate.

Segmentation error rate

The segmentation error rate (SER) is a metric strongly inspired by the diarisation error
rate (DER), a metric used in NIST speaker diarisation evaluations [138]. It can be seen
as the ratio of the total length of the incorrectly classified audio to the total length of
the audio in the reference. Given a dataset to evaluate Ω, each document is divided into
continuous segments and the segmentation error time for each segment 𝑛,Ξ(𝑛), is defined
as:

Ξ(𝑛) = 𝑇 (𝑛) [max(𝑁ref (𝑛) , 𝑁sys(𝑛)) − 𝑁correct(𝑛)] , (4.9)
where 𝑇 (𝑛) is the duration of the segment 𝑛, 𝑁ref(𝑛) is the number of reference classes
that are present in segment 𝑛, 𝑁sys(𝑛) is the number of classes predicted by the system
that are present in segment 𝑛 and 𝑁correct(𝑛) is the number of reference classes that are
present in segment 𝑛 and were correctly assigned by the segmentation system. This way,
the SER is computed as follows:

SER =
∑𝑛∈Ω Ξ(𝑛)

∑𝑛∈Ω(𝑇 (𝑛)𝑁ref(𝑛))
. (4.10)

This metric could be applied to both binary and multiclass setups, but in this work it
has been used mainly to evaluate the output of multiclass segmentation systems.
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5.1 Introduction and motivation

Speech activity detection (SAD) aims to determine the exact location of speech samples
in an audio signal. This constitutes an essential preprocessing step in several speech

related applications such as speech or speaker recognition, as well as speech enhance-
ment. In many cases, SAD is used as a preliminary block to separate the segments of
the signal that contain speech from those that do not. This way, enabling the overall
system to process only the speech segments. A large number of approaches have been
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proposed for the SAD task. Traditionally, statistical approaches have been used with rel-
evant results under the assumption of quasi-stationary noise. Several works rely on the
extraction of specific acoustic features [139] [140]. Conversely, other methods are model-
based [141] [142], aiming to estimate a statistical model for the noisy signal. Addition-
ally, some unsupervised approaches can also be cited: based on energy [143], or based
on the estimation of the signal spectral characteristics such as long-term spectral diver-
gence [144]. Recently, deep learning approaches are becomingmore andmore relevant in
the SAD task. The research presented in [145] implements a SAD system based on a mul-
tilayer perceptron with energy efficiency as the main concern. A deep neural network
(DNN) approach is used in [146] to perform SAD in a multi-room environment. In [147],
new optimisation techniques based on the area under the ROC curve are explored in the
framework of a deep learning SAD system. Recently, convolutional recurrent neural net-
works have been proposed in the SAD task providing relevant results, with approaches
such as the one presented in [57], based on the use of 2D convolutional layers.

In the last few years, a number of international evaluation campaigns have been pro-
posing the SAD task as one of their challenges, seeking to advance this kind of systems in
a variety of challenging domains. Some examples can be cited such as the OpenSAT chal-
lenge [148] organised by the NIST, or the DARPA RATS evaluation [149]. In this context,
the Fearless steps annual series of challenges has proposed the SAD task among other
speech related tasks since its first edition in 2019. This initiative deals with digitised audio
coming from the original recording of the NASA’s Apollo space missions. Such a challen-
ging domain features strongly degraded channels, with a number of transmission noises
or noise due to tape ageing. Most recordings were made with head-mounted micro-
phones, but some in-spacecraft recordings were made using fixed far-field microphones
which also picked up the presence of environmental noise. All those characteristics are
likely to degrade the performance of speech technology applications.

The work described in this chapter is part of our submission to the SAD task pro-
posed for the Fearless steps challenge 2020. In the context of this challenge, we introduce
a supervised deep learning solution based on a CRNN that is fed with Mel filter-bank en-
ergies as input. Several alternatives for the convolutional layers are explored, namely 1D
and 2D filters. Furthermore, a novel approach based on the fusion of two convolutional
layers is presented. Under this configuration, information obtained from 1D and 2D fil-
ters is combined to be processed by the RNN. The version of the challenge released in
2020 [124] changed its focus to the development of supervised systems, releasing around
80 hours of human labelled data through the training and development datasets. The fact
that a larger amount of in-domain annotated data is available in this version opens new
possibilities for supervised approaches such as the one described in this chapter. The use
of out-of-domain data in these specific conditions, namely naturalistic audio and strongly
degraded channels, could lead to poor results.
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5.2 Convolutional recurrent neural networks

5.2.1 Neural architectures description

In our submission to 2020 Fearless steps challenge for the SAD task we experimented
with different neural architectures. In the following lines we briefly describe the different
proposals evaluated. As our baseline model, we choose a solution that is inspired by
the SAD system proposed in our previous work in the diarisation framework [150]. It
consists of an RNN block generated by stacking three BLSTM layers with 128 neurons
each. This block is then followed by a linear layer that generates the final representation
as a two neurons output. The following architectures proposed are built on top of the
RNN block from the baseline system, incorporating a set of convolutional layers working
as a processing stage previous to the RNN block. The schematic representation of the
proposed alternatives for the CRNN model is described in Figure 5.1. The RNN block
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Freq pool
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Batch norm

ReLU
Freq pool

Conv2D block Conv1D block
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To RNN To RNN To RNN

BLSTM
BLSTM
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Figure 5.1: Schematic representation of the different variations on the proposed convolutional recurrent neural
network used for the SAD task.

followed by a linear layer is shared by the three architectures. The difference comes then
from the convolutional stage, that is implemented in three different ways:

• Architecture A: This model uses three 2D convolutional blocks processing the
input features. Each of these blocks is integrated by a 2D convolutional layer with
3x3 or 5x5 kernel size and 64 filters. Then it is followed by a batch normalisation
[151] and the application of a rectified linear unit (ReLU) [100] activation function.
Finally, a max-pooling mechanism is applied considering a 4x1 stride, so that only
the frequency axis is downsampled.
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• Architecture B: This model similarly uses three 1D convolutional blocks. Even
though, in this case, we experiment with different variations for the 1D convolu-
tional layer. The first approach uses a kernel size of 3 in all the convolutions with
no dilation. In the second implementation, each of the three layers uses kernel sizes
of 5, 3 and 3 with dilations 1, 2 and 4 respectively. For the third approach, we exper-
iment with the concept of group convolution, which has recently demonstrated its
effectiveness in models such as ResNeXt [152]. This alternative employs a kernel
size of 3 in all the convolutions but, in this case, these are implemented as 5 inde-
pendent groups. This change does not affect the dimension of the input and the
output feature maps but it reduces computational complexity and the number of
parameters in the model. Finally, to obtain a comparable representation to the 2D
setup, the convolutional layers have 256 output filters and a max-pooling mechan-
ism is applied on the frequency axis using a 4x1 stride after the batch normalisation
layer and a ReLU activation function.

• Architecture C: Some previous work has already shown the combined capabil-
ities of 1D and 2D convolutions applying system level fusion techniques [153].
This alternative proposes a novel approach to the CRNN model in the SAD task
where we aim to combine the information extracted by two different convolutional
branches. One consisting of three Conv2D blocks and other consisting of three
Conv1D blocks, both implemented as described in the previous architectures. This
fusion is done in an intermediate feature space, where both branches are then com-
bined to be processed by the RNN block. The fusion block (depicted in red) could
be implemented in many different ways. In our experiments we test three different
options: first, a bilinear layer is used to combine both convolutional branches. As
second option, the fusion performs the sum of the output of both branches, and as
a final option, the fusion is considered as the concatenation of the output of both
branches.

A common characteristic among all themodels evaluated in this set of experiments is that
training and evaluation are performed using finite-length sequences. The input audio is
separated in overlapping fragments of 3 second length and 2.5 second advance in order to
limit the delay of the dependencies that the network may take into account. In all cases,
the neural networks emit a SAD label for each frame processed at the input, one each
10ms in this case.

5.2.2 Training strategies

Describedmodels are trained using Adam optimiser [105] with a learning rate that decays
exponentially from 10−3 to 10−4 during the 20 epochs that data is presented to the neural
network, with aminibatch size of 64. Cross entropy criterion is chosen as loss function, as
usually done in classification tasks. Model selection is done choosing the best performing
model in terms of frame classification accuracy using the validation subset. Models have
been developed using the PyTorch toolkit [154].
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5.3 Experimental setup

5.3.1 Data description

The Fearless steps challenge follows open training conditions. Participants can use any
available data in addition to the provided challenge data to train and tune their systems.
However, in this work we have not used any additional datasets. Considering the specific
domain of the audio, namely quite degraded channels and several kinds of transmission
noises, we opted to use for training and development only the labelled data provided by
the organisation. These data consist of 3 different partitions. In the following lines, we
describe them and explain how they have been used in our submission:

• Train: A total of 62.5 hours of audio were provided for training. In our experi-
ments we used 10% of these data for training validation. This way, all the proposed
systems were trained with around 56 hours of audio from the train partition.

• Development: The 15 hours of audio from the development subset were used
to obtain an empirical threshold, in order to minimise the detection cost function
(DCF) metric. We also report our results on this subset.

• Evaluation: Evaluation results are reported as provided by the challenge organ-
isation. The DCF metric obtained in the evaluation subset is the one used to rank
the participants.

5.3.2 Feature extraction

As input features for our proposed SAD system, we consider log Mel filter-bank energies.
Namely, we use 64 log Mel coefficients concatenated with the log energy of the frame.
With an input audio that is sampled at f𝑠 = 8 kHz, Mel filters span across the frequency
range between 64 Hz and 4kHz. Features are computed every 10ms using a 25 ms Ham-
ming window. As a final step, mean and variance normalisation is applied over each file
in the database. All the neural architectures described for the SAD system proposal share
the same set of features.

5.3.3 Evaluation metric

In the SAD task of the Fearless steps challenge false negative errors are considered more
important than false positive errors. This is shown in the primary evaluation metric for
the challenge, the DCF, which is calculated as follows:

DCF(𝜃) = 0.75 ⋅ FNR(𝜃) + 0.25 ⋅ FPR(𝜃) , (5.1)

where FNR is the false negative rate and FPR is the false positive rate. Participants are
responsible to choose a threshold (𝜃) that minimises the DCF.
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Table 5.1: SAD results in terms of DCF metric on the development and evaluation partition, and number of
trainable parameters for different systems considered for submission.

System # Param
DCF(%)

Dev Eval

Organisation baseline [155] - 12.50 13.60

RNN baseline 266K 2.02 2.54

A1 - CRNN 2D (3x3) 340K 1.65 2.07
A2 - CRNN 2D (5x5) 473K 1.67 2.28

B1 - CRNN 1D 421K 1.76 2.33
B2 - CRNN 1D dilation 455K 1.86 2.30
B3 - CRNN 1D groups 300K 1.76 2.46

C1 - CRNN fusion bilinear 641K 1.46 1.78
C2 - CRNN fusion sum 377K 1.60 1.89
C3 - CRNN fusion concat 411K 1.43 1.82

5.4 Results

Table 5.1 presents the obtained results for the different systems submitted. We compare
our RNN baseline system and the three proposed architectures to the baseline provided
by the organisation [155]. Note that the organisation’s baseline is based on a statistical
approach. Concerning the fusion architectures, they use the best configurations achieved
with the development set: A1 for the 2D setup, and B3 for the 1D setup, as it obtains sim-
ilar results to B1 with a significantly smaller number of parameters. Results are reported
in terms of DCF metric for both, development and evaluation partitions. To measure the
level of complexity of the models, we present the number of trainable parameters for all
submissions.

Regarding the results reported on the development partition, all our presented sys-
tems significantly outperform the baseline algorithm proposed by the organisation. Fur-
thermore, all the systems that include a convolutional processing stage improve the per-
formance compared to the RNN baseline. Our experimental findings are in line with the
ones presented in [57], where 2D CRNN models provided better performance than 1D
CRNN based SAD systems. In our case, using the 3x3 filter configuration we were able to
obtain a DCF of 1.65%, which is better than all the 1D based systems evaluated. For the 1D
convolution setup, it is interesting to mention the configuration using groups. A signific-
ant relative improvement of 12.77% compared to the RNN baseline is obtained being the
CRNNmodel with the lowest number of parameters. These experimental results indicate
that the combination of 1D and 2D feature maps is beneficial for our SAD system. Best
overall results are obtained using the proposed fusion architecture. The most relevant
result is the one that concatenates both convolutional outputs, obtaining the best result
in the development set while keeping a lower number of parameters when compared to
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the fusion using a bilinear layer. With this setup we were able to achieve a competitive
result for the development set with a 1.43% DCF metric.

Concerning the evaluation partition results, similar trends to the ones described in
the development partition can be observed. In general terms, the behaviour for the three
different kinds of architectures is consistent. Again, the 2D convolution setup outper-
forms its 1D equivalent. However, a difference can be observed in the 1D setup between
development and evaluation results. While the groups configuration is the best perform-
ing in the development set, in the evaluation set this is done by the dilation setup. The
fusion architectures show the best overall results, with a DCF metric below 2% for all the
variations proposed. This solution allows our best submission to achieve a DCF metric
of 1.78% using a bilinear layer as fusion method. Unlike it was observed in the develop-
ment set, the fusion based on concatenation offers a slight degradation in performance
compared to the bilinear fusion, while keeping the number of parameters significantly
smaller.

Additionally, Figure 5.2 presents a qualitative visualisation of the SAD performance
for the best performing architectures in the development partition. It can be observed

Figure 5.2: Qualitative visualisation of SAD scores for the model alternatives described in a 16 seconds audio
fragment extracted fromfile “FS02_dev_001”. From top to bottom: audio spectrogramwith the SAD ground
truth overlapped and speech score for different SAD systems proposed.

that, as it was expected, a high positive value in the neural network speech score is as-
sociated with a strong evidence of speech in the audio signal. In general terms, we can



60 Chapter 5. Convolutional recurrent neural networks for speech activity detection

see that all the systems shown in Figure 5.2 can accurately capture the speech and non-
speech segments in the audio fragment with the empirical threshold minimising the DCF
being 𝜃 = −2. Anyway, some inconsistencies can be observed between the ground truth
and the speech scores on some points. This is probably due to labelling conditions, where
a few non-speech segments in between two speech segments are labelled as speech. Pro-
posed systems are able to capture this effect by showing a local minimum in the speech
score for the mentioned fragments (see between seconds three to five). It can also be
observed that around second seven, the score provided by the different systems would
result in a positive decision in an area with no actual speech, marking a false alarm error
fragment.

Focusing on the individual performance of the proposed systems, we can observe that
the 2D and fusion systems show a lower score when a long fragment of non-speech is
processed. On the other hand, the system based on 1D tends to output a higher score
for speech fragments. In the case of transitions, no significant difference is observed
among the systems presented, indicating a similar response between speech and non-
speech fragments and vice-versa. All systems presented in this set of experiments achieve
competitive results without introducing post-processing or smoothing techniques on the
neural network output. As it can be observed from the depicted scores of Figure 5.2, the
BLSTM layers are able to impose a certain amount of inertia on the output so that the
speech class score is smooth enough to be used by itself.

To summarise, Table 5.2 compares the best results obtained in the challenge by other
participant teams with our best submissions and the baseline provided by the challenge
organisation. As it can be seen, the first and second best performing teams achieved a

Table 5.2: SAD results in terms of DCF metric on the evaluation partition for the best performing teams in the
Fearless steps challenge 2020 compared to our best submission and the baseline provided by the organisation.

System Eval DCF(%)

Challenge winner team [156] 1.07
Challenge 2nd place team [157] 1.41
CRNN fusion bilinear (ours) 1.78
RNN baseline (ours) 2.54
Organisation baseline [155] 13.60

DCF metric of 1.07% and 1.41% respectively. Both systems are based on deep learning
solutions. The proposal of the winner team was based on a CRNN architecture combined
with an HMM based smoothing [156]. The team in second place also participated with
a CRNN model featuring a ResNet frontend combined with an LSTM layer [157]. This
team included additional data from meetings in the training process. Our best results
using a CRNN model with bilinear fusion of 1D and 2D branches were ranked in seventh
position among the 28 challenge submissions to the SAD task, and fourth among the 7
participant teams1.

1https://fearless-steps.github.io/ChallengePhase2/Final.html

https://fearless-steps.github.io/ChallengePhase2/Final.html
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5.5 Conclusions

This chapter presented the work developed in order to participate in the SAD task of
the Fearless steps challenge 2020. The mentioned challenge introduced a new demand-
ing audio domain, featuring audio streams from communication channels with different
speakers in different locations working for NASA’s Apollo space missions. This data is
characterised by multiple classes of noise and degradation, posing a significant test for
audio and speech processing systems. New data released in this second phase of the
challenge facilitated the development of supervised deep learning applications. Consid-
ering this, our participation in the challenge is built around the use of CRNN models,
seeking to merge the capability of CNNs to capture frequency and time dependencies
simultaneously, and the capability of RNNs to deal with temporal series.

For the different submissions described, several CRNN models were explored using
1D and 2D filters in the convolutional layers. These models were also compared with a
baselinemodel using an RNN block only. We proposed a novel architecture that combines
information coming from 1D and 2D filters in an intermediate feature space, which then
is processed by the recurrent neural network. Obtained results largely outperform the
baseline provided by the challenge organisation. Our experimental achievements are
in line with previous publications where 2D convolutions obtained better performance
than equivalent 1D convolutions. Additionally, experimental results showed that the
combination of the information provided by 1D and 2D filters is beneficial for the SAD
system, performingwith the best results in the development and evaluation sets. Our best
submission achieved a DCF metric of 1.46% and 1.78% respectively in the development
and evaluation sets, ranking seventh among the 28 submissions to the challenge SAD
task, and fourth among the 7 participant teams.
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6.1 Introduction and motivation

Whereas current SAD state-of-the-art solutions rely on the use of deep learning
techniques, these applications depend strongly on the amount of labelled data

available. In some specific scenarios, obtaining labelled data can be significantly expens-
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ive or even impossible, that is the reason why unsupervised domain adaptation tech-
niques are an active research topic [158] [159]. Domain adaptation techniques aim to
transfer the knowledge obtained from a source domain to a different target domain. In
addition, unsupervised domain adaptation techniques work under the constraint that no
labels are available in this new target domain.

Motivated by the experiences participating in the Fearless steps challenge described
in the previous chapter, that introduced a new audio domain in the research community,
in this chapter we aim to explore unsupervised domain adaptation techniques in the
context of the SAD task. Data from Apollo space missions introduced in the mentioned
challenge is a completely different domain from some of the most commons scenarios
where SAD is applied. The research described in this chapter aims to evaluate how well
a SAD system trained on common datasets can perform on this new domain, while at the
same time it seeks to exploit data from these common domains, by adapting a baseline
model to the new domain in a fully unsupervised way. Considering a SAD model trained
on different well-known domains in the SAD task, such as broadcast or meetings, with
huge amounts of labelled data available, we evaluate three possible ways to adapt the
SADmodel to a new unseen domain in an unsupervised way. Results are presented using
the data provided in the Fearless steps challenge, however the techniques and methods
introduced are described in a general way so that domain adaptation could be done on any
possible scenario. Unlike the work presented in [160], where the key idea is to perform
a pretraining process on DNN models using unlabelled data, seeking to obtain a shared
representation, this work aims to perform unsupervised domain adaptation directly on
the model space, with the objective of fine tuning a given model trained previously with
labelled out of domain data.

6.2 Domain adaptation

Usually, machine learning algorithms require large amounts of manually labelled train-
ing examples in order to train a reliable model. In real applications, however, obtaining
labelled data requires huge efforts and, in some cases, it is even impossible. A simple
and straightforward solution is to train a model on a labelled dataset which is somehow
related to the target data, and then apply it to the data being considered. This approach
is likely to lead to substantial drops in performance caused by the domain shift, observed
in the different feature and label distributions [161]. In order to solve this problem, sev-
eral domain adaptation techniques have arisen, aiming to learn from a source dataset
and transfer that knowledge obtained to a target dataset. Domain adaptation is cur-
rently an active research topic in the machine learning community [162] [163]. Focusing
on speech technologies applications, several works have also investigated the domain
adaptation problem for speech recognition [164], speaker recognition [165] or speech
enhancement [166].
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6.2.1 Problem formulation

In the following lines a formal introduction to the domain adaptation problem and some
definitions relevant to the topic are provided. In order to formulate the domain adaptation
problem two domains need to be defined: the source and the target domain. The source
domain, 𝐷𝑠 , represented by a source dataset Π𝑠 = {𝐗𝑠 , 𝐘𝑠} where 𝐗𝑠 = {𝑥𝑠1 , ... , 𝑥𝑠𝑁 } is
the set of acoustic features with 𝑁 examples, and 𝐘𝑠 = {𝑦𝑠1 , ... , 𝑦𝑠𝑁 } the speech labels
defining each of the elements in 𝐗𝑠 as speech or non-speech examples. Similarly, the
target domain, 𝐷𝑡 , is represented by a target dataset Π𝑡 = {𝐗𝑡} where 𝐗𝑡 = {𝑥𝑡1 , ... , 𝑥𝑡𝑀 }
is the set of acoustic features with 𝑀 examples. In the case of unsupervised domain
adaptation problems, such as the ones described in this work, no ground-truth labels 𝐘𝑡

are available for the target dataset.

Traditionally, in supervised learning problems training samples are assumed to be
available. This is the case for the source domain. Accordingly, the learning problem is to
determine a classifier 𝑓𝑠(Π𝑠 , 𝜃𝑠) that allows to obtain high classification accuracy for test
samples by exploiting the available training set Π𝑠 . The classifier is described by a set of
parameters 𝜃𝑠 specific for each family of classifiers.

In the domain adaptation framework, the problem becomes more complex as test
samples are drawn for a target domain distribution different from the source domain
distribution of training samples. Considering the ideas described, the goal of domain
adaptation techniques should be to develop a new classifier 𝑓𝑡(Π𝑠 , 𝜃𝑠 , Π𝑡 , 𝜃𝑡) that obtains an
accurate prediction of test samples coming from the target domain by exploiting labelled
training samplesΠ𝑠 from the source domain𝐷𝑠 and unlabelled samplesΠ𝑡 from the target
domain 𝐷𝑡 . As for supervised classifiers, this new model adopted for classification is
described by a set of parameters 𝜃𝑠 specific for each family of classifiers, and by a set of
parameters 𝜃𝑡 which is specific to each domain adaptation technique.

6.2.2 Approaches to domain adaptation

In order to better understand the domain adaptation problem, a variety of works over the
years have tried to categorise the diverse conditions found for the problem. We refer the
reader to the following survey for a more detailed description of this categorisation [167].
The first level of categorisation refers to the relation between source and target domains.
Under the assumption that the source and target domain are directly related, transferring
knowledge can be performed in a single step. This is usually called one-step domain ad-
aptation. In case that assumption fails, one-step domain adaptation may not be effective.
Multi-step domain adaptation [168] aims to connect two unrelated domains via a series
of intermediate bridges, and then perform one-step domain adaptation.

In this work, as human speech has characteristics that may not vary among domains,
we assume that source and target domains are related. Because of that, we focus on one-
step domain adaptation solutions. In this scenario, domain adaptation approaches can be
summarised intro three big cases according to [169]:
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• Discrepancy-based: this family of solutions work under the assumption that fine
tuning a model using labelled or unlabelled data can reduce the shift between
source and target domain. Under this idea several criteria can be used to per-
form domain adaptation: some authors use class information to transfer knowledge
between two domains [170]. Authors in [171] or [172] seek to align the statistical
distribution shift between source and target domain. Other approaches also aim to
improve generalisation by adjusting the architectures of DNNs, such as the work
presented in [173].

• Adversarial-based: in this case a domain discriminator tries to identify whether
a data point belongs to the source or the target domain. This is used to encour-
age domain confusion through an adversarial objective that minimises the distance
between source and target domain distributions. Twomain groups can be observed
when implementing this idea: those relying on generative models such as generat-
ive adversarial networks (GAN) [174], or those that rely on non-generative models
that aim to obtain domain invariant representation through a domain confusion
loss [175].

• Reconstruction-based: This approach is based on the idea that data reconstruc-
tion of the source or target samples may be helpful in order to improve the domain
adaptation process. This way the reconstructor is able to ensure both specificity of
intra-domain representations and indistinguishability of inter-domain representa-
tions. Some examples of these methods can be cited, such as the use of an encoder-
decoder reconstruction process [176], or an adversarial reconstruction obtained via
a cycle GAN model [177].

6.2.3 Unsupervised domain adaptation techniques

Following the categorisation previously explained, in this work we focus our efforts on
the evaluation of one-step, discrepancy-based domain adaptation techniques. Addition-
ally, the three methods presented are fully unsupervised, meaning that no labels for the
target domain are needed in order to obtain an adapted model. Descriptions of these
methods are presented in the following lines.

Pseudo-labelling

The goal of pseudo-labelling (PL) [178] is to generate a set of predicted labels for un-
labelled samples with a model trained on labelled data. This idea is an intuitive and
straightforward application that can help overcome the challenge of collecting large la-
belled datasets. Several works in the literature have explored different algorithms for
creating pseudo-labels. In [179] pseudo-labels are assigned to unlabelled samples using
neighbourhood graphs. The idea of pseudo-labelling is extended in [180] by incorporat-
ing confidence scores for unlabelled samples. Authors in [181] present a new optimisation
framework to iteratively update the obtained pseudo-labels. Our approach is inspired
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by [178] and [182], where pseudo-labels are generated directly as the predictions of a
trained neural network.

The solution we adopt for pseudo-labelling domain adaptation can be described ac-
cording to the three following steps:

1. Train source model: first, an initial model is trained in a supervised way on the
source domain.

2. Predict target labels: the initial model is then used to predict speech presence or
absence for the unlabelled target domain.

3. Adapt using predicted labels: finally, the initial model is retrained in a super-
vised way using the pseudo-labels as if they were true labels.

Furthermore, besides performing a fine tuning of the initial source model to obtain
the target model, this solution could also be used to train a target model from scratch
using the obtained pseudo-labels or a combination of the source labelled data and the ob-
tained pseudo-labels. Pseudo-labelling techniques have been used in several audio pro-
cessing applications ranging from acoustic classification problems [183], diarisation [184]
or speech recognition [185] with relevant results. In this work, we aim to extend the
pseudo-labelling techniques to the SAD task and evaluate its performance in the frame-
work of domain adaptation.

Knowledge distillation

The knowledge distillation (KD) [186] framework was originally proposed as a model
compression method in which two DNNs are involved. These two models are usually
known as teacher and student models in an analogy to the education process. The main
idea of this philosophy is that the teacher model produces soft labels which are used to
train the student model. Consequently, the student model should imitate the predictions
of the teacher model. In order to do so Kullback-Leibler Divergence (KLD) loss between
student and teacher distributions is minimised. KLD loss can formulated according to the
following expression:

KLD = −
𝐼

∑
𝑖=1

𝑝𝑡(𝑦𝑖|𝑥𝑖) log(
𝑝𝑠(𝑦𝑖|𝑥𝑖)
𝑝𝑡(𝑦𝑖|𝑥𝑖)

) , (6.1)

where 𝑖 is the example index, 𝑥𝑖 is the input example, 𝑝𝑡(𝑦𝑖|𝑥𝑖) is the output posterior
probability of the label 𝑦𝑖 from teacher model, and 𝑝𝑠(𝑦𝑖|𝑥𝑖) is the output posterior prob-
ability of the label 𝑦𝑖 from student model for the same example. As done in most KD
methods [187] [188], the teacher model is usually frozen, relying on a pretrained model,
in order to reduce complexity. In this case, where only the parameters of the student net-
work need to be optimised, minimising KLD loss expressed in Equation (6.1) is equivalent
to minimising the expression shown in the following equation:

LKLD = −
𝐼

∑
𝑖=1

𝑝𝑡(𝑦𝑖|𝑥𝑖) log(𝑝𝑠(𝑦𝑖|𝑥𝑖)) + 𝑐𝑜𝑛𝑠𝑡 , (6.2)
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where 𝑐𝑜𝑛𝑠𝑡 is a constant term as defined in [189]. As it has just been explained, know-
ledge is transferred via the minimisation of a loss function whose target is the distribu-
tion of class probabilities predicted by the teacher model. This is the output of a softmax
function applied on the teacher model logits. However, in most cases, this distribution
provides a high probability for the correct class, with the other class probabilities close to
zero. In order to address this issue, [186] introduced the concept of softmax temperature.
The probability 𝑝𝑖 of the class 𝑖 is calculated from the neural network logits 𝑧 according
to the following equation:

𝑝𝑖 =
𝑒(

𝑧𝑖
𝐾 )

∑𝑖 𝑒(
𝑧𝑖
𝐾 )

, (6.3)

where 𝐾 is the temperature parameter. For the case of 𝐾 = 1 the standard softmax
function is obtained. As 𝐾 grows, the probability distribution generated becomes softer,
providing more information as to which classes the teacher found more similar to the
predicted class.

The proposed experimental setup for KD based domain adaptation is shown schem-
atically in Figure 6.1. It can be seen that both models, teacher and student, receive target
data examples𝐗𝑡 as input. Predictions from both models are obtained via softmax activa-
tions using the same temperature parameter 𝑘. Soft predictions from the teacher network
are used to transfer knowledge to the student network, aiming at mirroring those pre-
dictions using the mentioned KLD loss. In this process, teacher model is frozen and only
parameters of the student model are updated. In order to test the system, teacher model
is discarded, and final predictions are obtained using the student model with a standard
softmax activationwith𝐾 = 1. As it is implemented, this version of KD can be interpreted
as a soft version of the pseudo-labelling method previously described.

Target data

𝐗𝑡

modelmodel
StudentTeacher backpropagate

update weightssoftmax(𝐾=𝑘)softmax(𝐾=𝑘)

LKLD

Figure 6.1: Schematic description of the proposal for the knowledge distillation domain adaptation technique.

Several examples of the use of KD techniques for solving the domain adaptation task
can be found in the literature. Authors in [190] apply KD to improve acoustic models for
ASR in application-specific conditions. Something similar is done in [191], that uses KD
algorithms to improve ASR performance in noisy environments. Concerning the SAD
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task, we can also see several examples of the teacher student architecture being used in
domain adaptation solutions [192] [193].

Deep CORAL

The recently proposed Correlation Alignment (CORAL) method [172] is an unsupervised
adaptation technique that is performed by aligning the second-order statistics of the
source and the target distributions. However, this technique relies on a linear trans-
formation and is not end-to-end. In order to address those issues, an extension on the
CORAL method named Deep CORAL was proposed [194] with the idea of incorporating
the CORAL technique directly into deep neural networks by constructing a differentiable
loss function that minimises the difference between source and target correlations.

The CORAL loss between two domains for a single feature layer is described in the
following lines. Suppose a set of training examples coming from the labelled source
domain, 𝐷𝑠 , described by 𝐔𝑠 = {𝑢𝑠1 , ... , 𝑢𝑠𝑁 } with 𝑢 ∈ ℝ𝑑 , and unlabelled target data 𝐕𝑡 =
{𝑣𝑡1 , ... , 𝑣𝑡𝑀 }, with 𝑣 ∈ ℝ𝑑 . The number of source and target data are 𝑁 and𝑀 respectively.
As described in the original paper, 𝐔𝑠 and 𝐕𝑡 represent the 𝑑-dimensional deep layer
activations of a deep neural network model. Considering the provided definitions, the
covariance matrices of the source and target data are given by the following equations:

𝐂𝐬 =
1

𝑁 − 1
(𝐔𝑇

𝑠 𝐔𝑠 −
1
𝑁
(𝟏𝑇𝐔𝑠)𝑇 (𝟏𝑇𝐔𝑠)) , (6.4)

𝐂𝐭 =
1

𝑀 − 1
(𝐕𝑇

𝑡 𝐕𝑡 −
1
𝑀

(𝟏𝑇𝐕𝑡)𝑇 (𝟏𝑇𝐕𝑡)) , (6.5)

where 𝟏 is a column vector with all elements equal to 1. The CORAL loss is then defined
as the distance between the second-order statistics of the source and target features. This
is shown in Equation (6.6):

LCORAL =
1
4𝑑2

‖ 𝐂𝐬 − 𝐂𝐭 ‖2𝐹 , (6.6)

where ‖ ⋅ ‖2
𝐹
denotes the squared matrix Frobenius norm.

The idea behind Deep CORAL adaptation technique is to obtain a set of deep features
that are both discriminative enough to train a strong classifier and invariant to the change
observed between source and target domains. Minimising a classification loss by itself,
as usually done in supervised learning approaches, may lead to overfitting on the source
domain and a reduced performance on the target domain. Contrastingly, minimising the
CORAL loss alone may lead to degenerated features. In order to match the conditions
stated above, the final loss to be optimised is a combination of both a classification loss
and the CORAL loss. The representation of the neural architecture needed to implement
Deep CORAL adaptation technique is shown in Figure 6.2. As shown, source features
are forwarded through the DNN model and then a classification loss is computed using
source labels. Similarly, target features are used in combination with source features
to compute CORAL loss. Network parameters are shared among the two DNN models.
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Figure 6.2: Schematic representation of Deep CORAL adaptation technique.

Considering the described architecture, the joint optimisation target of classification loss
and CORAL loss is described in Equation (6.7):

L = Lclassif +
𝑧

∑
𝑖=1

𝜆𝑖LCORAL𝑖 , (6.7)

where 𝐿classif is any traditional classification loss function such as cross entropy, 𝑧 is the
number of CORAL loss layers in a deep network and 𝜆𝑖 is a weight that trades off ad-
aptation and classification accuracy on the source domain. The sum term depicted aims
to represent the possibility of incorporating the CORAL loss on additional layers of the
DNN architecture. However, as described in the original paper, authors apply the CORAL
loss only to the last classification layer in the DNN architecture. In our experiments we
apply CORAL loss in the same way, simplifying Equation (6.7) to become Equation (6.8)
in the case where 𝑧 = 1:

L = Lclassif + 𝜆LCORAL . (6.8)

More recently, furtherwork has proposed a new approach built upon theDeepCORAL
method. Authors in [195] argue that the Euclidean distance used in the original Deep
CORAL proposal may not be the most appropriate way to measure the distance between
the source and target domains. Knowing that covariance matrices are positive semi-
definite, they can be seen as two points lying on a Riemman manifold, and the metrics
defined therein should consider its non-Euclidean structure [196]. Therefore, the Euc-
lidean distance as defined in Equation (6.6) may be seen as only suboptimal in such a
space. Considering this information, the log-Euclidean distance is instead a Riemannian
metric that better captures the manifold structure. This metric is defined according to
the following equation:

𝑑log(𝐗, 𝐘) = ‖ log(𝐗) − log(𝐘)‖𝐹 , (6.9)

where log(𝐗) is the matrix logarithm of 𝐗 [197]. Similarly as the CORAL loss, the log
CORAL loss can be obtained by replacing the Euclidean distance in equation (6.6) with
the log-Euclidean distance. This is shown in equation (6.10):

LlogCORAL =
1
4𝑑2

‖ log(𝐂𝐬) − log(𝐂𝐭)‖2𝐹 . (6.10)
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Through the eigenvalue decomposition of matrices𝐂𝐬 and𝐂𝐭 in Equation (6.10) we obtain
the final expression for Log Deep CORAL loss:

LlogCORAL =
1
4𝑑2

‖ 𝐒 diag(log(𝑠1), ⋯ , log(𝑠𝑑)) 𝐒𝐓 − 𝐓 diag(log(𝑡1), ⋯ , log(𝑡𝑑)) 𝐓𝐓 ‖2
𝐹
, (6.11)

where 𝑑 denotes the dimension of the features whose covariances are intended to align,
as previously explained, 𝐒 and 𝐓 are the matrices that diagonalise 𝐂𝐬 and 𝐂𝐭 respectively,
and 𝑠𝑖 and 𝑡𝑖 are the corresponding eigenvalues. The final setup for the log CORAL loss
is the same as the one explained for the original CORAL loss, being described in similar
terms as the ones presented in Equation (6.7): a classification loss is combined with the
log CORAL loss to obtain the global loss term.

6.3 Experimental setup

6.3.1 Data description

The idea behind the baselinemodel training is to obtain a genericmodel exposed to a huge
variety of data, so that an adaptation to new unseen domains can be performed later by
transferring that general knowledge to a target dataset. Table 6.1 summarises datasets
used for training and evaluating the baseline SAD system. As it can be observed, the

Table 6.1: Data description for baseline SAD training in the unsupervised domain adaptation set of experiments.

Domain
Broadcast Telephone Meetings

Train data
Albayzín 2010 - TV3 [11]

SRE08 Summed AMI [127]Albayzín 2018 - RTVE [125] ICSI Meet. [128]MGB [126]

Test data Albayzín 2020 - RTVE [129] CALLHOME [130] RT09

baseline SAD is trained on a combination of data coming from three domains: broadcast,
telephone channel and meetings. For the broadcast domain, the system is trained on a
combination of data from previous Albayzín evaluation campaigns (2010 and 2018) and
data from Multi-Genre broadcast (MGB) challenge. For the meetings domain, AMI and
ICSI meetings corpora are used. Finally, in order to represent the telephonic domain, the
summed partition of NIST 2008 speaker recognition evaluation (SRE) is incorporated into
training. In addition, 10% of each training dataset considered is reserved to generate a
validation subset containing data across the three domains considered. As described in
Table 6.1, we also reserve an additional dataset from each domain to evaluate the obtained
results in that domain with the baseline SAD system. These datasets are: Albayzín 2020
evaluation partition for broadcast domain, CALLHOME dataset for telephonic domain,
and the dataset originally released for NIST Rich Transcription (RT) 2009 evaluation for
meetings domain.
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The main goal of this work is to adapt SADmodels trained on a variety of domains to
a new unseen domain. This new domain is the one introduced in the Fearless steps chal-
lenge, with audio from Apollo space missions featuring quite degraded channels and sev-
eral kinds of transmission noises. In the following lines, we describe partitions provided
originally in the second phase of the challenge (FS-02) and explain how they have been
used in this work. Concerning the training subset, despite the ground truth labels for
this partition are available, in this set of experiments we consider the target domain un-
labelled, so we make no use of those labels in our systems. The training subset audio is
used then as target data in order to adapt SAD models to this new unseen domain. The
development subset is used in this work to evaluate our systems, in terms of the partic-
ular metrics described previously. The evaluation partition provided by the organisation
was not used in this work. The scoring of this subset was performed by organisers while
running the challenge and labels have not been released publicly, making it impossible
to obtain comparable results on this subset at the moment of developing this work. Fur-
thermore, all the obtained results in this work for the Fearless steps data are under the
challenge conditions because participants were allowed to use any available data in ad-
dition to the data provided by the organisation to train and tune their systems.

6.3.2 Neural network classifier

As the main element for the SAD system we opt for a CRNN based classifier. Particularly,
we use the variant applying 2D convolutions from the models already presented in our
previous work [198]. This specific model was chosen because it was the simplest model
obtaining the best performance when compared to its variant using 1D convolutions.
The schematic representation of the proposed CRNNmodel is described in Figure 6.3. As
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Figure 6.3: Convolutional recurrent neural network model proposed for the SAD domain adaptation experi-
ments.

it can be observed in the figure, the model is mainly composed of two elements. First,
three 2D convolutional blocks are used to process input features. Each of these blocks
is integrated by a 2D convolutional layer with 3x3 kernel size and 64 filters. Then it is
followed by a batch normalisation layer [151] and the application of a rectified linear
unit (ReLU) [100] activation function. Finally, a max-pooling mechanism is applied con-
sidering a 4x1 stride, so that only the frequency axis is downsampled. Then the output
of the last convolutional block is fed to the RNN block, generated by stacking three bi-
directional LSTM layers with 128 neurons each. This block is then followed by a linear
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layer that generates the final representation as a two neurons output. Raw speech score
is computed then as the difference between the logit value from both neurons.

6.3.3 Feature extraction

As a first preprocessing step, all the audios considered for this work were downsampled
to 8 kHz and converted to a single channel input. As input features for the proposed
neural network based SAD system we consider log Mel filter-bank energies. The ap-
proach followed is the same as the one described in Section 5.3.2, considering 64 log Mel
coefficients concatenated with the log energy of the frame. Features are computed every
10ms using a 25 ms Hamming window. As a final step, mean and variance normalisation
is performed at file level. This set of features described is shared among all experiments
described in this chapter.

6.3.4 Evaluation metrics

In order to evaluate our results, the evaluation protocol originally proposed in the Fear-
less steps challenge [124] is followed. Results are reported according to the DCF metric,
previously described in Equation (5.1). In addition to DCF, which depends on the chosen
threshold, results of the different systems are also reported using the AUC metric and
the EER. Furthermore, the desegregated performance for all possible operating points is
described using the DET curve, showing FPR values versus FNR values.

6.4 Results

6.4.1 Baseline system

As starting point for the experimentation, the main objective is to obtain a baseline sys-
tem so that further experiments could be compared against. This baseline model is the
one considered as the unadaptedmodel, trained only with out of domain data. This model
is fine tuned in the following experiments using the methods previously explained in or-
der to obtain a model adapted to the unseen domain. The experimental setup is built
upon the description provided in Section 6.3. Concerning the details of the optimisa-
tion process, Adam optimiser is used with a learning rate that decays exponentially from
10−3 to 10−4 during 20 epochs. Minibatch size is chosen to maximise the GPU memory
usage. Model selection is performed by choosing the best performing model in terms
of frame classification accuracy on the validation subset. Unless stated otherwise, these
optimisation details are common among all the following experiments described in this
chapter.

Results for the baseline system trained on broadcast, telephonic and meetings do-
mains in terms of AUC and EER can be observed in Table 6.2. Additionally, we also
report the results of one of our submissions to the original FS02 challenge [198] that
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Table 6.2: AUC and EER on three in domain datasets and FS02 development partition compared to a system
submitted to the challenge trained using only data from FS challenge.

Model Train domain Test domain Dataset AUC(%) EER(%)

Baseline Broad. +
Tele. + Meet.

Broadcast Albayzín 2020 98.12 6.68
Telephonic CALLHOME 96.70 7.62
Meetings RT09 97.07 6.98

Baseline Broad. +
Tele. + Meet.

Apollo
missions FS02 - Dev

97.57 6.55

Challenge
submission

Apollo
missions

Apollo
missions

99.56 3.28

was trained using the same experimental setup but with data coming from the training
partition provided for the challenge. This result is presented in order to provide an up-
per bound for the neural architecture performance in case it was trained with in domain
data. First, we report results for the three domains that the SAD baseline system has
seen in the training process. In general terms, it can be observed that competitive res-
ults are obtained on the three domains shown, with EER values around 7%. Focusing on
the obtained results for FS02 development partition, it can be observed that, as expected,
the baseline system underperforms when compared to the challenge submission trained
with in domain data. Particularly, a drop in performance close to 50% can be observed
in terms of EER. In the following subsections we aim to fill the gap between the baseline
model and the upper bound provided by the system submitted to the challenge by using
unsupervised domain adaptation techniques.

Results shown in Table 6.2 are complemented with those presented in Figure 6.4. In
this figure we show the DET curve and EER for the baseline system and the challenge
submission system on FS02 development partition. As it can be observed, a similar drop
in performance measured by the EER metric is applicable to all points in DET curve. Fur-
thermore, the baseline system tends to provide higher FNR values, whereas the challenge
submission curve shows a relatively constant slope in all the displayed range. As a point
for comparison, for FPR = 1%, the challenge submission provides FNR = 10% while the
baseline unadapted system yields FNR greater than 50%.

Now that the baseline system has been appropriately characterised and set in con-
text, in the following subsections we present the results for the three domain adaptation
techniques described in this work.

6.4.2 Pseudo-label domain adaptation

As described in Section 6.2.3, pseudo-labelling is a method traditionally used to alleviate
the need for labelled data. In the following experiments, we use it in order to adapt a
model to a new unseen domain. The first step needed to perform this technique is to
obtain a new set of pseudo-labels for the target data. To do so, we run the FS02 train-
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Figure 6.4: DET curve and EER on FS02 development partition comparing a baseline system trained using out
of domain data and our submission to the challenge trained using in domain data.

ing partition through the previously obtained baseline SAD model and store the speech
scores, that are then thresholded accordingly to obtain the final pseudo-labels. In the
next step, those pseudo-labels are considered as the ground truth for the target data and
used to train a new model in a supervised way.

Even though labels for FS02 training partition data are not used in this work to train
any model, those labels are still available and can be used to obtain an objective evalu-
ation of the pseudo-labels obtained via the baseline model. This evaluation is shown in
Table 6.3 in terms of AUC and EER. Furthermore, as this method relies heavily on the
operating point chosen for the pseudo-labels, we also report FPR and FNR for three oper-
ating points, one with low FPR, one with balanced FPR and FNR, and one with low FNR.
By using these operating points, three sets of pseudo-labels are obtained. Experiments
are performed separately for each set of pseudo-labels in order to observe the influence of
the operating point in this domain adaptation strategy. As it can be observed, the values

Table 6.3: AUC, EER, FPR and FNR on three operating points for the pseudo-labels obtained using the baseline
model on FS02 training partition.

Dataset AUC(%) EER(%) Operating point FPR(%) FNR(%)

FS02 - Train 97.36 7.28
Low FPR 5.78 10.00
Balanced 7.37 7.15
Low FNR 11.04 3.56

for AUC and EER are in line with those obtained with the baseline model on the devel-
opment partition, yet the EER is slightly greater for the training partition. Concerning
the operating points considered, it should be noted that, in general terms, by using these
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pseudo-labels the neural network is dealing with an approximately 15% of wrong labels
in the adaptation process.

Once pseudo-labels have been obtained using the baseline model, several alternatives
can be used to obtain a new adapted model. In this work, we explore two of those altern-
atives. On the one hand, we train a new model from scratch using the same experimental
setup as the one described for the baseline model but using FS02 training partition audio
and the obtained pseudo-labels as ground-truth. On the other hand, we also evaluate
the possibility of fine tuning the baseline model via the obtained pseudo-labels for the
FS02 training partition, using a learning rate ten times smaller than the one used in the
original training process. Table 6.4 describes the obtained results in terms of AUC and
EER for each possible operating point and for both training strategies. When compared

Table 6.4: AUC and EER for FS02 development partition using the pseudo-label domain transfer setup training
a new neural network from scratch and fine tuning the baseline neural network.

Pseudo-labels
From scratch Fine tuning

AUC(%) EER(%) AUC(%) EER(%)

Low FPR 98.06 6.43 98.03 6.20
Balanced 98.21 6.47 98.09 6.44
Low FNR 98.26 6.66 98.19 6.50

to the unadapted baseline system, it can be observed that the results presented using the
pseudo-labelling method share two common characteristics: a minor improvement in
terms of AUC metrics, while the EER remains similar to the one reported in the baseline
system. No significant difference can be observed between the two training strategies
presented. Concerning the operating points for the pseudo-labels, the low FPR operating
point yields the lowest EER for both training strategies, while at the same time it also
reports the lowest AUC values.

In order to further understand the behaviour of the pseudo-labelling strategy, Fig-
ure 6.5 shows the DET curve and EER on the FS02 development partition for the baseline
system and the systems trained using pseudo-labelling domain adaptationmethods. From
Figure 6.5, it can be seen that the pseudo-labelling technique provides no significant im-
provement in EER values. On the other hand, we can see that the improvement in AUC
metric observed previously comes from the improvement compared to the baseline sys-
tem in DET curve in the areas with high FPR and FNR values. In general terms, experi-
mental results suggest that pseudo-labelling techniques can help obtaining a DET curve
with constant slope, reducing error in areas with high FPR and FNR values, while not
significantly modifying the EER value of the system used to obtain pseudo-labels.

6.4.3 Knowledge distillation domain adaptation

According to the theoretical explanation provided in Section 6.2.3, we aim to perform
domain adaptation using the knowledge distillation framework applied to the SAD task.
In the following, we describe the training process. First, teacher and student models
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Figure 6.5: DET curve and EER on the FS02 development partition using the pseudo-label domain transfer
setup training a new neural network from scratch (left) and fine tuning the baseline neural network (right),
both compared to the baseline system.

are initialised using the unadapted baseline model. Teacher model weights are frozen
during the entire training, and only student model weights are updated. The output of
both models is compared using KLD loss after going through softmax activation with
a temperature parameter 𝐾 , shared for teacher and student models. At inference, the
softmax layer is used in its standard form with temperature 𝐾 = 1. Obtained results in
terms of AUC and EER using knowledge distillation are shown in Table 6.5 for various
values of the temperature parameter 𝐾 . A decreasing tendency for EER can be observed

Table 6.5: AUC and EER on the FS02 development partition using knowledge distillation domain adaptation
setup with various softmax temperature values compared to the baseline system.

Softmax temperature AUC(%) EER(%)

𝐾 = 1 97.79 6.41
𝐾 = 10 97.72 6.32
𝐾 = 20 97.80 6.27
𝐾 = 30 97.80 6.25
𝐾 = 40 97.72 6.23
𝐊 = 𝟓𝟎 97.86 6.02
𝐾 = 60 97.70 6.33

when increasing the temperature parameter up to 𝐾 = 50, achieving a best EER value
of 6.05%. However, this tendency is not consistent for AUC metric, showing values in
between 97.80 and 97.86. When compared to the baseline system, best temperature con-
figuration reports 8.10% relative improvement on the EER value, yet this improvement in
EER only leads to 0.29% relative improvement on the AUC metric. In general terms, an
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improvement in performance can be observed using the temperature softmax activation
as argued by [186], however this improvement is limited.

Results in Table 6.5 are complemented with those presented in Figure 6.6. In this
Figure we present the DET curve and EER for some of the best performing knowledge
distillation systems compared to the unadapted baseline system. As observed in Figure

K

K

K

K

Figure 6.6: DET curve and EER on the FS02 development partition using the knowledge distillation domain
adaptation setup with various softmax temperature values compared to the baseline system.

6.6, unlike the pseudo-labelling strategy, knowledge distillation seems to be able to de-
crease the EER point on the DET curve by using a large temperature parameter. However,
it can also be seen that all curves are really close to each other, this being translated in
AUC values very similar to those obtained by the baseline system. In general terms, it
can also be observed that knowledge distillation does not correct the baseline system
tendency to provide high FNR values. This may be due to the fact that KLD loss makes
the student network mimic the predictions of the teacher network, so probability distri-
butions and the relations between speech and non-speech observations should remain
similar.

6.4.4 Deep CORAL domain adaptation

As an additional third alternative to the previously evaluated unsupervised domain ad-
aptation techniques, in the following lines we evaluate experimentally the feasibility of
Deep CORAL and its variations for the SAD task. Following the theoretical explanation
provided in Section 6.2.3, we train a new model using the Deep CORAL and Log Deep
CORAL techniques using the same experimental setup: the baseline model is used to ini-
tialise the new adapted model, that is then fine tuned for 10 epochs using a learning rate
decaying exponentially from 10−4 to 10−5 (10 times smaller than the one used to train
the baseline model). CORAL and log CORAL losses are applied only on the final linear
layer of the DNN classifier. Final loss term is then computed using cross entropy loss
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considering the source labels, and the respective CORAL loss weighted by a factor 𝜆. As
described in the original paper, 𝜆 value was chosen so that, at the end of the training,
the classification loss and the CORAL loss are in the same order of magnitude. Obtained
results using both, Deep and Log Deep CORAL methods, are shown in Table 6.6 in terms
of AUC and EER for three 𝜆 values in the same order of magnitude. As observed in Table

Table 6.6: AUC and EER for FS02 development partition using Deep CORAL and Log Deep CORAL domain
adaptation setups using various 𝜆 weights.

Method CORAL weight AUC(%) EER(%)

Deep CORAL
𝝀= 𝟎.𝟗 98.19 5.53
𝝀= 𝟏.𝟎 98.18 5.43
𝝀= 𝟏.𝟏 98.25 5.53

Log Deep CORAL
𝝀= 𝟎.𝟗 98.26 5.36
𝝀= 𝟏.𝟎 98.26 5.48
𝝀= 𝟏.𝟏 98.24 5.37

6.6, both Deep CORAL and Log Deep CORAL, provide the lowest EER values obtained
in this work so far through model adaptation. Best result in terms of EER is obtained
using Log Deep CORAL method, with an EER of 5.36%, which results in 18.17% relative
improvement when compared to the unadapted baseline system. Concerning the AUC
values observed, obtained results are in line with the best performing system using the
pseudo-labelling techniques, showing also better values than the knowledge distillation
method. As done in previous experiments, we also report the DET curves in order to
observe the behaviour of the adapted systems in all possible operating points. This curve
is shown for the Deep CORAL (left) and Log Deep CORAL (right) systems in Figure 6.7
for multiple values of 𝜆 compared to the DET curve of the baseline system.

Figure 6.7: DET curve and EER on the FS02 development partition using Deep CORAL and Log Deep CORAL
domain adaptation setups using multiple 𝜆 weights compared to the baseline system.
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As observed, CORAL based domain adaptation techniques provides the best improve-
ment in the DET curve, so far in this set of experiments. When compared to the baseline
system, besides significantly decreasing the EER, an overall improvement can be seen in
the DET curve for the areas reporting high FNR values. That is the reason why the AUC
value reported increased when compared to the baseline system. Both, Deep CORAL and
Log Deep CORAL, seem to be insensitive to 𝜆 value, showing a similar performance as
long as 𝜆 remains in the same order of magnitude.

By observing the behaviour of the Log Deep Coral method and the pseudo-label
strategies previously characterised, it becomes apparent that both solutions may be com-
plementary. While the Log Deep CORAL DET curve shows no improvement over the
baseline for high FPR values, the DET curve for the pseudo-labelling method obtains its
best results in that area, making it the onewith best performance for high FPR values over
the three methods evaluated. This fact suggest that combining both methods, applying
them in cascade, might provide even further improvements to the SAD neural network.
This idea is evaluated experimentally in the following subsection.

6.4.5 Cascaded application of domain adaptation methods

In view of the results presented in previous subsections, this final experiment evaluates
the possibility of applying two domain adaptation methods in a cascaded setup in or-
der to improve even further the results on the new unseen domain. By combining the
capabilities of CORAL based adaptation to obtain an overall boost in performance and
the pseudo-label adaptation to obtain a DET curve with a constant slope, we use both of
them in a cascaded setup. The baseline model is first adapted using the Log Deep CORAL
method. Then the adapted model is used to extract a new set of pseudo-labels, which are
later used to obtain a final model using both training strategies described in previous ex-
periments, either training a new model from scratch, or fine tuning the previous model.
Table 6.7 shows an objective evaluation of the pseudo-labels obtained via the Log Deep
CORAL model in terms of AUC, EER and FPR and FNR for the same three possible op-
erating points considered in previous experiments. As expected, we can observe that the

Table 6.7: AUC, EER, FPR and FNR on three operating points for the pseudo-labels obtained using the best
performing model adapted through Log Deep CORAL method on FS02 training partition.

Dataset AUC(%) EER(%) Operating point FPR(%) FNR(%)

FS02 - Train 98.26 5.63
Low FPR 4.55 7.55
Balanced 5.70 5.54
Low FNR 7.27 3.78

overall quality of the pseudo-labels has improved when compared to those obtained us-
ing the baseline model (see Table 6.3). Improvements obtained are in line with the ones
presented on the FS Development subset when using the Log Deep CORALmethod, with
the EER metric decreasing from 7.28 to 5.63%. By using this new set of pseudo-labels the
adaptation process is performed feeding the neural network with an approximately 11%
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of wrong labels distributed according to the three operating points shown. Obtained res-
ults using this new set of pseudo-labels are described in Table 6.8 in terms of AUC and
EER for each possible operating point and for both training strategies described. The

Table 6.8: AUC and EER for FS02 development partition using pseudo-label domain transfer setup training a
new neural network from scratch and fine tuning the best performing model adapted using Log Deep CORAL
method.

Pseudo-labels
From scratch Fine tuning

AUC(%) EER(%) AUC(%) EER(%)

Low FPR 98.86 5.21 98.85 5.34
Balanced 98.81 5.50 98.83 5.49
Low FNR 98.75 5.67 98.85 5.51

previously observed behaviour of the pseudo-labelling method is repeated in this new
experiment. In general terms, compared to Log Deep CORAL model (AUC = 98.25%,
EER = 5.48%), it can be seen that pseudo-labelling strategies provide an improvement
on the AUC metric while maintaining a similar EER value. As a matter of fact, all the
AUC values reported outperform those from previous experiments, with the best case
scenario of AUC = 98.86% obtained by training a new model from scratch using low
FPR pseudo-labels. Concerning the training strategies considered, experimental results
suggest that no significant difference can be found between training a new model from
scratch or fine tuning the previous stage model. In terms of operating point, the EER
value obtained using low FPR is slightly lower for both training strategies, however this
difference becomes insignificant when considering the AUC metric.

6.4.6 Discussion

Once all the results for the unsupervised domain adaptation methods have been de-
scribed, in this section we aim to provide a brief discussion on its behaviour, setting them
in the context of the original FS challenge and using the original DCF metric in order to
obtain a performance comparison. Table 6.9 presents a summary of the best obtained
results using all methods explored (pseudo-labels, KD, Deep CORAL), and the cascaded
application of both of them in terms of AUC, EER, and DCF metric as used in the FS
challenge. We also report the relative improvement obtained in DCF metric compared to
the unadapted baseline system. For comparison, we present the challenge baseline result
provided by the FS challenge organisation [122], and our submission to the challenge
trained using in domain data.

Concerning the results of the pseudo-labelling strategy, we can observe a relative
improvement in DCF metric between 11% and 12% when compared to the unadapted
baseline system. This improvement comes mainly from the correction made to the DET
curve, with those systems showing a behaviour with more constant slope. This means
that systems adapted using this method show a better performance in areas with high
FPR or high FNR while, at the same time, EER remains very similar to that of the baseline
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Table 6.9: AUC, EER, DCF and DCF relative improvement over the unadapted baseline model on the FS02
development partition using the three evaluated domain adaptation methods, and the cascaded application of
two of them with the best performing hyperparameter configuration in terms of DCF metric compared to the
original challenge baseline and our submission to the challenge trained using in domain data.

Model AUC(%) EER(%) DCF(%) Rel. improv.(%)

Baseline 97.57 6.55 4.84 -

Pseudo-labels (fine tune) 98.03 6.20 4.25 12.19
Pseudo-labels (scratch) 98.21 6.46 4.31 10.95

Knowledge distillation (𝐾 = 1) 97.79 6.41 4.78 1.24
Knowledge distillation (𝐾 = 50) 97.86 6.02 4.56 5.79

Deep CORAL (𝜆 = 1.1) 98.25 5.53 4.26 11.98
Log Deep CORAL (𝜆 = 1.0) 98.25 5.48 4.20 13.23

Log CORAL + PL (fine tune) 98.85 5.34 3.67 24.17
Log CORAL + PL (scratch) 98.86 5.21 3.65 24.59

Challenge baseline - - 12.50 -
Challenge submission 99.56 3.28 2.56 -

system. The knowledge distillation systems offer the lowest improvement in DCF of all
methods evaluated. Even though its configuration with high softmax temperature still
shows a non-neglectable 5.79% relative improvement compared to the baseline system,
this solution shows limited applications. DET curve is really similar to the one obtained
by the baseline system, with limited improvement in AUC. Finally, CORAL based meth-
ods show one of the most promising results of this study. The best hyperparameter con-
figuration using Log Deep CORAL achieves a DCF relative improvement of 13.23% com-
pared to the baseline system. These results shows the lowest EER value in this work in the
case of the application of a single technique, while also reporting an overall improvement
for the full DET curve.

Best results in terms of DCF are obtained by applying Log Deep CORAL and pseudo-
labelling in a cascaded setup. In the case of training a new model from scratch using
pseudo-labels from the previous step, DCF is 3.65%, which is equivalent to 24.59% relat-
ive improvement compared to the unadapted baseline system. Furthermore, experimental
results confirm that both methods are complementary. As shown, the total relative im-
provement with both techniques is equivalent to the sum of relative improvements when
used separately.

As a final point in this discussion, and in order to provide a condensed view of the
best obtained results in this work, Figure 6.8 presents DET curve and EER of the three
evaluatedmethods by themselves (left), and the cascaded application of LogDeep CORAL
and pseudo-labelling (right) using the best hyperparameter configuration in terms of DCF
metric compared to the unadapted baseline and our submission to the challenge trained
using in domain data.
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Figure 6.8: DET curve and EER on the FS02 development partition using the three evaluated domain adaptation
methods (left), and the cascaded application of two of them (right) with the best performing hyperparameter
configuration in terms of DCF metric compared to the unadapted baseline system and our submission to the
challenge trained using in domain data.

Observing the comparative of the single method application (left), it can be seen
again that the most promising result in terms of improving the DET curve is obtained
by the Log Deep CORAL method, while the improvement of the knowledge distillation
method is limited. Focusing on the comparison on the cascaded application of Deep
CORAL and pseudo-labelling (right), it can be observed that the DET curve obtained for
the cascaded application of both methods (in pink) supports again the hypothesis that
both techniques are complementary. Applying the pseudo-labelling strategy on top of
the Log Deep CORAL model results in a DET curve with a similar EER value but a per-
formance significantly improved in areas with high FPR and high FNR. With this method
we achieve the best DET curve in this work that, as already presented, allows to decrease
even further the DCF metric, which is influenced in a higher way by false negative er-
rors. As an example operating point for comparison, focusing on a FPR value of 1%, the
unadapted baseline system shows a FNR value greater than 50%. While the Log Deep
CORAL model reduces this value to be around 40%, the improvement is much more sig-
nificant with the combination of both adaptation methods, that reports a FNR value of
25%.

Even though there is still a gap between the best obtained results and a model trained
using in domain data, in practical scenarios, where no labels are available, experimental
results have proved that unsupervised domain adaptation can improve significantly the
performance of SAD systems. Best results are obtained using an approach that combines
two methods. The application of this solution increases the computational complexity of
the adaptation process in training time. However, the increase in complexity introduced
by pseudo-labelling is minimal compared to the one already introduced by Log Deep
CORAL. The latter implies a training process that computes two covariance matrices for
CORAL loss and a classification loss, while the former only requires inference computa-



84 Chapter 6. Unsupervised domain adaptation of speech activity detection models

tion on the unlabelled data and then a simple training process with a classification loss.
Furthermore, inference complexity remains the same in all cases as there is only need to
compute the final adapted model to obtain SAD predictions.

6.5 Conclusions

In this chapter the use of unsupervised domain adaptation techniques in the context of
the SAD task has been explored. An initial baseline model was trained on a variety of
well-known domains with large amounts of labelled data available. Then, a study was
performed on threemethods that allow to perform adaptation directly on themodel space
with the objective of fine tuning the mentioned baseline model using only unlabelled
data. We have used the data provided in the FS challenge, coming from a singular domain
such as Apollo space missions, to experimentally validate in the SAD task the methods
presented. Yet the methods are general enough so that they can be easily applied to other
datasets. Furthermore, no labels are required for them to be used, significantly reducing
the constraints for choosing them in practical applications.

Through the application of Deep CORAL based domain adaptation methods, results
show a 13% relative improvement in the DCF metric of the original challenge. Further-
more, the cascaded application of Deep CORAL and pseudo-labelling techniques provides
the best results in this study, with a significant 24% relative improvement compared to
the baseline system. These experimental results suggest that Deep CORAL and pseudo-
labelling techniques are complementary. The first one providing an overall improvement
in the DET curve and reducing the EER. The second one improves the AUC value by
modifying the DET curve so that its slope becomes constant, specially in areas with high
FPR and FNR values. The improvements in performance observed allow to substantially
reduce the gap for the SAD task between a system trained using in domain data and
an approach based on fully unsupervised adaptation. Even if the knowledge distillation
method shows an improvement in performance compared to the unadapated baseline
model, this improvement is limited compared to the one observed by CORAL based tech-
niques. This kind of domain adaptation methods, seeking to minimise the statistical dis-
tribution shift between source and target domains, provide one of the most promising
results in this set of experiments.
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observedwhen SAD systems need to operate in a domain different from the one theywere

85



86 Chapter 7. Self-supervised representation learning for speech activity detection

trained on. This case was tested using a traditional set of perceptual features, namely log
Mel filter-bank energies. The experiments described showed that the performance of
SAD systems under these circumstances could be improved by applying unsupervised
domain adaptation techniques. However, this scenario still requires to gather unlabelled
audio from the target domain in order to benefit from those techniques.

Recent advances in self-supervised representation learning have shown significant
improvements in performance in several speech processing tasks under different do-
mains. Motivated by this issue, we aim to incorporate recent advances in self-supervised
representation learning in audio segmentation systems, specifically in the SAD task, as
a way to solve possible domain mismatches observed in test data. Self-supervised rep-
resentation learning could be used as a way to extract knowledge from huge amounts
of unlabelled data, obtaining more robust representations even without any information
from the target domain being available. The amount of works that have tested these new
representations in the audio segmentation field is still limited, and it is currently an active
research line within the speech processing community.

The experimental setup defined in this chapter is built again around the Fearless steps
challenge, focusing now on phase III and phase IV of the challenge (in years 2021 and
2022, respectively). As a progression, these two phases were devoted to the development
of single channel supervised learning strategies with the aim of testing system general-
isation to varying channel and mission data. More than 10 hours of new evaluation data
were included as a novelty, featuring unseen channels and additional data fromApollo-13
mission. In the following lines, we describe our submissions to these two editions, that
build upon the neural architectures evaluated in the previous edition of this challenge
described in Chapter 5, where CRNN models yielded competitive results. The novelty
introduced is the use of the mentioned self-supervised feature learning techniques to ob-
tain new representations of audio signals more discriminative than traditional perceptual
features. In the experiments performed for phase III, we compare log Mel filter-bank en-
ergies with a wav2vec approach, while experiments in phase IV also incorporated recent
wavLM models to obtain new audio features.

7.2 Self-supervised representation learning

7.2.1 wav2vec approach

Our first proposed representation learning approach is inspired by the one presented
in [110], with some variations. As shown in Figure 7.1, two stages are combined to learn
a feature extractor: first, an strided CNN encoder runs directly on the 8 kHz waveform
mapping the input sequence 𝑋𝑡 , corresponding to a set of samples from the audio signal,
to a latent space 𝑍𝑡 . The total downsampling factor of the network is 80, resulting in a
feature vector every 10 ms of audio. The second part is implemented as a single layer
bidirectional GRU recurrent neural network [97] with 512-dimensional hidden state per
direction. The output of the GRU layer is used as the context 𝐶𝑡 from which we predict
8 values from the latent space sequence using a contrastive loss seeking to minimise the
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Figure 7.1: Schematic overview of the wav2vec approach for self-supervised representation learning.

InfoNCE metric [110]. Similarly to Decoar [199] or BERT text models [102], the left and
right context embeddings of the bidirectional GRU are used to predict future and past val-
ues of the latent space sequence respectively, providing a loss term from future and past
frame prediction tasks. The final loss function is the sum of both directional losses. This
results in a final representation of 1024 dimensions being used as the context embedding.
In the training stage of neural networks classifiers, the self-supervised representation
learning model is frozen and these context embeddings are extracted to be used as our
proposed learned features.

Concerning the prediction process of our system, unlike [114], our approach uses
a single head for predicting future and past timesteps respectively, with an architecture
consisting of a single hidden layer [112]. Furthermore, predictions for a clean reference 𝑍𝑡

are obtained using augmented data from context 𝐶𝑡 . Noises from MUSAN database [133]
are added with a signal to noise ratio (SNR) that is sampled from an uniform distribution
in the range (3, 15) dB. We also simulated different room impulse responses (RIR) using
the gpuRIR toolkit [200] to incorporate reverberated conditions in training time.

7.2.2 wavLM approach

As an alternative to our implementation of the wav2vec approach, we also propose to
evaluate recent wavLM models [118] in the SAD task. In this case, we use the publicly
available pretrained models from Microsoft’s Github repository1. Unlike the wav2vec
approach that gathers temporal information trough an RNN, the core of the wavLM ap-
proach is a transformer model. Figure 7.2 shows an schematic overview of the wavLM
neural architecture. As it can be seen, twomain blocks are needed for the implementation

1https://github.com/microsoft/unilm/tree/master/wavlm

https://github.com/microsoft/unilm/tree/master/wavlm
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Figure 7.2: Schematic overview of the wavLM approach for self-supervised representation learning.

of this approach: first, a convolutional feature encoder that represents 25ms of audio with
a stride of 20ms. This encoder is made of seven temporal convolution blocks followed
by a layer normalisation and a GELU activation. Then, a transformer encoder is used to
model sequential information. During the training process, the transformer consumes
the masked acoustic features coming from the convolutional encoder and outputs hid-
den states. The training objective forces the network to predict a discrete target sequence.
As done in HuBERT, those targets are obtained by applying the k-means clustering al-
gorithm on the training data in an iterative process where MFFC features are used in
the first step, and the latent representations learned are used in the following iterations.
With the goal of improving model robustness in challenging acoustic environments and
preserving speaker information, training process for wavLMmodels simulated noisy and
overlapped speech at the input. Then, target sequence prediction is performed using the
original speech on the masked region. A more detailed explanation of the wavLM model
and training strategy can be found in [118].

In our experiments we use two variants of the wavLM models, as described in the
original paper: wavLM Base+ and wavLM Large. The main difference between both is
the number of parameters. The wavLM Base+ model contains 12 encoder layers and uses
a hidden state with 768 dimensions, while wavLM Large has 24 encoder layers and uses
a hidden state of 1024 dimensions. In both cases we use only the last hidden layer of the
model as input to our SAD neural network.

Baseline perceptual features

In order to obtain a baseline result, features obtained through self-supervised learning are
compared with a traditional set of perceptual features, considering logMel filter-bank en-
ergies. Namely, we use the same configuration as the one described in Section 5.3.2 from
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previous participations in the challenge, 64 log Mel filter-bank energies concatenated
with the log energy of the frame.

7.3 Experimental setup

7.3.1 Data description for self-supervised learning

As it was already mentioned in previous chapters, the Fearless steps challenge follows
open training conditions. This means that participants can use any available data in ad-
dition to the provided challenge data to train and tune their systems. Considering this,
our proposed self-supervised representation systems can benefit from huge amounts of
unlabelled training data. In the case of the wav2vec approach, the system was trained
including several datasets in English: Librispeech, RSR2015, Tedlium release 1, Voxforge,
Librilight, Voxceleb 1 and 2, Commonvoice (English only) and MLS (English only). This
results in a total of around 130 thousands hours of unlabelled audio used in training for
the wav2vec approach. Concerning wavLM models, WavLM Base+ and WavLM Large
were trained using the same three datasets: Librilight, GigaSpeech and VoxPopuli, sum-
ming more than 90 thousands hours of unlabelled audio.

7.3.2 Data description for SAD classifier

In a similar way as done in Chapter 5, SAD neural network classifiers in this set of ex-
periments are trained using exclusively data provided by the challenge organisation. The
training subset provided consisted of 62.5 hours of audio, from which 10% was reserved
for training validation. Results are then reported on the development subset consisting
of the same 15 hours as in previous editions of the challenge, and in the new evaluations
subsets including new channel and mission data. These subsets feature 34 hours of audio
in the 2021 edition and 35 hours in the 2022 edition.

7.3.3 Neural network classifier

The different architectures considered for the neural network classifier are taken from
our previous experience in the Fearless steps challenge. Namely, we evaluate the same
systems described in Chapter 5, combining a set of convolutional layers working as a
processing stage and an RNN block made of 3 BLSTM layers. Three variants are imple-
mented for the convolutional layers, with 1D convolutions, 2D convolutions and a third
approach that fuses information from both 1D and 2D convolutions in different ways.
The exact details of these models can be found in Section 5.2.1.

The neural network output may result in a noisy estimation of class boundaries. Aim-
ing to avoid high-frequency transitions, neural network outputs are smoothed using an 𝐿
order averaging filter. This filter is implemented as a zero-phase FIR filter to avoid phase
distortions in the output signal. The optimal value for 𝐿 was empirically found to be in
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the range between 50 and 60, which is equivalent to considering a moving average of 500
to 600 ms

7.3.4 Evaluation metric

The evaluation protocol for the Fearless steps challenge has remained similar in all the
editions of the challenge. Results are evaluated applying the same DCF metric used in
Chapters 5 and 6, that is described in Equation (5.1) considering false negative errors
more important than false positive errors.

7.4 Results

Results described in this chapter are derivedmainly from our submissions to the SAD task
of two consecutive editions of the Fearless steps challenge, namely 2021 (phase III) and
2022 (phase IV) editions. In the following subsectionswe describe results obtained in each
one of the challenge editions, with different approaches to the self-supervised represent-
ation learning paradigm. The main difference between both editions is that submissions
to the 2022 edition also incorporated the recently released wavLM models, while results
for 2021 edition only evaluate the wav2vec approach described in Section 7.2.1.

7.4.1 Results for Fearless steps challenge phase III

TSNE [201] is a well-known dimensionality reduction technique useful for visualisation
of high dimensional datasets. Seeking to obtain a deeper understanding of the informa-
tion provided by the new set of features learned through wav2vec methods, we compare
them to perceptual log Mel filter-bank energies through a TSNE projection. Figure 7.3
shows this projection on a 2D plane of the validation susbet for both 64 logMel filter-bank
energies and the features obtained with the wav2vec system. It can be observed that log

Figure 7.3: TSNE 2D projection for the validation subset of both set of features considered in this work: 64 log
Mel filter-bank energies + log energy (left) and features obtained through the wav2vec system (right).

Mel filter-bank energies show a significant overlap between the speech and non-speech
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classes. On the other hand, self-supervised features provide a much more separable rep-
resentation of both classes, with a minimum amount of overlap between speech and non-
speech when compared to log Mel filter-bank energies. It is also to interesting to observe
how the self-supervised features tend to assemble on small sub-clusters. This fact may
come motivated by the sequentiality introduced by the RNN from our self-supervised
representation learning system, grouping together features that are temporally close.

Once we have experimentally validated the separability provided by the new self-
supervised features, we evaluate them on our SAD system. Table 7.1 presents the ob-
tained results for the different systems submitted. We compare the performance of all

Table 7.1: SAD results in terms of DCF metric on the development and evaluation partition for the CRNN
trained using log Mel filter-bank energies and the proposed self-supervised features.

log Mel wav2vec
System DCF(%) DCF(%)

Dev Eval Dev Eval

CRNN 2D (3x3) 1.27 7.82 0.92 3.63

CRNN 1D 1.44 8.49 0.65 2.98
CRNN 1D dilation 1.59 7.13 0.91 3.66
CRNN 1D groups 1.37 8.46 0.96 3.13

CRNN fusion bilinear 1.30 7.55 0.87 3.86
CRNN fusion sum 1.28 8.64 0.97 3.11
CRNN fusion concat 1.48 9.06 0.84 3.36

the presented CRNN architectures using log Mel filter-bank energies and the repres-
entation obtained with wav2vec as input. Results are reported in terms of DCF met-
ric for both, development and evaluation partitions. As a comparison, we also report the
baseline provided by the organisation, which is based on a statistical approach [155]. This
system yielded a DCF value of 12.50% and 15.61% respectively for the development and
evaluation partitions. As it can be observed, all our submissions largely outperform the
baseline provided by the organisation. Concerning the results using log Mel filter-bank
energies as input, competitive results are obtained on the development partition, with a
DCF metric of 1.27% obtained in the best case with the 2D convolutional setup. However,
a strong degradation in results can be observed when comparing to the metric reported
in the evaluation partition, with a best case DCF of 7.13% for the 1D convolutional setup
using dilation. This fact could be expected as new data from unseen channels has been
included in this new edition of the challenge, so unlike results described in Chapter 5, a
bigger mismatch is observed between development and evaluation results.

An overall improvement can be observed on all the neural architectures evaluated
when using the new learned features. Best results are obtained with the 1D convolu-
tional setup, yielding a DCF metric of 0.65% and 2.98% on the development and evalu-
ation partitions respectively. Even though the boost in performance observed using the
wav2vec features is significant in the development and evaluation partitions, it should
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be noted that this improvement is more relevant in the case of the evaluation dataset.
While the average relative improvement observed comparing log Mel filter-bank ener-
gies and wav2vec features among all the architectures evaluated is around 37% in the
development data, this percentage increases to 58% in the case of the evaluation data.
Given the composition of the evaluation data in this edition of the challenge, with new
unseen channels being present, these results suggest that learned features show a robust
behaviour discriminating speech and non-speech classes even in possibly shifted acoustic
conditions.

wav2vec 

wav2vec 

Figure 7.4: Qualitative visualisation of SAD scores in a 16 seconds audio fragment extracted from file
“fsc_p3_dev_001”. From top to bottom: spectrogram with SAD ground truth overlapped, and speech
score for different SAD systems proposed.

Additionally, in the following lines a qualitative visualisation of our SAD system per-
formance on different audio excerpts from development partition is shown, comparing
the use of logMel filter-bank energies andwav2vec features as input for the Conv1D SAD
neural network. First, Figure 7.4 shows the spectrogram with the SAD ground truth and
the speech score for a fragment of file fsc_p3_dev_001, that reported a DCF value
of 0.02% for log Mel filter-bank energies and 0.01% for wav2vec features. As expected, a
high speech score is associated with a strong evidence of speech presence in the audio
spectrogram. Generally, it can be observed that both solutions can capture accurately the
speech and non-speech fragments. It is also interesting to mention that the system using
wav2vec features as input consistently provides a higher score than the setup using log
Mel filter-bank energies for speech fragments, and lower scores for the non-speech frag-
ments. Concerning the behaviour of the averaging filter, it can be seen that some of the
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high frequency occurrences in the speech score are eliminated, resulting in a smoother
signal being used in the thresholding process.

Figure 7.5: Qualitative visualisation of SAD scores in a 16 seconds audio fragment extracted from file
“fsc_p3_dev_020”. From top to bottom: spectrogram with SAD ground truth overlapped, and speech
score for different SAD systems proposed.

A similar plot is shown in Figure 7.5, comparing the evolution of speech scores for
both considered input features in the case of the file fsc_p3_dev_020. Unlike the
previous example, this case illustrates more complex acoustic conditions with a reported
DCF value of 6.04% for log Mel filter-bank energies and 5.50% for wav2vec features. By
observing the spectrogram it can be seen that a stronger background noise is present, be-
ing mainly present in lower frequencies. Furthermore, some babble noise is also present
in the signal. This may be the reason why the speech score for the first five seconds in the
fragment is relatively higher compared to non-speech fragments from Figure 7.4 despite
being labelled as silence. For fragments labelled as speech, it can also be observed that
,in general terms, the score tends to be lower compared to the previously shown visual-
isation. Concerning both set of features, same trend observed in the previous example
is repeated, with wav2vec features providing higher scores than the setup using log Mel
filter-bank energies for speech fragments, and lower scores for the non-speech fragments
in most cases.

7.4.2 Results for Fearless steps challenge phase IV

As done in the previous section with phase III results, Figure 7.6 shows a TSNE projec-
tion on a 2D plane of the validation subset for the four set of features considered seeking
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64 log Mel + logE wav2vec

wavLM Base+                   wavLM Large

Figure 7.6: TSNE 2D projection for the validation subset for the Mel based baseline features and the three
alternatives obtained through wav2vec and wavLM representation learning.

to perform an exploratory analysis of the obtained representations. In this edition res-
ults, we evaluate the wav2vec approach and the two alternatives for the wavLM model
compared to log Mel energies. It can be observed that, in general terms, when com-
pared to the log Mel filter-bank energies, any of the self-supervised approaches results in
a representation where the difference between speech and non-speech samples is more
distinguishable. Comparing the three self-supervised features, TSNE representation of
the wav2vec approach shows a bigger unified cluster for non-speech class. In the case
of wavLM models, TSNE representations behave differently, with most speech samples
together in a single cluster and most non-speech sampled separated in several smaller
clusters. This fact suggest that wavLM models could provide a more robust representa-
tion of speech samples, instead of focusing on the non-speech elements of audio signals.

Table 7.2 summarises results obtained in the 4th edition of the challenge in terms of
DCF metric for both development and evaluation partitions. Provided that no signific-
ant difference was observed when using convolutional fusion architectures in the case
of self-supervised features, in this submissions we only evaluate the CRNN architectures
that use 1D and 2D convolution. In this edition of the challenge the same baseline ap-
proach as the one presented in previous editions was provided by the organisation, with
an statistical solution [155] that yielded a DCF value of 12.50% and 15.61% respectively
for the development and evaluation partitions. Concerning the results observed on the
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Table 7.2: SAD results in terms of DCF metric on the development and evaluation partitions for the CRNN
trained using log Mel filter-bank energies and the self-supervised features from wav2vec system and wavLM
systems.

System Dev DCF(%)
Mel wav2vec wavLM-Base+ wavLM-Large

CRNN 2D 1.54 1.12 1.49 5.78
CRNN 1D 1.67 1.04 1.26 1.01

System Eval DCF(%)
Mel wav2vec wavLM-Base+ wavLM-Large

CRNN 2D 9.66 4.99 4.07 8.72
CRNN 1D 9.35 4.68 4.12 4.92

development partition, it can be seen that our systems based on Mel features already
achieve competitive results, largely outperforming the organisation baseline. Best res-
ults on the development partition are obtained with our wav2vec approach, showing a
relative improvement around 35% compared to Mel features, in the case of the CRNN 1D
neural network. Most wavLM based systems also show an improvement compared to
perceptual features. The only exception is the wavLM-Large model that underperforms
our baseline for the CRNN 2D setup. This may due to the fact that, as features become
more refined, they are more likely to show a lower correlation among their different di-
mensions. This fact could make it harder for 2D convolutions in the CRNN architecture
to extract relevant information among the feature axis.

When observing results from the evaluation partition, a strong degradation in per-
formance becomes apparent when comparing to development partition results. This de-
gradation is more significant in our baseline system using Mel features, increasing DCF
metric values from around 1.5% to 9.5%. As indicated by the organisation, data from
new unseen Apollo missions was included in the evaluation partition, so this degrada-
tion may be motivated by the mismatched acoustic conditions between development and
evaluation datasets. In general terms, self-supervised features allow to reduce the gap
between development and evaluation results in this specific scenario. Best results are
obtained using the wavLM Base+ model, with a relative improvement around 56% when
compared to Mel features, and 13% when compared to wav2vec features. Furthermore,
the use of this specific model can reduce the inference time and number of operations
per second of the SAD neural network due to its bigger stride of 20 ms and its reduced
feature dimension (1024 from wav2vec versus 768 wavLM Base+).
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7.5 Conclusions

The experiments described in this chapter introduced ViVoLab submissions to two con-
secutive editions of the SAD task of the Fearless steps challenge, namely phase III from
2021 and phase IV from 2022. For both editions, the focus was set on testing the sys-
tems generalisation capabilities, with an evaluation dataset that included new channel
data, and data from unseen Apollo missions respectively. Inspired by recent advances in
self-supervised representation learning, and seeking to obtain new and more robust au-
dio representations, our submissions explored different approaches to the self-supervised
representation learning paradigm. For that we considered two different systems: in the
edition of 2021, we followed an approach inspired on the wav2vec model that is based on
a contrastive loss that learns a feature representation combining an strided CNN encoder
with a RNN in order to provide a context embedding. Furthermore, for the 2022 edition
we also evaluated recent advances in self-supervised learning by using wavLM models
in the context of the SAD task. In both cases, obtained features are then used to train
different variants of a CRNN architecture.

In both set of submissions considered for this chapter, experimental findings suggest
that recent advances in self-supervised representation learning allow to build systems
that are significantly less sensitive to domain mismatch when compared to a set of tra-
ditional perceptual features such as log Mel-filterbank energies. In the 2021 edition, our
best submission achieved a DCF metric of 0.65% and 2.98% respectively in the develop-
ment and evaluation sets, ranking third among the 6 participant teams in the SAD task.
Concerning results from 2022 edition, compared to the wav2vec approach, best results
using wavLM models report a 13% relative improvement on the evaluation partition in
a mismatched domain scenario. Additionally, results obtained using wavLM models are
also interesting due to its lower computational cost, showing a bigger stride of 20ms and
a reduced dimensional space when compared to the wav2vec approach.
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“Every time I fire a linguist, the performance
of the speech recogniser goes up.”

Frederick Jelinek
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8.1 Introduction and motivation

The previous part of this thesis dissertation has focused mainly on the SAD task seek-
ing to detect speech segments in audio signals. In this part, a new kind of audio seg-

mentation task designed from a multiclass perspective is introduced. While SAD deals
only with an specific acoustic class and classifies the remaining information as not rel-
evant, the audio segmentation task described in this chapter seeks to simultaneously

99
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segment audio signals as being speech, music, noise or a combination of these. This task
may be specially relevant from the perspective of audio information retrieval, combining
in a single application several binary audio segmentation systems such as speech, music
and noise detection. Furthermore, the detection of overlapping fragments where speech
is combined with music, or speech is combined with noise, opens new possibilities to
provide meaningful labels in the indexation of audio content.

Albayzín international evaluation campaigns have proposed a wide range of chal-
lenges from speech transcription to spoken term detection. The mentioned multiclass
audio segmentation task was first introduced in these campaigns in 2010, within the con-
text of broadcast news data [11]. Furthermore, more recent Albayzín challenge corpora
was released in 2012, namely the CARTV dataset [131], with around 20 hours of audio
from Aragón radio archive. In this chapter, we evaluate recent advances in deep learning
audio segmentation systems in the tasks originally proposed in these challenges, with
the goal of improving the results obtained in the original evaluation.

Work presented in this chapter describes an approach to the multiclass audio seg-
mentation task based on the use of recurrent neural networks, namely the well-known
LSTM networks. RNNs are combined with an HMM resegmentation module as a smooth-
ing technique in order to correct possible errors due to high frequency transitions in the
neural network output. A new block is introduced in the neural architecture seeking to
remove redundant temporal information, reducing the number of operations per second
without increasing the number of parameters in the model. Furthermore, we also show
how these models can benefit from mixup augmentation, a data agnostic augmentation
technique that does not add external data sources to the training dataset.

8.2 RNNs for multiclass audio segmentation

Several studies have proven the performance of LSTM networks in a binary segmenta-
tion task such as SAD [45] [46]. A preliminary study aimed to replicate these results in
a multiclass segmentation environment, evaluating the results of BLSTM networks on
the Albayzín 2010 audio segmentation evaluation with competitive results [202]. This
chapter aims to explore the behaviour of recurrent neural architectures for this task in
a wider sense, including improvements both in performance and in computational com-
plexity to baseline RNN models. Our proposal to enhance the neural architecture is the
incorporation of a new block with different variations that we refer to as “Combination
& Pooling” block, that is described in the following subsections. These blocks seek to
remove redundant temporal information through the use of temporal pooling.

Furthermore, as several works have shown the improvement in performance obtained
when using data augmentation techniques in audio classification [203] [204], we aim to
incorporate this kind of techniques in multiclass audio segmentation. Due to the data re-
striction imposed by the Albayzín 2010 evaluation, no further data can be used in training
in order to obtain results that are comparable with other systems. In this context, we eval-
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uate the use of mixup augmentation [205], which combines linearly pairs of examples to
generate new virtual examples.

In conclusion, our proposal for this set of experiments consists of an RNN based seg-
mentation by classification system. The presented approach combines the modelling cap-
abilities of BLSTM networks with a resegmentation module to get smoothed segment-
ation hypothesis. In the following lines we describe the two main blocks the system
comprises: an RNN based classifier and the final resegmentation module.

8.2.1 Recurrent neural network classifiers

The central idea of our proposed segmentation system is the use of RNNs as the classific-
ation algorithm in a segmentation by classification approach. We propose two different
variations of this RNN classifier: the first one, that will be considered as our baseline
system, is described in Figure 8.1. As shown, the neural architecture is mainly composed
by one or more stacked BLSTM layers with 256 neurons each. The outputs of the last
BLSTM layer are then independently classified by a linear perceptron sharing its values
(weights and biases) among all time steps.

BL
ST

M ⋯

BL
ST

M

Li
ne
ar

Figure 8.1: BLSTM based neural architecture description for the baseline RNN classifier.

The details of the proposed “Combination & Pooling” block are presented in Figure
8.2. The main idea behind it is to lessen the redundant temporal information through

𝑋in 𝑋in 𝑋in

𝑋out 𝑋out 𝑋out

Conv1D

Time pooling
Time pooling Conv1D

Figure 8.2: Description of the proposed “Combination and Pooling” block and its three variations in this study.

a time pooling mechanism while, at the same time, a more appropriate representation
is learned through a 1D convolutional layer. Furthermore, we propose three different
variations of this block. The first one combines both the temporal pooling and the 1D
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convolutional layer, while the other two variations only use time pooling or a 1D convo-
lutional layer respectively, to evaluate its separate influence on the system too.

In Figure 8.3 we present the second approach to the RNN classifier, incorporating
our proposed “Combination & Pooling” block. The linear layer is configured in the same
conditions as in the baseline system.
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Figure 8.3: Alternative BLSTM based neural architectures including the proposed combination and pooling
block.

All systems have been trained and evaluated using finite length sequences (3 seconds,
300 frames), limiting the delay of dependencies that the network may take into account.
These sequences have a length of 3 seconds with an advance of 2.5 seconds, thus 0.5
seconds are overlapped. In order to generate the final prediction, the first half of this
overlapped part is taken from the previous window, and the second half is taken from the
next window. This way the labels corresponding to the boundaries of each fragment are
discarded as they may not be reliable. However, the neural network emits a segmentation
label for each frame processed at the input for the first system, and one segmentation label
for each 𝑁 frames processed when using the pooling setup, with 𝑁 being the temporal
pooling factor applied.

Neural networks are trained using Adam optimiser [105]. Cross entropy criterion
is chosen as loss function, as usually done in multiclass classification tasks. All neural
architectures in this work have been evaluated using the PyTorch toolkit [154]. In ad-
dition to the emitted RNN segmentation labels, we are also considering the final linear
layer scores for each class in order to perform the resegmentation step. In our results we
evaluate two different points in our system: the neural network output by using the RNN
emitted labels and the final labels produced by the resegmentation module.

8.2.2 Resegmentation module

RNN outputs may contain high frequency transitions which are unlikely to occur in
highly temporal correlated signals such as human speech or music. Aiming to avoid
spurious changes in the segmentation hypothesis, we incorporate a resegmentationmod-
ule in our system. Our implementation is based on an ergodic hidden Markov model
where each class is modelled trough a state in the Markov chain. Every state is repres-
ented by a multivariate Gaussian distribution with full covariance matrix. No a priori
information is required for this block to be fully functional because statistical distribu-
tions are estimated using the labels hypothesised by the RNN for each file in the database.
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Similarly, neural network output may provide a noisy estimation of class boundaries.
Seeking to avoid high frequency transitions, neural network scores are downsampled by
a factor L using an L order averaging filter. This filter is implemented as a zero-phase
FIR filter [206] to avoid delays in the output signal. Moreover, each state in the Markov
chain consists of a left-to-right topology of 𝑁𝑡𝑠 tied states that share the same statistical
distribution. These two strategies allow us to impose a certain amount of inertia in the
output, forcing a minimum segment length before a class change occurs. This length can
be computed as follows:

𝑇min = 𝑇𝑠𝐿𝑁𝑡𝑠 (8.1)

where 𝑇𝑠 is the neural network output sampling period, 𝐿 is the downsampling factor,
and 𝑁𝑡𝑠 is the number of tied states per state in the Markov chain.

8.3 Experimental setup

The experimental setup for our experiments is based on the proposed originally in the
Albayzín 2010 audio segmentation evaluation. A complete description of the task, results
obtained by the participants and a description of the different approaches used can be
found in [11]. In the following lines we describe the database used in the evaluation and
the metrics taken into account in our experiments. We also present the CARTV database
introduced in the Albayzín 2012 evaluation [131], and that is used in the final part of our
experimentation to check the generalisation capabilities of our proposal.

8.3.1 Data description

Most experiments described in this chapter use the dataset released for the Albayzín
2010 audio segmentation task. As described in section 4.1.2, this dataset features around
87 hours of manually annotated audio sampled at 16 kHz. Two thirds of the database are
reserved for training, making a total of 58 hours in 16 different sessions. The remaining
third, 29 hours in 8 sessions, is used for test purposes. Furthermore, 15% of training
subset is reserved for training validation, which translates to a total of 49 hours of audio
for training and 9 hours for validation. The Albayzín 2010 database defines five different
acoustic classes that need to be separated: clean speech (sp), music (mu), speech over
music (sm), speech over noise (sn) and others (ot). The class others is not evaluated in
the final scoring.

Additionally, data released in the Albayzín 2012 audio segmentation evaluation is
used in the final part of our experimentation to check the generalisation capabilities of
our proposal. This dataset is a collection of emissions from Aragón radio archive. Three
separated subsets were released: two developments sets of 2 hours each (dev1 and dev2),
and a test set consisting of 18 hours. The main difference comes from the fact that no
prior classes are defined and a multiple layer labelling is proposed, allowing 3 possible
overlapped classes, speech, music and noise, to be present at any time in the audio doc-
ument. Even tough, this format is different to the setup presented for the Albayzín 2010
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evaluation, an equivalent version can be obtained if a set of non-overlapped labels are
generated considering the different combinations of speech, music and noise. A more
detailed explanation of this process is given in Section 8.4.6.

8.3.2 Feature extraction

Concerning feature extraction, the neural network is fed with a set of features that com-
bines perceptual features with some musical theory motivated features. First, log Mel
filter-bank energies and the log energy of each frame are extracted. Then, Mel features
are combined with chroma features [85], extracted using the openSMILE toolkit [207].
Audio is initially resampled at 16 kHz and converted to a single channel input. All fea-
tures are computed every 10 ms using a 25 ms Hamming window. In the experiments that
consider feature derivatives, First and second order derivatives of the features are com-
puted using 2 FIR filters of order 8 to take into account the dynamic information in the
audio signal. Finally, feature mean and variance normalisation are applied at recording
level.

8.3.3 Evaluation metrics

The main metric used to evaluate our results is the segmentation error rate (SER), that
can be seen as the ratio of the total length of the incorrectly classified audio to the total
length of the audio in the reference. Additionally, the original metric proposed in the
Albayzín 2010 evaluation is considered in our experiments in order to favour the com-
parison with previous publications. This metric represents the average class error over
all the classes. Let 𝐶 be the set of the five acoustic classes defined in the evaluation,
𝐶 = {mu, sp, sm, sn, ot}. This way the error metric can be computed according to the
following equation:

Avg error = 1
|𝐶|

∑
𝑖∈𝐶

dur(miss𝑖) + dur(fa𝑖)
dur(ref𝑖)

(8.2)

where dur(miss𝑖) is the total duration of all miss errors for the 𝑖th acoustic class, dur(fa𝑖)
is the total duration of all false alarm errors for the 𝑖th acoustic class, and dur(ref𝑖) is
the total duration of the 𝑖th acoustic class according to the reference. Using this metric
an incorrectly classified segment computes as a miss error for an acoustic class and a
false alarm error for another. Due to the fact that class distribution is clearly unbalanced,
errors from different acoustic classes are weighted differently according to the total dur-
ation of the class in the database. This metric was originally proposed in the evaluation
because, by computing the average of the error over all the acoustic classes, participants
were encouraged not to focus only on the best represented classes in the database. In
both metrics, SER and average class error, a collar of ±1 second around each reference
boundary is not scored in order to avoid uncertainty about when an acoustic class ends
or begins, and to consider inconsistent human annotations.
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Furthermore, in the final discussion, other metrics traditionally shown for classifica-
tion tasks such as the overall accuracy, and the precision, recall and F1 score per class are
reported.

8.4 Results

8.4.1 Feature analysis

Two different kind of errors can be differentiated in a segmentation system: a classifica-
tion error due to an incorrectly labelled frame, and a segmentation error due to a temporal
mismatch between the hypothesis and reference class boundaries. In a first set of experi-
ments only classification errors are considered by providing ground truth segments to the
system. In this case, classification labels are obtained by choosing the class maximising
the neural network score averaged for the whole ground truth segment. Then, the clas-
sification error is computed simply dividing the number of oracle segments incorrectly
classified by the total number of oracle segments. In the following sets of experiments
both segmentation and classification errors are shown as no boundaries are given to the
system.

In order to validate experimentally our proposal, different frontend configurations
were assessed. Our setup started with 64 bands log Mel filter-bank energies. Then, fre-
quency resolution was gradually increased, evaluating an RNN classifier with 80 and 96
bands log Mel filter-bank energies as input. As explained before, chroma features were

Table 8.1: Classification error with oracle boundaries for the 1BLSTM RNN classifier on the test partition for
different frontend configurations (Δ,ΔΔ: 1st and 2nd order derivatives).

Input features
Classification

Error (%)
# Parameters

64 bands 16.22 200K
80 bands 16.20 217K
96 bands 16.05 233K

64 bands + chroma 13.40 213K
80 bands + chroma 13.80 229K
96 bands + chroma 14.51 246K

64 bands + chroma + Δ,ΔΔ 13.35 368K
80 bands + chroma + Δ,ΔΔ 13.34 418K
96 bands + chroma + Δ,ΔΔ 13.37 467K

also incorporated aiming to discriminate correctly the music classes. Eventually, first and
second order derivatives were computed to include information about the audio signal
dynamics. All these cases use a simple setup consisting of an RNN classifier based on a
single BLSTM layer. Table 8.1 shows the classification error obtained with the RNN clas-
sifier using oracle boundaries for different frontend configurations. It can be seen that
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increasing frequency resolution leads to a consistent improvement in the classification
accuracy while the number of parameters of the model is also increased. However, when
incorporating chroma features the improvement obtained is significantly better than the
one obtained with a bigger frequency resolution. If we compare the best log Mel filter-
bank setup (96 bands) with the best one with chroma (80 bands + chroma) it can be seen
that, with a similar number of parameters, the error drops significantly. Finally, first and
second order derivatives are computed, achieving the best result in our experiment at the
cost of increasing the number of parameters in the model.

Additionally, Table 8.2 presents the segmentation error rate and the error per class
obtained with the RNN classifier. These results now consider both classification and seg-
mentation error. In this case, the best configuration for log Mel filter-bank energies is

Table 8.2: SER, error per class and average class error for the 1BLSTM RNN classifier on the test partition for
different frontend configurations (Δ,ΔΔ: 1st and 2nd order derivatives).

Input features SER
Class Error(%)

Avg
mu sp sm sn

64 bands 18.18 18.54 32.43 32.48 35.76 29.80
80 bands 17.70 18.19 31.33 31.41 34.91 28.96
96 bands 17.93 20.68 30.84 32.09 34.25 29.46

64 bands + chroma 16.97 18.83 30.88 29.92 32.76 28.10
80 bands + chroma 17.89 19.77 32.23 29.55 33.92 28.87
96 bands + chroma 17.65 19.75 30.68 31.62 33.66 28.93

64 bands + chroma + Δ,ΔΔ 16.61 17.46 29.93 29.26 32.60 27.31
80 bands + chroma + Δ,ΔΔ 16.25 16.82 30.00 26.75 32.07 26.41
96 bands + chroma + Δ,ΔΔ 16.46 17.38 29.92 27.98 32.70 27.00

achieved using 80 bands. Increasing the frequency resolution seems not to be so relev-
ant when dealing with the segmentation task compared to the classification one. We can
notice that, by incorporating chroma features, the error in the class speech over music
and speech over noise decreases significantly. For example, when comparing the 64 bands
setup to the same one with chroma, a relative improvement of 8.55% and 9.15% can be ob-
served respectively. This is due to the capabilities of chroma features to capture musical
information, which helps the system discriminate noise and music in a more accurate
way. This behaviour is also consistent with the classification accuracy improvement ob-
served when using chroma features in the ground truth boundary experiments. The best
result is obtained with the frontend that combines 80 bands, chroma features and the first
and second order derivatives with a SER metric of 16.25%, equivalent to an average class
error of 26.41%. Furthermore, it can be observed that including first and second order
derivatives shows a greater relative improvement when considering the segmentation
errors compared to the case where only classification errors are considered. We can infer
then, that dynamic information incorporated by the 1st and 2nd order derivatives may
be more relevant to generate class boundaries than to the classification task itself.



8.4 Results 107

So far, only an architecture with a single BLSTM layer has been evaluated. In the
following experiment, the goal is to determine the most appropriate number of BLSTM
layers for the RNN classifier. Choosing the best feature frontend (80 Mel + chroma + 1st
and 2nd derivatives), we evaluate now our system stacking two and three BLSTM layers.
Results for this experiment are presented in Table 8.3.

Table 8.3: SER, error per class and average class error for the RNN classifier on the test partition for the best
frontend configurations and different number of stacked BLSTM layers.

# Layers SER
Class Error(%)

Avg
mu sp sm sn

1 BLSTM 16.25 16.82 30.00 26.75 32.07 26.41
2 BLSTM 15.91 16.28 28.82 26.32 31.94 25.84
3 BLSTM 16.02 15.71 27.46 30.09 30.74 26.00

Including 2 stacked BLSTM layers shows a slight relative improvement of around
2.20% compared to the case of using a single BLSTM layer. However, no further improve-
ment is observed when including a third layer. That is why we choose the architecture
using 2 BLSTM stacked layers as our baseline in futures experiments. An average class
error of 25.84% is obtained, equivalent to a SER of 15.91%. These results are the one used
to compare against in the following sections where the different neural architectures pro-
posed are evaluated. Furthermore, following sections also evaluate the performance of
the full system combining the RNN classifier and the HMM resegmentation module with
a new set of experiments.

8.4.2 HMM resegmentation

With the objective of illustrating the influence of the inertia imposed by the resegmenta-
tion module on the segmentation system, Figure 8.4 shows the scatter plot of the relative
improvement in performance using the HMM resegmentation versus the minimum seg-
ment length (𝑇min) for different values of the downsampling factor. It can be seen that
the best performing configurations have a minimum segment length between 0.5 and 1.5
seconds, values which are in the order of magnitude of the 2 seconds collar applied in the
evaluation. A fast decrease in performance is observed when 𝑇min is increased for values
above 3 seconds. With such configuration our system is not able to capture some of the
fast transitions happening in the audio, thus a considerable amount of errors are likely to
happen, and the performance is decreased. However, no configuration showed a decrease
in performance when compared to the case of not using the HMM resegmentation.

In Table 8.4, we show the results on the test partition for the full segmentation system
that combines the RNN classifier and the HMM resegmentation for the best feature con-
figuration and different values of downsampling factor, 𝐿, and minimum segment length,
𝑇min. Compared to the best results in Table 8.2, it can clearly be seen that HMM reseg-
mentation reduces significantly the system error by forcing a minimum segment length
for class labels. This error reduction is equivalent to a 21.68% relative improvement in
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Figure 8.4: Relative improvement over the RNN classifier using the HMM resegmentation module for the best
feature configuration versus minimum segment length forced by the system.

terms of SER for the best configuration. Again, it can be observed that, as long as the 𝑇min
value stays in the range between 0.5 and 1.5 seconds, the performance of the system is
not highly affected by the variations in the downsampling factor. SER metric in the four
parameters configuration presented in Table 8.4 varies from 12.46% to 12.57%, an abso-
lute difference of only 0.11% between the best and the worst case. This way, reducing the
high frequency transitions through imposing a certain amount of inertia in the neural
network output, our segmentation system achieves a SER of 12.46%. This value serves
also for comparison in the following lines, where new neural architectures are evaluated.

Table 8.4: SER, error per class and average class error for the RNN classifier combined with the resegmentation
module over test partition for the best feature configuration and different values of the downsampling factor,
𝐿, and minimum segment length, 𝑇min.

𝑳 , 𝑻min SER
Class Error(%)

Avg
mu sp sm sn

25, 1.25s 12.49 14.55 21.99 19.08 24.88 20.13
35, 1.4s 12.48 14.31 22.26 18.70 25.10 20.10
45, 0.9s 12.46 14.19 22.14 18.82 25.04 20.05
55, 0.55s 12.57 16.12 22.00 18.94 24.95 20.50
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8.4.3 Combination and pooling experiments

Our initial experiments using the HMM resegmentation module proved that reducing
the temporal resolution of the output is beneficial for the segmentation system. Our goal
introducing the “Combination and pooling” block is that this downsampling could be
implemented inside the neural network itself. Temporal pooling layers are configurable
via a pooling factor parameter, 𝑁 , that controls the length of the output sequences com-
pared to the input length. Pooling layers separate an input sequence into 𝑁 different
subsequences with the same length and no overlapping. Then, the output is computed
applying a given pooling mechanism for each of these subsequences. In all cases, a single
element is returned for every 𝑁 frames in the input. On the other hand, the 1D convo-
lutional layer is configured to have the same number of input and output channels in all
cases, a kernel size of 1 and no padding.

In Table 8.5, we present the results obtained when using the “Combination and Pool-
ing” block in all its variations before the first BLSTM layer. For this experiment we con-
sider an average pooling mechanism with a pooling factor of 𝑁=10. Experimental results

Table 8.5: Average class error and relative improvement over the baseline system for the RNN classifier with
the combination and pooling block before the first BLSTM layer on the test partition.

Model configuration Avg Class Error(%) Rel. improvement(%)

ConvPoolBLSTM1,2 29.30 -11.80
ConvBLSTM1,2 26.26 -1.60
PoolBLSTM1,2 28.31 -8.72

show that using temporal pooling before the first BLSTM layer strongly degrades the
performance of the segmentation system. The degradation is even stronger when first
combining the input features using a 1D convolutional layer with a relative degradation
of 11.80% compared to the baseline RNN classifier. This may come motivated by an early
reduction of the input dimensionality, before the neural network has been able to pro-
cess any kind of information. By observing these results, we can discard this type of
configurations in future experiments.

In the following lines we present the results for the other two remaining configura-
tions implemented: the one using the “Combination and Pooling” block between the first
and second BLSTM layers and the one with the block right after the last BLSTM layer.
Figure 8.5 shows the relative improvement compared to the RNN baseline classifier for
the setup using the combination and pooling block between both BLSTM layers and the
setup using the combination and pooling block after the last BLSTM layer. In these ar-
chitectures we have experimented with three different values for the pooling factor: 5,10
and 25, and an average pooling mechanism. We also present in green straight lines the
architectures using only a 1D conlutional layer, with an independent behaviour of the
pooling factor. Concerning the convolutional only architectures (green lines), it can be
observed that recombining internal BLSTM representations does not show a significant
improvement in performance, with the BLSTM1ConvBLSTM2 system really close to the
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Figure 8.5: Relative improvement over the baseline RNN classifier for the setup using the combination and pool
block between both BLSTM layers and the setup using the combination and pooling block after the last BLSTM
layer.

baseline classifier and the BLSTM1,2Conv showing a relative improvement of around 1.8%.
The best results are obtained consistently among three evaluated pooling factors for the
BLSTM1PoolBLSTM2 configuration (red circles), where a temporal pooling layer is used
in between the first and the second BLSTM layers. The best case achieves a relative im-
provement of 3.8% compared to the baseline system. Furthermore, this new approach
does not add more parameters to the model and it decreases computational complexity
because the second BLSTM layer is working at a smaller sampling rate.

Being proved that the best performing setup is the one using only a pooling layer in
between the first and second BLSTM layer, in the following experiment a deeper analysis
of this neural architecture is performed. Two different pooling mechanisms are con-
sidered now: average pooling and max pooling. Furthermore, a wider variation range
of the pooling factor is tested, ranging from 10 to 100. Figure 8.6 presents the results
for all the evaluated configurations in terms of the relative improvement obtained when
compared to the baseline RNN classifier output using the best feature configuration (80
bands + chroma + derivatives). Two differentiated behaviours can be observed: the av-
erage pooling configurations (blue line) show a general improvement between 3% and
4% without a strong dependence on the pooling factor. However, max pooling (red line)
degrades its performance significantly when increasing the pooling factor, even showing
worse results than the baseline for pooling factors greater than 25. Bearing this results
in mind, only the average pooling configurations are taken into account in the following
experiments.
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Figure 8.6: Relative improvement over the baseline RNN classifier for different pooling factors and pooling
techniques using the BLSTM1PoolBLSTM2 architecture.

Table 8.6 describes the detailed results for the average pooling setup experiments in
terms of SER, error per class and average class error. The best result is obtained for the

Table 8.6: SER, error per class and average class error for the BLSTM1PoolBLSTM2 RNN classifier on the test
partition for different pooling factors (𝑁 ) and average pooling.

𝑵 SER
Class Error(%)

Avg
mu sp sm sn

5 15.49 15.57 28.71 24.63 30.71 24.90
10 15.47 15.55 29.16 24.34 30.51 24.89
25 15.51 16.85 27.17 26.23 30.06 25.08
50 15.53 16.40 28.60 24.92 30.85 25.19
75 15.54 16.87 27.97 25.55 29.88 25.07
100 15.49 18.22 26.77 24.91 29.80 24.92

No pool 15.91 16.28 28.82 26.32 31.94 25.84

pooling factor 10, immediately followed by the configurations of 5 and 100. These results
show a relative improvement of 3.82%, 3.77% and 3.69% respectively, without increasing
the number of parameters in the neural network and reducing the computational load of
our system because the second BLSTM layer is working at a smaller sampling rate.

Finally, results of the BLSTM1PoolBLSTM2 system combined with the HMM reseg-
mentation module are shown in Table 8.7. Compared to the RNN baseline system using
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the HMMmodule, no significant improvement is observed, with the SER decreasing from
20.05% to 19.90% in the 𝑁=10 setup. A performance degradation is even observed for big-
ger pooling factor setup. This could be motivated by the fact that the pooling layer has
already performed part of the smoothing that the HMM enforced in the RNN baseline
architecture, so the combination of both pooling layers and HMMmodule could not lead
to a significant improvement. However, this architecture is interesting because this way
computational load of the HMM module can be decreased, working at a sampling rate
ten times smaller.

Table 8.7: SER, error per class and average class error for the BLSTM1PoolBLSTM2 RNN classifier combined
with the HHM resegmentation on the test partition for different pooling factors (𝑁 ) and average pooling.

𝑵 SER
Class Error(%)

Avg
mu sp sm sn

5 12.48 14.31 22.16 18.69 25.12 20.07
10 12.41 12.87 22.58 19.16 24.99 19.90
100 13.47 22.85 24.32 19.31 26.20 23.17

No pool 12.46 14.19 22.14 18.52 25.04 20.05

8.4.4 Mixup data augmentation

Mixup is a data-agnostic data augmentation routine [205] that generates new virtual
training examples. These virtual examples are generated according to the following equa-
tions: {

𝐗̃ = 𝜆𝐗𝐢 + (1 − 𝜆)𝐗𝐣 ,
𝐘̃ = 𝜆𝐘𝐢 + (1 − 𝜆)𝐘𝐣 ,

(8.3)

where (𝐗𝐢, 𝐗𝐣) are two feature vectors randomly drawn from the training dataset and
(𝐘𝐢, 𝐘𝐣) are their corresponding one hot encoding labels, and 𝜆 ∈ [0, 1]. In the practical
implementation 𝜆 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛼), with 𝛼 being the mixup hyperparameter that controls
the strength of the interpolation for the pairs of examples. Furthermore, this technique
is simple to implement and it does not require a high computational overhead. The use
of mixup augmentation leads to no addition of more external datasets, so the proposed
system is still under the conditions imposed by the Albayzín 2010 evaluation. Mixup
augmentation has been shown to improve model generalisation capabilities in different
domains, including some audio classification tasks [208]. In our set of experiments, mixup
augmentation is applied directly in the feature space.

Table 8.8 shows the results obtained training the BLSTM1PoolBLSTM2 architecture
using mixup data augmentation for different 𝛼 values compared to the same system
trained without mixup augmentation. It can be seen that the result is not highly de-
pendent on the 𝛼 hyperparameter. Best result is obtained for 𝛼=0.2, however all the
evaluated configurations show similar results. In general terms, mixup augmentation is
able to achieve a relative improvement of 5% compared to a system not trained using
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Table 8.8: SER, error per class and average class error on the test partition for the BLSTM1PoolBLSTM2 RNN
classifier (Avg pooling, 𝑁 = 10) trained using mixup augmentation with hyperparameter 𝛼.

Mixup SER
Class Error(%)

Avg
mu sp sm sn

𝛼 = 0.1 14.84 15.21 27.99 23.05 29.34 23.90
𝛼 = 0.2 14.80 14.64 28.20 22.01 29.01 23.56
𝛼 = 0.3 14.81 16.03 26.32 23.89 28.22 23.62

No mixup 15.47 15.55 29.16 24.34 30.51 24.89

mixup. The most significant improvement observed when using mixup augmentation is
in the speech over music class, with an absolute improvement of 2.23%. This class is the
one defined as a pure combination of other two classes in the dataset. This fact shows
that generating new virtual examples as a linear combination in the feature domain can
be beneficial for our segmentation system.

As our final experiment, Table 8.9 presents the results obtained with the full segment-
ation system that combines the BLSTM1PoolBLSTM2 RNN classifier trained with mixup
data augmentation and the HMM resegmentation module. With this setup, we achieve

Table 8.9: SER, error per class and average class error on the test partition for the BLSTM1PoolBLSTM2 RNN
classifier (Avg pooling, 𝑁 = 10) trained with mixup augmentation with hyperparameter 𝛼 combined with the
HHM resegmentation.

Mixup SER
Class Error(%)

Avg
mu sp sm sn

𝛼 = 0.1 12.88 14.39 23.87 18.68 25.70 20.66
𝛼 = 0.2 11.80 12.46 22.86 17.34 24.35 19.25
𝛼 = 0.3 12.14 14.80 21.71 17.37 23.54 19.36

No mixup 12.41 12.87 22.58 19.16 24.99 19.90

the best performing segmentation system in this work, which is equivalent to a SER of
11.80% and an average class error of 19.25%.

8.4.5 Discussion

Once our different system proposals have been experimentally evaluated, in this sec-
tion we aim to compare our results with the ones obtained previously in the literature
and perform an analysis on the segmentation system errors. Figure 8.7 shows the res-
ults obtained in the Albayzín 2010 test partition by different systems already presented
in the literature. The winner team of the original Albayzín 2010 evaluation proposed a
segmentation by classification approach based on a hierarchical GMM/HMM (dark blue)
including MFCCs, chroma and spectral entropy as input features [209]. The best result
so far in this database was obtained with a solution based on factor analysis combined
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with a Gaussian backend (orange) and MFCCs with 1st and 2nd order derivatives as in-
put features [38]. Our three previously explained final results combining the RNN clas-
sifier and the HMM resegmentation are also presented: the RNN baseline (light blue),
the BLSTM1PoolBLSTM2 RNN approach (light green) and the BLSTM1PoolBLSTM2 RNN
trained using mixup augmentation (lighter blue).
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Figure 8.7: Results obtained on the Albayzín 2010 test partition for different systems proposed in the literature
compared to our proposed RNN approaches in terms of SER.

Additionally, in order to compare our results with a DNN based system, we trained
and evaluated a different system using the neural architecture proposed as baseline in
the DCASE challenge for sound environment detection [210], a task similar to the one
presented in this chapter. This approach is based on 3 2D CNN layers with 64 channels
each followed by a single GRU cell with 64 hidden units. The input features are 64 di-
mensional log Mel filter-bank energies. It can be seen that our three systems outperform
previous results in this database, with our RNN combined with the pooling setup and
trained with mixup augmentation achieving a relative improvement of 19.72% in terms
of SER compared to the FA HMM approach. Furthermore, if the comparison is made with
the DCASE baseline neural architecture, a DNN based system, a 22.97% relative improve-
ment is obtained with our best system.

Results presented in Figure 8.7 are complemented with the ones shown in Table 8.10,
that introduces the average class error and the error per class obtained for the same
systems presented before. A general improvement over all the classes can be observed
comparing to the previous approaches to this task. It is specially significant the error dif-
ference obtained in the classes that contain music (absolute decrease of 6.34% for music
and 6.26% for speech over music comparing our best system to the FA HMM system). On
the other hand, the class speech obtains really similar results. This difference in perform-
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Table 8.10: Average class error and error per class obtained on the Albayzín 2010 test partition for different
systems proposed in the literature compared to our proposed RNN approaches.

System
Class Error(%)

Avg
mu sp sm sn

Eval winner [209] 19.20 39.50 25.00 37.20 30.30
FA HMM [38] 18.80 23.70 23.60 29.10 23.80

DCASE Baseline 19.03 25.58 23.59 29.52 25.18

RNN baseline 14.19 22.14 18.82 25.04 20.05
RNN+Pool 12.87 22.58 19.16 24.99 19.90

RNN+Pool+mixup 12.46 22.86 17.34 24.35 19.25

ance may be motivated by the introduction of chroma features, helping the adequately
representation of music, and the linear combination of classes in training done using
mixup augmentation. If the comparison is made with another DNN based approach like
the proposed DCASE baseline, again we can observe a general improvement in perform-
ance over all the classes evaluated.
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Figure 8.8: Confusion matrix for the best parameter configuration evaluated in this chapter:
BLSTM1PoolBLSTM2 RNN (𝑁 = 10) with mixup (𝛼=0.2) combined with the HMM resegmentation.

As a different performance measure, Figure 8.8 shows the confusion matrix for the
best system presented in this work. It can be seen that one of the highest error terms is
obtained for the frames predicted as speech over noise that are labelled as speech over
music, happening in the 12% of the actual speech over music frames. Something similar
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happens with 12% of the speech over noise frames incorrectly classified as speech. The
class music obtains the best classification results despite being significantly underrep-
resented in the database (only 5% of total). As it was observed when comparing with
the other systems in the literature, this fact may come motivated by the use of chroma
features, capturing adequately the musical structures and helping discriminate correctly
music. The worst classification results are given for the others class, not taken into ac-
count for scoring. This class, like music, is also heavily underrepresented in the database
(3% of total) but, in this case, it comprises any other signal outside the definition of the
other 4 classes what results in a unspecific definition that makes the classification harder.

Finally, we report the results of our best performing system in some of the traditional
classifications metrics shown in the literature. Table 8.11 shows the overall accuracy and
the precision, recall and F1 score, both per class and averaged, at frame level for the
Albayzín 2010 test data evaluated using our BLSTM1PoolBLSTM2 proposal trained using
mixup augmentation. Our system achieves an overall accuracy of 85%, with a balanced
average result in precision and recall.

Table 8.11: Overall accuracy, precision, recall and F1 score per class and on average for the Albayzín 2010 test
data evaluated using the best performing system presented in this chapter.

Class Precision Recall F1

Music 0.88 0.89 0.88
Speech and music 0.93 0.84 0.89
Speech and noise 0.85 0.84 0.84

Speech 0.83 0.88 0.85

Average 0.87 0.86 0.87

Accuracy 0.85

8.4.6 Evaluation on Albayzín 2012 dataset

In previous sections, we have analysed the results achieved with the proposed segment-
ation system on the Albayzín 2010 test data and we have proven the performance of our
method compared to previous results in the literature. In order to evaluate the general-
isation capabilities of our proposal, in this section we aim to evaluate it on a different
dataset, namely CARTV dataset, proposed in the Albayzín 2012 evaluation. This dataset
differs from the data presented in the 2010 version: the overlap of three different classes is
allowed (speech, music and noise). In order to match our multiclass classification frame-
work, this format needs to be converted to non-overlapping classes, obtaining 8 different
classes: speech, music, noise, speech and music, speech and noise, speech and music and
noise, music and noise, and silence. Due to the similarity with the class defined as others
in Albayzín 2010 evaluation, the decision was made to combine music and noise, noise
and silence (they represent only the 3% of the total time in the database) in a single class
that we also name as others. Therefore, we can see this problem in a similar way to the
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task in Albayzín 2010 dataset, but including a new class, speech and music and noise, that
was not present in the 2010 version of the evaluation.

The evaluation of our system trained using Albayzín 2010 data on Albayzín 2012 test
data would imply the consistent loss of the speech and music and noise class, that is not
present in the data seen by the neural network. The change of domain from television
to radio data could also affect the results obtained. Furthermore, the low amount of data
available from CARTV dataset in development subsets (dev1 and dev2 contain only 4
hours of audio) suggests that training a new neural network from scratch may not be the
most suitable solution.

Considering all these statements, we opted for a solution that adapts our best per-
forming model trained on the Albayzín 2010 data to the radio domain using the 4 hours
of development data available from the CARTV dataset. This adaptation process is de-
scribed in the following lines:

• The pretrained model on Albayzín 2010 data is taken as the training starting point
of the neural network. The final classification layer is removed and then a new one
with 6 output neurons is randomly initialised.

• The whole neural network (BLSTM layers and final classification layer) is fine
tuned with CARTV dev1 and dev2 data using the same strategies presented in the
previous sections (temporal pooling and mixup augmentation). Learning rate used
in the BLSTM layers is ten times smaller than the learning rate used for the final
classification layer.

HMM resegmentation is used in the same way as described previously in this chapter.
Aiming to compare with a different DNN based architecture, a similar approach is done in
the DCASE baseline architecture, removing the last linear layer and randomly initialising
a new one with 6 neurons, to then fine tune the neural network with development data
from CARTV dataset. Table 8.12 presents the results on the Albayzín 2012 test data for

Table 8.12: SER on the Albayzín 2012 test partition for different systems proposed in the literature compared
to our proposed RNN approach.

System SER

RNN proposal (pool + mixup) 24.93
DCASE baseline 31.21

GMM + Viterbi decoding [211] 26.34
HMM-GMM [212] 26.53

different systems compared to our proposed RNN based approach combined with the
HMMresegmentationmodule in terms of SER. In addition to our proposal and theDCASE
baseline architecture, we show the results of the two best performing systems in the
original Albayzín 2012 evaluation. The first system presented [211] is based on the use
of GMM models with 1024 components to describe each of the possible combinations
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of acoustic classes. Then a Viterbi decoding is performed to obtain the segmentation
labels. Input features are MFCCs and first and second order derivatives. The second
system presented [212] applied an HMM-GMM speech recognition approach in which
the vocabulary set is defined by the possible acoustic classes. Input is based on MFCC
features, considering first and second order derivatives too. It can be observed that if we
compare the result obtained with a different DNN approach such as the DCASE baseline
architecture, our systems achieves a relative improvement of 20.12% in terms of SER. This
improvement is in the same order of magnitude as the improvement observed in the 2010
evaluation data, reflecting a consistent behaviour for our proposed neural architecture.
If the focus is set on the results achieved in the original Albayzín 2012 evaluation, a
5.35% relative improvement can be observed compared to the evaluation winner. This
improvement is significantly smaller than the improvement achieved in the Albayzín
2010 evaluation. This fact may come motivated by the small amount of in-domain data
released for the 2012 evaluation. Our DNN approach would be able to profit from a bigger
amount of data, whereas more traditional approaches such as GMM-HMM can achieve
competitive results with less data.

8.5 Conclusions

Work presented in this chapter has explored several architectures of RNNbased classifiers
for themulticlass audio segmentation task. Namely, this set of experiments focuses on the
audio segmentation tasks proposed for the Albayzín 2010 and 2012 evaluation, where the
goal was to separate simultaneously speech, music, noise and the possible combinations
of these three classes. Our proposal, that is based on a segmentation by classification
approach, combines the BLSTMmodelling capabilities with an HMM backend to smooth
the results. Different frontends have been evaluated, proving how useful chroma features
can be when representing music, and the importance of feature derivatives in capturing
class boundaries. Furthermore, the combination of BLSTM and HMM was proved to
be appropriate, reducing significantly the system error by forcing a minimum segment
length for the segmentation labels.

This chapter proposes the introduction of a “Combination & Pooling” block in the
neural architecture in several configurations. Through a detailed set of experiments, we
showed that time pooling architectures can be used between two BLSTM layers to get
a subsampled output, removing temporal redundant information and achieving a relat-
ive improvement of around 5% in the neural network output. Furthermore, through the
introduction of mixup data augmentation, a data-agnostic data augmentation technique,
another 5% relative improvement on the neural network can be observed. This improve-
ment was specially significant for classes that can be described as the combination of two
classes. This technique allows to remain under the Albayzín 2010 evaluation conditions
as no additional datasets were included in the augmentation process.

Competitive results have been obtained with our RNN based approach, resulting in
a relative improvement of 19.72% and 5.35% respectively compared to the best result in
the literature so far for the Albayzín 2010 and 2012 evaluations. The improvement is
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more noticeable for the Albayzín 2010 evaluation, Results are also compared with a DNN
based system proposed for the DCASE sound environment detection task, achieving a
consistent relative improvement of around 20% in the two datasets evaluated.
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9.1 Introduction and motivation

Inspired by recent advances in self-supervised representation learning, several works
have considered its use among different audio and speech processing tasks, with audio

segmentation being one of them. Experimental results from Chapter 7 showed the poten-
tial of self-supervised learning in audio segmentation, with significant improvements in
performance under mismatched test conditions for the SAD task. In general terms, most
works applying self-supervised learning to audio segmentation are limited to speech re-
lated tasks [72] [73], with few systems using them in more general audio segmentation
tasks.
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Deeming this issue asmainmotivation, the goal of this chapter is to explore represent-
ation learning techniques in the context of multiclass audio segmentation. An analysis of
different ways to benefit from these abstract representation inmore general segmentation
problems is performed, focusing on remarking its possible limitations when representing
different acoustic classes simultaneously.

Multiclass audio segmentation experiments described in Chapter 8 already demon-
strated the capabilities of deep neural networks in the Albayzín 2010 dataset, seeking
to separate speech, music, noise or a combination of them. The work presented in this
chapter builds on the knowledge acquired from these previous experiences, aiming to in-
troduce the recent advances in self-supervised representation learning in the multiclass
audio segmentation tasks. While all previous experiments relied on the use of a combin-
ation of different sets of features, namely perceptual features such as log Mel filter-bank
energies, or musical features such as chroma, the approach followed in this chapter aims
to replace these features with representations obtained through self-supervised learning.
Namely, an approach inspired by wav2vec models is evaluated as feature extractor under
different training conditions and using different models as classifiers.

9.2 Self-supervised representation learning

9.2.1 wav2vec approach

The same approach presented in Section 7.2.1 for self-supervised representation learning
is adopter in this chapter. As explained in Chapter 7, this solution, strongly inspired by
wav2vec models presented in [110], combines a CNN encoder mapping the input signal
to a latent space and a bidirectional GRU recurrent neural network providing a context
embedding. That embedding is extracted in inference time to be used as an audio rep-
resentation. The main difference with the system presented in Chapter 7 comes from the
audio input. In this case, the CNN encoder handles 16 KHz audio signals, so the total
downsampling factor of the network is 160 to enforce a feature sequence with 10 ms
stride.

9.2.2 Data augmentation

Firstly proposed self-supervised learning models were meant to be applied in task such as
ASR, where background noise or music needs to be compensated to focus on the uttered
speech. Several works tried to compensate that variability in traditional ASR systems
by applying data augmentation techniques [213] [214]. In a similar way, self-supervised
models use data augmentation techniques that combine clean signals with noise ormusic.
The model is forced then to predict the unmodified reference signal from the augmen-
ted context embeddings. This way, the intra-class variability for each phoneme may be
compensated even if it is presented under different acoustic conditions (combined with
music, noise, etc, ...). While this compensation may be interesting from an ASR perspect-
ive, in a multiclass audio segmentation task such as the one evaluated in this chapter it
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would significantly decrease the inter-class separation, bringing together samples with
clean speech and speech combined with other acoustic classes.

Under the intuition that augmentation performed in the training process of self-
supervised models may compensate variability for classes containing music and noise,
we evaluate a version of wav2vec without any kind of data augmentation and a ver-
sion applying standard augmentation techniques. In the case where data augmentation
is applied, augmented versions of the context embedding 𝐶𝑡 serve as input to predict an
unmodified reference 𝑍𝑡 .

9.2.3 Training conditions

Wedistinguish three differentwav2vecmodels depending on how they have been trained.
Particularly, we differentiate if data augmentation has been used or not, and consider
two training conditions: a first one trained with a smaller amount of data, and a second
one using a larger amount of data in training. With these considerations three different
models were evaluated:

• wav2vec base: this model was trained using mainly audio data in Spanish. Data
from Albayzin 2018 and 2020 evaluations [125] and from the Spanish partition of
the Commonvoice 2 dataset was used. This makes a total of around 1200 hours of
unlabelled audio for training. Concerning the data augmentation process, noises
from MUSAN [133] database are added sampling a uniform distribution in the
range (3,15) dB to obtain the signal to noise ratio (SNR). Furthermore, a variety
of room impulse responses (RIR) are simulated using the gpuRIR toolkit [200].

• wav2vec base no aug: this model was trained on the exact same training data as
the wav2vec base model with the only difference that no data augmentation of any
kind was applied in training time.

• wav2vec extended no aug: a larger amount of data was added to the datasets
already described in the base model. Several well known English corpora were
included in the training data: LibriSpeech, LibriLight, Tedlium and VoxCeleb 1&2.
This makes a total of around 60000 hours of speech audio. Additionally, a dataset of
music scrapped from different sources, and presenting around 1700 hours of audio,
was also considered, seeking to improve the modelling capabilities of the system
in classes containing music. As done in the previous model, no data augmentation
was applied in training time.

9.3 Experimental setup

9.3.1 Data description

Data used for the set of experiments described in this chapter is the same as the one de-
scribed in Section 8.3.1 for the Albayzín 2010 evaluation. The 87 hours of audio available
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are splitted in the same way for training and testing. As explained previously, the data-
base separates five different acoustic classes: clean speech (sp), music (mu), speech over
music (sm), speech over noise (sn) and others (ot). The class others is not evaluated in
the final test. Unlike previous work presented in Chapter 8, this work does not follow
Albayzín 2010 evaluation conditions because several external datasets apart from the one
provided for the original challenge were included in the self-supervised representation
learning stage.

9.3.2 Neural network classifiers

Following on the working line for the Albayzín 2010 audio segmentation task described
in Chapter 8, neural network architectures used in this chapter are based on the use
of BLSTM layers. Specifically, three different variants with increasing complexity that
have been proven to show relevant results are evaluated. In the following lines a brief
description is provided for each one of them:

• 1BLSTM: a single BLSTM layer is used to process the input. Final classification
scores are obtained through a linear layer. One segmentation label is emitted for
every frame at the input, this is one each 10 milliseconds.

• 2BLSTM pool: a BLSTM layer is followed by an average pooling mechanism on
the temporal dimension as a way to generate a smoother output score. The output
of the average pooling is then fed to another BLSTM layer working at one tenth of
the original frame rate. As in the previous architecture, final classification scores
are obtained with a linear layer. Due to the average pooling, this model produces
a segmentation label every 100 milliseconds.

• 2BLSTM pool + mixup: this alternative incorporates mixup augmentation [205]
on top of the 2BLSTM pool architecture. Mixup is a data agnostic augmentation
technique that generates new virtual examples through linear combinations of ex-
amples from training data. Weights for this combination are usually sampled from
a beta distribution 𝑋 ∼ Beta(𝛼, 𝛽) with parameters 𝛼 = 𝛽.

All wav2vec models are frozen during the classifier training stage and, therefore, are
used only as a feature extractor. All classifier models have been trained using Adam
optimiser, with a learning rate that decays exponentially from 10−3 to 10−4 during the 20
epochs that data is presented. Cross entropy loss is used as training objective as usually
done in classification tasks.

9.3.3 Evaluation metric

In order to evaluate our results we follow the same metric as the one proposed in the
original Albazín 2010 evaluation, the average class error over the considered acoustic
classes. More details of this metric are provided in Section 8.3.3. Additionally, results
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provided for discussion in the final section of this chapter also report SER as metric for
comparison. As described in the original evaluation protocol, a collar of 1 second is not
scored around each reference boundary.

9.4 Results

As a comparison to results obtained using the presentedwav2vec representations, we also
evaluate the neural network classifiers using a set of traditional features that combines
log Mel filter-bank energies and chroma features. Namely, we concatenate 80 dimension
log Mel filter-bank energies and the log energy of the frame with 12 chroma coefficients.
Furthermore, first and second derivatives are computed and concatenated to the input.
As it was proven by experimental results from Chapter 8, this frontend can lead to com-
petitive results in the multiclass audio segmentation task.

In a similar way as done in Chapter 7, an exploratory analysis of the wav2vec rep-
resentations capabilities is performed in a first approximation. For that, a TSNE [201]
dimensionality reduction of the best performing wav2vec system (wav2vec extended no
aug) is computed in order to obtain a 2D visualisation. These features are also compared
to the traditional frontend based on log Mel energies and chroma features. The men-
tioned representation extracted for the validation partition of the Albayzín 2010 dataset
is presented in Figure 9.1. It can be observed that the use of a wav2vec representation

Figure 9.1: TSNE 2D representation of the Albayzín 2010 validation subset for the traditional set of features
using log Mel and chroma (left), and the best performing wav2vec system (right).

provides a 2D TSNE plane that is much more easily separable. The TSNE plane obtained
for the log Mel and chroma features shows only a limited number of clusters that can be
identified, e.g., for the class others in orange. On the other hand, the wav2vec represent-
ation results in a plane where separation between classes is much more distinguishable,
and that shows no significant overlap between classes such as speech and music, clean
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speech and speech and noise. In the case of the wav2vec system, the music class seems
to obtain the most disperse representation, with several small sparse subclusters.

Having used a non-linear projection in order to study the class separability provided
by the wav2vec representations, we aim now to evaluate these kind of systems in the
multiclass audio segmentation task. In the following lines we describe the different ex-
periments carried outwith differentwav2vec systems and different neural network classi-
fiers. Table 9.1 presents the results obtained using the 1BLSTM classifier on the Albayzín
2010 test partition with different frontend configurations, comparing traditional features
and wav2vec representations, in terms of per class error and average error. It can be

Table 9.1: Error per class and average class error for the 1BLSTM classifier on the Albayzín 2010 test partition
for different frontend configurations (Δ,ΔΔ: 1st and 2nd order derivatives).

Features
Class err.(%)

Avg err.(%)
mu sp sm sn

80 Mel + chroma + Δ,ΔΔ 16.28 28.82 26.32 31.94 25.84

wav2vec base 21.46 28.09 26.72 30.35 26.65
wav2vec base no aug 20.37 28.21 25.87 31.04 26.37

wav2vec extended noaug 19.65 27.32 22.10 28.80 24.47

observed that the wav2vec base and wav2vec base no aug systems underperform when
compared to the baseline system that uses log Mel energies and chroma features. This
drop in performance comesmainly motivated by a large increase in themusic class classi-
fication error. Furthermore, class error in the rest of classes remains similar. Due to both
facts mentioned, the average error is increased. In the case of the wav2vec base no aug
model, which used no data augmentation in the pretraining stage of the wav2vec system,
the error in the music and speech with music classes decreases compared to the model
using data augmentation. Even though these differences are significant, they do not affect
in a major way the average error observed, that remains similar to one from the version
using data augmentation. Best results are observed when incorporating more data in the
pretraining phase of the wav2vec system. The wav2vec extended noaug version yields a
relative improvement of 5.2%, 16.03% and 6.7% respectively in the classes speech, speech
with music and speech with noise compared to the baseline frontend configuration. The
music class error rate still remains high compared to the performance of the baseline sys-
tem, limiting the overall performance of the wav2vec representations to a 5.3% relative
improvement in the average error metric.

Tables 9.2 and 9.3 describe respectively results obtained using the 2BLSTM pool and
2BLSTM pool + mixup classifiers on the Albayzín 2010 test partition comparing tradi-
tional features to the best performing wav2vec representation, in terms of per class error
and average error. In general terms, trends observed in previous results hold for the new
neural architectures evaluated in results reported in Tables 9.2 and 9.3. Focusing first
on results described in Table 9.2, that uses the 2BLSTM pool classifier, it can be appre-
ciated that again all the classes but music show an improvement when using a wav2vec
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Table 9.2: Error per class and average class error for the 2BLSTM pool classifier on the Albayzín 2010 test
partition comparing traditional features and the best performing wav2vec representation (Δ,ΔΔ: 1st and 2nd
order derivatives).

Features
Class err.(%)

Avg err.(%)
mu sp sm sn

80 Mel + chroma + Δ,ΔΔ 15.55 29.16 24.34 30.51 24.89

wav2vec extended noaug 19.29 24.75 21.96 26.69 23.24

representation as input for the neural network. The improvement between the 1BLSTM
classifier and the 2BLSTM pool classifier is consistent when using both the log Mel en-
ergies and chroma features and the wav2vec representation.

Finally, experiments depicted in Table 9.3 evaluate the mixup augmentation strategy
under with the 2BLSTM pool + mixup classifier. Same conditions as described in the
set of experiments from Chapter 8 are used: mixup is applied on the feature space, and
using 3 different 𝛼 values 0.1, 0.2 and 0.3. The best performance is obtained using a setup

Table 9.3: Error per class and average class error for the 2BLSTM pool + mixup classifier on the Albayzín 2010
test partition comparing traditional features and the best performing wav2vec representation (Δ,ΔΔ: 1st and
2nd order derivatives).

Features 𝜶
Class err.(%)

Avg err.(%)
mu sp sm sn

80 Mel + chroma + Δ,ΔΔ 0.1 15.21 27.99 23.05 29.34 23.90
wav2vec extended noaug 19.27 24.87 20.40 26.62 22.79

80 Mel + chroma + Δ,ΔΔ 0.2 14.64 28.20 22.01 29.01 23.56
wav2vec extended noaug 17.41 24.58 20.01 26.23 22.06

80 Mel + chroma + Δ,ΔΔ 0.3 16.03 26.36 23.89 28.82 23.62
wav2vec extended noaug 18.66 25.70 20.78 26.65 22.95

with 𝛼 = 0.2 for both the traditional set of features and the wav2vec representation.
Furthermore, all setups showed an improvement when using mixup augmentation and
the wav2vec representation. The best result in this chapter using a wav2vec system is
obtainedwith the 2BLSTMpool architecture, mixup augmentation and 𝛼 = 0.2, achieving
a relative improvement close to 6.8% when compared to the same setup using log Mel and
chroma features. Even thoughwav2vec models show better performance than traditional
features in classes containing speech, experimental results suggest that one limitation of
the wav2vec representations evaluated come from its capacity to model music fragments,
underperforming traditional features in all the experiments shown. This fact strongly
limits the boost in average performance observed, that could be improved by decreasing
music class error.
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9.5 Discussion

Once all the experiments presented have been described, this sections aims to put them
in context within previous solutions and other approaches in the literature. In addition
to the results presented, we also compare the best wav2vec representation obtained with
one of the most recent approaches to self-supervised learning, wavLM features [118].
Considering the 2BLSTM pool + mixup classifier, a new audio segmentation system was
trained using the available pretrained wavLM Base+1 features as input, and using the
same experimental setup described in Section 9.3. Furthermore, experiments fromChapter
8 demonstrated the capabilities of HMM smoothing to improve segmentation results. We
compare the application of these techniques using the new features introduced. HMM
smoothing is used under the same conditions as explained in Section 8.2.2. This final com-
parison is presented in Table 9.4, showing SER, per class error and average class error for
systems with and without HMM smoothing, and using traditional features, the best per-
forming wav2vec system and the mentioned wavLM representation. When comparing

Table 9.4: SER, error per class and average class error for the 2BLSTM pool + mixup classifier (𝛼 = 0.2) with
or without HMM smoothing on the Albayzín 2010 test partition comparing traditional features with the best
performing wav2vec representation and a wavLM representation (Δ,ΔΔ: 1st and 2nd order derivatives).

Features SER
Class err.(%)

Avg err.(%)
mu sp sm sn

80 Mel + chr + Δ,ΔΔ 14.80 14.64 28.20 22.01 29.01 23.56
wav2vec ext. noaug 13.22 17.41 24.58 20.01 26.23 22.06

wavLM Base+ 15.61 20.52 27.79 27.64 30.51 26.62

80 Mel + chr + Δ,ΔΔ/HMM 11.80 12.46 22.86 17.34 24.35 19.25
wav2vec ext. noaug/HMM 11.51 19.62 20.91 17.23 22.81 20.14

wavLM Base+/HMM 14.03 22.82 24.62 25.35 27.62 25.10

previous results with wavLM features, it can be seen that error metrics rise significantly
compared to the baseline features. In fact, error for all classes but clean speech is higher.
This may come motivated by how wavLM models are trained: using several noise con-
ditions and speech overlap at the input to improve the model robustness in challenging
acoustic environments. While this is interesting from the perspective of applications that
are focused on the information contained in speech, it seems that it compensates the vari-
ability for the different classes present in the specific audio segmentation task considered
in this chapter.

Concerning the results obtained applying HMM smoothing, the same general beha-
viour as the one observed in Chapter 8 can be appreciated. An overall improvement in
performance is seen when using the HMM smoothing in terms of average class error
and SER. While for the baseline features error was reduced in all classes after the HMM
smoothing, wav2vec and wavLM features showed a degradation in performance for the

1https://github.com/microsoft/unilm/tree/master/wavlm

https://github.com/microsoft/unilm/tree/master/wavlm
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music class after applying HMM smoothing. Obtained neural networks scores in these
cases may not be representative enough of musical content, what could result in a wrong
estimation of HMM parameters affecting its overall performance.

9.6 Conclusions

This chapter presents a study on the application of self-supervised representation learn-
ing to the multiclass audio segmentation task. Namely, different wav2vec models have
been evaluated with the goal of jointly discriminate audio information belonging to
speech, music and noise classes in the Albayzín 2010 dataset. Following previous studies
that showed competitive performance using a combination of log Mel filter-bank ener-
gies and chroma features, we apply the same neural network classifier models using the
new wav2vec features seeking to obtain a comparable experimental setup. The task is
evaluated using the average error among all acoustic classes as done in the original eval-
uation.

Self-supervised learning was initially meant to be applied in task such as ASR, where
background noise or music needs to be compensated to focus on the uttered speech.
A common trend in these models is to use data augmentation techniques that combine
clean signals with noise or music. The model is forced then to predict the unmodified
reference signal from the augmented context embeddings. Three different data conditions
are evaluated in this chapter, considering cases with and without data augmentation.
Results suggest that data augmentation techniques are not beneficial for this specific
multiclass segmentation task. Under these conditions, feature obtained underperform
when compared to the baseline set of features considered.

In general terms, experimental results demonstrate that the use of wav2vec represent-
ations can lead to a significant improvement in the performance of audio segmentation
systems for classes containing speech. For instance, the relative improvement observed
using wav2vec representations for clean speech and speech over noise classes is around
12.84% and 9.58% respectively. However, a degradation in performance is observed in
the segmentation of isolated music when compared to traditional features. Any config-
uration evaluated using wav2vec representations was able to obtain better results than
baseline features in the music class. In fact, the best results for the music class still show
a relative degradation close to 18%. This limits the overall improvement observed to a
relative improvement close to 6.8% on the Albayzín 2010 segmentation task in terms of
average class error.
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“Tell me how you measure me,
and I will tell you how I will behave.”

Eliyahu M. Goldratt
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10.1 Introduction and motivation

During the description of the experiments performed in previous chapters, several
approaches have been applied in order to develop audio segmentation systems un-

der different scenarios. Yet, all these experiments have one common component, the loss
function. A unified approach based on the cross entropy loss is used to optimise the
neural networks in all previous systems. A significant part of the success in training a
DNN system comes from the loss function chosen since, in binary tasks, this loss can
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help discriminate in an easier way positive and negative examples. Recently, a number
of research works have investigated the development of new loss functions in order to
find the most appropriate one for training deep learning solutions. Some significant ap-
proaches can be cited here such as triplet loss [215], or prototypical loss [216]. One of the
most relevant research lines in this domain is the metric learning paradigm. Metric learn-
ing loss functions seek to bring together the training and evaluation process. In general
terms, metric learning aims to reduce the distance between similar samples, while, at the
same time, it also aims to increase the distance between dissimilar samples [217].

Decision threshold for most detection systems is normally determined previously to
the deployment of the model, with different applications having different requirements
to the operating point. Therefore, it would be interesting to optimise the performance of
detection systems at a wide range of decision thresholds. An overall metric describing the
detection performance for all possible thresholds is the AUC metric. Under this context,
several works have already proposed to train a classifier with a loss based on the AUC
metric. Furthermore, as a generalisation of the AUC, partial AUC only measures the
area under the ROC curve that is restricted between two false positive rates. Using this
generalisation as a loss function may be interesting in applications where the difference
in cost of false positive compared with false negatives is large.

In closing, this chapter introduces the recently proposed AUC optimisation tech-
niques for neural networks in the music detection task. Recent studies have proved
that these new optimisation techniques outperform traditional training objectives such
as cross entropy in other detection tasks. This is done with the main goal of overcoming
the possible issues arising when using a limited amount of training data in deep learning
systems. One of the main disadvantages of deep learning systems is that their perform-
ance is strongly dependent on the data they were trained on. Particularly, labelled data
for music detection is limited when compared to other tasks such as SAD. With the in-
troduction of these new optimisation techniques we aim to increase the performance of
music detection systems in this context of limited training data.

10.2 AUC and pAUC optimisation framework

10.2.1 Problem formulation

Suppose a dataset Π = {𝐗, 𝐘} where 𝐗 = {𝑥1, ... , 𝑥𝑁 } is the set of acoustic features with
𝑁 different examples, and 𝐘 = {𝑦1, ... , 𝑦𝑁 } the music labels defining each of the elements
in 𝐗 as music or non-music examples (1 or 0 respectively). The classifier model can be
expressed then as a function 𝑓𝜃 ∶ IR𝐷 → IR depending on a set of parameters 𝜃 and
mapping the input space of dimension 𝐷 to a real number representing the music score.
The parameters 𝜃 are estimated seeking tominimise (ormaximise) ametric given by a loss
function L( 𝑓𝜃(𝑥𝑖), 𝑦𝑖 ) that measures the difference (or similarity) between the classifier
output and the labels.
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10.2.2 Area under the ROC curve optimisation

The receiver operating characteristic (ROC) curve is a well known method to represent
the performance of a detection system. This curve plots false positive rates on the x axis
versus true positive rates on the y axis for all the possible detection thresholds. Further-
more, the area under the ROC curve (AUC) is a measure of the performance of a binary
classifier system as the discrimination threshold is varied. This metric is calculated as
the surface area between the FPR versus TPR curve and the x axis, as all possible classi-
fication thresholds are considered. The AUC represents the probability that a randomly
selected positive sample will have a higher predicted probability of being positive than a
randomly selected negative sample. Depending on the desired behaviour, the detection
threshold may be chosen differently. That is why it would be desirable to optimise the
system for all the possible decision thresholds, taking into account the trade-off between
false positives and false negatives.

Several papers have already proposed to directly optimise the AUC for different ap-
plications with promising results [218] [219]. Focusing on those using neural networks,
an AUC optimisation framework is adopted in [220] for the text-dependent speaker veri-
fication task. In [147], a deep learning based speech activity detection system is trained
with an AUC optimisation criterion.

To compute the AUC metric two new subsets need to be defined: 𝐒+ = { 𝑓𝜃(𝑥𝑖) ∀𝑥𝑖 ∈
𝐗 | 𝑦𝑖 = 1}, which is the neural network scores for the positives examples in 𝐗, and
𝐒− = { 𝑓𝜃(𝑥𝑖) ∀𝑥𝑖 ∈ 𝐗 | 𝑦𝑖 = 0} that represents the neural network scores for the negatives
examples in 𝐗. Cardinalities of those sets are 𝑁 + and 𝑁 − respectively. Then, the AUC
loss can be defined as

LAUC =
1

𝑁 +𝑁 −

𝑁+

∑
𝑖=1

𝑁−

∑
𝑗=1
1(𝑠

+
𝑖 > 𝑠−𝑗 ) , (10.1)

where 1(⋅) is equal to ‘1’ whenever 𝑠+𝑖 > 𝑠−𝑗 and ‘0’ otherwise. This expression can be
rewritten using the unit step function as

LAUC =
1

𝑁 +𝑁 −

𝑁+

∑
𝑖=1

𝑁−

∑
𝑗=1

𝑢(𝑠
+
𝑖 − 𝑠−𝑗 ) . (10.2)

In order to enable the backpropagation of the gradients, an approximation must be
done to obtain a differentiable function. In our implementation, we adopt the expression
proposed in [220], that modifies the step function for a sigmoid function according to

LaAUC =
1

𝑁 +𝑁 −

𝑁+

∑
𝑖=1

𝑁−

∑
𝑗=1

𝜎(𝛿(𝑠
+
𝑖 − 𝑠−𝑗 )) , (10.3)

where 𝜎(⋅) is the sigmoid function and 𝛿 is an hyperparameter that controls the slope of
the sigmoid.
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Figure 10.1: Schematic representation of ROC curve and partial AUC given 𝛼 and 𝛽.

10.2.3 Partial AUC optimisation

The usefulness of AUC can be limited in some cases due to its threshold invariance. If
there are wide disparities in the cost of false positives compared with the cost of false
negatives, it may be critical to minimise one type of error. Furthermore, optimising the
whole ROC curve can be costly and, in some specific applications, needless as the system
is going to operate only in a certain region of the ROC curve. The partial AUC (pAUC)
overcomes these issues evaluating the performance for a region of interest of FPR values.
It is formally defined as the area under the ROC curve between two FPR values 𝛼 and 𝛽.
This metric is presented schematically in Figure 10.1, with the blue area representing the
pAUC.

pAUC optimisation was firstly proposed in [221] for the speaker verification task
outperforming the current state-of-the-art on the NIST 2016 SRE data. The hard negative
mining approach presented in [220] could also be interpreted as a partial AUC solution
that chooses the hardest examples for training. A more recent study [222] has com-
pared both AUC and pAUC training objectives to obtain speaker embeddings for text-
independent speaker verification. This work shows that pAUC training achieves better
results than AUC training in most cases.

Given the already defined 𝐒− set, a new set 𝐒−𝛼𝛽 must be obtained constraining 𝐒− to
the range where the false positive rate lies in the interval [𝛼, 𝛽]. This is done through the
following three main steps:

1. The interval [𝛼, 𝛽]must be replaced for its integer equivalent, this is [ 𝑛−𝛼
𝑁− ,

𝑛−𝛽
𝑁− ]. with

𝑛−𝛼 and 𝑛−𝛽 computed according to

𝑛−𝛼 = ⌈𝛼𝑁 −⌉ + 1 , 𝑛−𝛽 = ⌊𝛽𝑁 −⌋ . (10.4, 10.5)

2. Sort 𝐒− in descending order



10.2 AUC and pAUC optimisation framework 137

Figure 10.2: Schematic representation of ROC curve and our proposed computation of AUC as the sum of two
partial AUC defined by the parameter 𝛾 .

3. 𝐒−𝛼𝛽 is selected as the set of samples ranked from the top 𝑛−𝛼 th to the 𝑛−𝛽 th position
of the sorted 𝐒− set. This results in a set of length 𝑁 −

𝛼𝛽 = 𝑛−𝛽 − 𝑛−𝛼 + 1

Now, the partial AUC can be computed in a similar way to the expression proposed in
Equation (10.3), but substituting the set of negative examples 𝐒− for the new set of con-
strained negative examples 𝐒−𝛼𝛽 . This partial AUC is expressed as

LapAUC(𝛼, 𝛽) =
1

𝑁 +𝑁 −
𝛼𝛽

𝑁+

∑
𝑖=1

𝑁−
𝛼𝛽

∑
𝑗=1

𝜎(𝛿(𝑠
+
𝑖 − 𝑠−𝛼𝛽𝑗 )) . (10.6)

10.2.4 AUC optimisation as sum of two partial AUCs

When computing the pAUC loss, a fraction of the training examples is discarded. This is
done after sorting the 𝐒− set, where only a subset of the sorted set is used in training. If we
suppose 𝛼 = 0 as done in [222], a fraction 1−𝛽 of the examples are consistently dropped
in the training process. This fact could be seen as a way of speeding up training because
it is reducing the number of operations per iteration. However, as we are dealing with
a limited training data scenario, we believe that it would be interesting to incorporate
those discarded examples in training somehow.

Our idea to incorporate those examples in training is presented schematically in Fig-
ure 10.2. The proposed training objective decomposes the entire AUC as the sum of two
partial AUC metrics, assuming the first one is using 𝛼 = 0 and the second one is using
𝛽 = 1. The parameter 𝛾 is introduced as the FPR point that separates the area in two
subareas. Then, our new training objective can be computed as

LaAUCsum(𝛾, 𝜆) = LapAUC(0, 𝛾) + 𝜆LapAUC(𝛾, 1) . (10.7)

A scalar hyperparameter 𝜆 is used for balancing both parts, seeking to give more or less
importance to the second pAUC term in training.
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10.3 Experimental setup

We set a fixed experimental setup for all our experiments as our main goal is not to
evaluate this specific neural architecture or set of features compared to other proposals,
but to evaluate whether AUC and pAUC optimisation can improve the performance of
our music detection system over traditional training objectives. Considering the limited
amount of training data that is used, the neural network model is chosen accordingly
with a simple setup consisting of two stacked RNN layers.

10.3.1 Data description

In order to perform our experiments we consider two different datasets, one for train-
ing and another for testing. Both of them correspond to the broadcast domain, coming
from different television emissions. We use the OpenBMAT dataset [134] to train our
music detection system. As explained in Section 4.1.3, this dataset contains 27 hours of
television broadcast audio from different countries. For this set of experiments only the
binary labels for music and non-music detection are considered. Furthermore, a 10% of
the data is reserved for training validation, so the total amount of data used for train-
ing is around 24 hours. No prior data picking is performed in any case; minibatches are
sampled randomly for the training dataset.

As test data we use the dataset originally presented in the paper “Automatic Music
Detection in Television Productions” [135]. It consists of around 9 hours of television
recordings from the Austrian national broadcasting corporation that were manually la-
belled as music or non-music. In both train and test datasets considered, audios were first
downsampled to 16 kHz and mixed down to a single channel.

10.3.2 Neural network classifier

In this set of experiments, the neural architecture is based on an RNN structure. The
model proposed for the AUC optimisation is described in Figure 10.3. As it can be ob-
served, 2 bidirectional GRU layers [97] with 128 neurons each are stacked. These layers
are then followed by a linear layer that performs the final classification. Adam optimiser
is used with a learning rate that decays exponentially from 10−3 to 10−4 during the 20
epochs that data is presented to the neural network. The hyperparameter 𝛿, introduced
in subsection 10.2.2 and used in the AUC based optimisation experiments, has a fixed
value of 10 seeking to obtain a shape close to the unit step function, in a similar way
as it is done in [220]. Training and evaluation is done using limited length sequences (3
seconds, 300 frames) in order to limit the delay of dependencies to take into account by
the RNN. However, an output label is emitted for every frame processed at the input.
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BGRU
BGRU

Linear

Figure 10.3: Schematic representation of the neural architecture proposed for the AUC optimisation experi-
ments.

10.3.3 Feature extraction

Concerning feature extraction, we combine a traditional set of perceptual features with
somemusical theorymotivated features. First, 128 logMel filter-bank energies are extrac-
ted between 64 Hz and 8kHz. Additionally, they are combined with chroma features [85],
extracted using the openSMILE toolkit [207]. All features are computed every 10 ms us-
ing a 25 ms Hamming window. Before being concatenated, log Mel energies and chroma
features are first normalised to be in the range between 0 and 1.

10.3.4 Evaluation metrics

The music detection task can be interpreted as a binary classification task, so traditional
metrics for binary tasks are applicable. In this set of experiments, we evaluate the results
of our system using the AUC metric and the EER. We also present the complete ROC
curve for the best systems presented in the work. Additionally, we report in our results
recall and F1 measure for a system using a threshold so that precision = 0.90.

10.4 Results

As the starting point of our experimentation, our aim was to obtain a baseline system so
that our further results could be compared. With the experimental framework described
in Section 10.3, we trained a neural network using the well-known cross entropy loss.
This system serves as a point of comparison for our AUC and pAUC optimisation exper-
iments. In Table 10.1, we compare this baseline with a system trained using the aAUC
training criterion. It can be observed that, by shifting from traditional loss functions,
such as cross entropy, to the aAUC criterion, a significant 4.30% relative improvement
can be observed in terms of AUC and a 19.11% relative improvement in terms of EER.
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Table 10.1: AUC, EER, recall and F1 measure (both computed for a system with precision fixed at 0.90) on test
data for the music detection system trained using the aAUC training criterion compared to a cross entropy
based training.

Training criterion AUC (%) EER (%) Recall F1

Cross entropy 87.02 21.40 0.45 0.60
aAUC 90.76 17.31 0.65 0.75

Once it has been proved that AUC optimisation can improvemusic detection perform-
ance in a limited data scenario with this first experiment, in the next set of experiments
we explore a more general training criterion, this is the apAUC explained previously. It
can be easily observed that the aAUC criterion is a specific case of the apAUC criterion
that uses parameters 𝛼 = 0 and 𝛽 = 1. Results using the pAUC training criterion are
presented in Table 10.2.

Table 10.2: AUC, EER, recall and F1 measure (both computed for a system with precision fixed at 0.90) on
test data for the music detection system trained using the apAUC training objective and different values of
parameters 𝛼 and 𝛽.

apAUC optimisation AUC (%) EER (%) Recall F1

𝛼 = 0 𝛽 = 0.25 87.21 20.85 0.54 0.68
𝛼 = 0 𝛽 = 0.5 90.34 17.53 0.64 0.75
𝜶 = 𝟎 𝜷 = 𝟎.𝟕𝟓 91.88 16.03 0.71 0.79

𝛼 = 0.25 𝛽 = 0.5 86.95 21.18 0.40 0.55
𝛼 = 0.25 𝛽 = 0.75 88.79 19.56 0.55 0.64
𝛼 = 0.25 𝛽 = 1 86.83 21.69 0.42 0.57

It can be observed that two different parameter setups were assessed. The first set of
parameters uses 𝛼 = 0, in a similar way as done in [222]. This configuration is equivalent
to discard the fraction 1 − 𝛽 of non-target examples with the lower scores, therefore the
ones that are easier to classify. The best system performance is achieved for 𝛽 = 0.75, with
evaluation metrics even better than the ones obtained for the aAUC training objective.
This results in a relative improvement compared to the baseline system of 5.60% in terms
of AUC and 25.10% in terms of EER. The setup using 𝛼 = 0.25 is presented for comparison
purposes. In this case the non-target examples with the higher scores (harder to classify)
are discarded for training. It can be clearly observed that this setup underperforms the
one with 𝛼 = 0, with AUC and EER values which are close to the baseline system.

Our final experiment explored the proposed aAUCsum training criterion that separ-
ates the AUC optimisation in two partial AUCs. The results obtained are presented in
Table 10.3. Gamma value was chosen to be 0.75 because it obtained the best perform-
ance in the pAUC optimisation experiments. This parameter setup slightly outperforms
the apAUC training objective, however, experimental results suggest that incorporating
the discarded examples in training does not lead to a consistent performance increment.
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Table 10.3: AUC, EER, recall and F1 measure (both computed for a system with precision fixed at 0.90) on test
data for the music detection system trained using the aAUCsum training objective, 𝛾 = 0.75 and different values
of 𝜆.

aAUCsum optimisation AUC (%) EER (%) Recall F1

𝛾 = 0.75

𝜆 = 1 91.78 16.78 0.70 0.79
𝜆 = 0.1 91.31 16.59 0.68 0.77
𝜆 = 0.01 91.45 16.20 0.69 0.78
𝝀 = 𝟎.𝟎𝟎𝟏 92.02 15.78 0.72 0.80
𝜆 = 0.0001 91.31 16.78 0.70 0.79

This effect may be motivated by the fact that the hardest examples could be sufficient
for the neural network to learn an effective classification mapping. It is also remarkable
that, our proposed aAUCsum criterion achieves state-of-the-art performance, with an
AUC and EER better than the aAUC training criterion in all cases. This results matches
with previous studies that suggest that pAUC optimisation techniques outperform AUC
techniques.

Finally, Figure 10.4 presents the ROC curves for the different systems trained in this
work using the best parameter configuration obtained. Again, it can be observed that
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Figure 10.4: ROC curve on the test data for the different training objectives presented in the work using the
best parameter configuration obtained (pAUC: 𝛼 = 0 and 𝛽 = 0.75, AUCsum: 𝛾 = 0.75 and 𝜆 = 0.001).

the baseline system trained using cross entropy criterion is significantly below in per-
formance compared to the other systems presented in this work. Furthermore, a similar
ROC curve is obtained for the apAUC and aAUCsum training objectives, both with a
performance better than the one obtained for the aAUC training.
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10.5 Conclusions

In this chapter, we have introduced the AUC and pAUC optimisation techniques into the
music detection task, aiming to overcome the issues derived from data limitations. We
present several approximations to threshold-independent metrics, that can be directly
optimised in a deep learning framework by applying an approximation based on the
sigmoid function. Considering the AUC loss as the starting point of the experimentation,
we also evaluated pAUC based loss functions that considers only a region of interest of
FPR values. Furthermore, considering that when computing the pAUC loss a fraction of
the training examples is discarded, we propose a novel training objective based on the
decomposition of AUC as the sum of two pAUC. The experimental setup proposed is
made of a classifier based on recurrent neural networks, that is trained with a limited
training dataset consisting only of around 20 hours of audio.

Experimental results suggest that AUC and partial AUC training both outperform
traditional training objectives such as cross entropy. All results obtained using any of
the AUC based loss functions provide a better performance than cross entropy training
under the experimental setup described. By using the described aAUC loss function, a
significant improvement in performance can already be observed, resulting in a relative
improvement around 4% in terms of AUC and 19% in terms of EER.When considering the
apAUC optmisation, systems using 𝛼 = 0 outperform the aAUC approach. This suggests
that the fraction 1 − 𝛽 of non-target examples with the lowest scores is not so relevant
in the learning process. Furthermore, the best result is obtained using our proposed
aAUCsum loss function, with a relative improvement close to 5.75% in terms of AUC, and
26.26% in terms of EER. By observing this result, it can be inferred that reincorporating
the previously mentioned fraction 1 − 𝛽 of non-target examples in the training process
with an appropriate weight is able to provide a boost in performance. However, this
increase is not consistent for different weights. In general, our results match with the
previously published studies that state that pAUC optimisation techniques report better
performance than AUC based optimisation.
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11.1 Introduction and motivation

Results from Chapter 10 have shown the capabilities of new AUC based optimisation
techniques for audio segmentation tasks, focusing on the music detection task. In

addition, a number of works have already proposed to directly optimise the AUC for dif-
ferent applications with promising results. Nevertheless, up until now, most presented
works that aim to optimise the AUC metric using a deep learning framework are lim-
ited to binary tasks, as this is the usual situation when applying the AUC metric. As
already shown in Part III of this dissertation, multiclass tasks pose new challenges for
audio segmentation systems, increasing the possible confusion between classes and, in
general terms, showing a lower performance when compared to binary segmentation
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systems. Yet, multiclass descriptions allow to provide a more detailed segmentation of
the audio content, with acoustic classes providing more specific information. Further-
more, the problem of data scarcity is even more relevant for multiclass audio segment-
ation systems. Labelling audios with detailed taxonomies involving multiples options is
significantly more complex than using a binary labelling schema. That is the reason why
the amount of labelled audio for some multiclass audio segmentation tasks is still limited.

Considering these ideas, it would be interesting to be able to benefit from the im-
provement in performance observed when using AUC optimisation techniques in audio
segmentation tasks with more than two classes. As a natural extension of the working
line presented in Chapter 10, the major contribution of this chapter is the introduction of
a generalisation for the AUC optimisation techniques presented in the previous chapter,
so that they can be applied to an arbitrary number of classes. This is done considering
as starting point some of the the multiclass variations of the AUC metric proposed in the
literature. To demonstrate experimentally its validity, the proposed training objectives
are evaluated on the relative music loudness estimation task, whose goal is to separate
an audio signal into three classes: foreground music, background music and no music.
This task was proposed initially in the MIREX [223] 2018 and 2019 technological eval-
uations, and it is supported by the release of the OpenBMAT dataset [134] for training
and evaluation, which we use in this set of experiments. Using a limited training dataset
of around 20 hours of audio, this chapter seeks to overcome data limitations for audio
segmentation systems in multiclass setups.

11.2 Beyond binary AUC optimisation

11.2.1 From binary to multiclass AUC

As described in Section 4.2.2, due to its intrinsic nature, ROC analysis [136] and the AUC
metric are commonly used in binary tasks, where the goal is to separate two different
sets: targets and non-targets. However, different studies have proposed an extension of
the AUC metric in order to be used as a performance measure in tasks with more than
two classes [224] [225] [226] [227]. Generally, two main approaches are known:

• one-versus-one (OVO) approach: originally proposed in [225], this approach
extends the AUC metric to the multiclass domain by averaging pairwise compar-
isons of classes. Supposing a problem with 𝑐 classes (𝑐 > 2), we define the set
𝐶𝑖 as the set of elements belonging to class 𝑖, and AUC(𝐶𝑖, 𝐶𝑗 ) as the binary AUC
metric obtained using the elements belonging to class 𝑖 as targets and the elements
belonging to class 𝑗 as non-targets. Therefore, the overall multiclass AUC can be
defined according to the following equation:

AUCOVO =
2

𝑐 (𝑐 − 1)

𝑐−2

∑
𝑖=0

𝑐−1

∑
𝑗=𝑖+1

ÂUC(𝐶𝑖, 𝐶𝑗 ) . (11.1)
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In general, for more than two classes, AUC(𝐶𝑖, 𝐶𝑗 ) ≠ AUC(𝐶𝑗 , 𝐶𝑖). This problem is
tackled in [225] by using the modified version ÂUC(𝐶𝑖, 𝐶𝑗 ) as the measure of separ-
ability between classes 𝑖 and 𝑗 . This is done according to the following equation:

ÂUC(𝐶𝑖, 𝐶𝑗 ) =
1
2
[AUC(𝐶𝑖, 𝐶𝑗 ) + AUC(𝐶𝑗 , 𝐶𝑖)] . (11.2)

• one-versus-rest (OVR) approach: This approach was firstly proposed in [227],
and is based on the idea that a classification system with 𝑐 classes (𝑐 > 2) can also
be interpreted as a system running 𝑐 binary classifiers in parallel. With this idea in
mind, the multiclass AUC metric can be defined as the mean of the 𝑐 AUC binary
metrics obtained, as expressed in the following equation:

AUCOVR =
1
𝑐

𝑐−1

∑
𝑖=0

AUC(𝐶𝑖, 𝐶𝐶
𝑖 ) , (11.3)

where 𝐶𝐶
𝑖 is the complement set of 𝐶𝑖 and AUC(𝐶𝑖, 𝐶𝐶

𝑖 ) is the AUC metric obtained
setting the elements belonging to class 𝑖 as targets, and the elements belonging to
the other classes as non-targets.

Experiments described in Chapter 10 have shown that binary AUC optimisation tech-
niques can lead to significant improvements in performance for the music detection
task when compared to traditional training criterion in a limited training data scen-
ario. In addition, other binary audio related tasks have also demonstrated the capab-
ilities of the AUC and partial AUC optimisation techniques in a deep learning frame-
work: speaker verification systems have been trained by optimising the AUC [220] and
partial AUC [228] [222] metrics. An equivalent approach to AUC optimisation is used
in [229] considering tuples of positives and negatives examples for speaker verification.
An evaluation of the most popular loss functions based on the metric learning paradigm
is presented in [230] for the speaker recognition task.

Building upon the description of the multiclass AUC metrics shown, in this chapter
we aim to extend the AUC optimisation techniques to the multiclass classification frame-
work in order to provide a generalisation that can be applied to an arbitrary number of
classes. To the best of our knowledge, this is one of the first approaches tomulticlass AUC
optimisation in deep learning applications. Posterior studies have also proposed meth-
ods to optimise multiclass AUCmetrics. Work presented in [231] introduced an empirical
surrogate risk minimisation framework to approximately optimise the AUCOVO metric.
Authors in [232] performmulticlass AUC optimisation for keyword spotting applications
by applying a modified hinge loss to obtain a differentiable expression.

11.2.2 Multiclass AUC Optimisation

As the starting point of the formulation for the multiclass AUC loss functions, we need
to refer to the already described binary AUC optimisation definition. Here, the main ele-
ments of it are summarised in the following lines as a reminder , but more details can be
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found in Section 10.2.2. Considering the formal definition of AUC shown previously in
Equation (10.2), the sigmoid approximation described in [220] was applied to overcome
the non-differentiability issues derived from the unit step function, allowing the back-
propagation of gradients. This leads to the expression of the aAUC loss (where ‘a’ stands
for approximated) described in the following equation:

LaAUC =
1

𝑁 +𝑁 −

𝑁+

∑
𝑖=1

𝑁−

∑
𝑗=1

𝜎(𝛿(𝑠
+
𝑖 − 𝑠−𝑗 )) , (11.4)

where 𝜎(⋅) is the sigmoid function and 𝛿 is a hyperparameter that controls the slope of the
sigmoid. As it has already been explained in the previous subsection, the multiclass vari-
ations of the AUC metric are built upon the computation of several binary AUC metrics,
so Equation (11.4) can be used as the main element to build our proposed multiclass AUC
training objectives. Just by modifying which classes are used as targets and non-targets
we can derive both multiclass loss functions. In the case of the OVO approach, through
the sigmoid approximation and by combining Equation (11.1) and Equation (11.2), it is
straightforward to obtain the expression for the aAUCOVO loss:

LaAUCOVO =
2

𝑐 (𝑐 − 1)

𝑐−2

∑
𝑖=0

𝑐−1

∑
𝑗=𝑖+1

1
2
[LaAUC(𝐶𝑖, 𝐶𝑗 ) + LaAUC(𝐶𝑗 , 𝐶𝑖)] , (11.5)

whereLaAUC(𝐶𝑖, 𝐶𝑗 ) represents the AUC sigmoid approximation loss computed using the
neural network scores belonging to class 𝑖 as targets and the neural network scores be-
longing to class 𝑗 as non-targets.

Similarly, for the the OVR approach the expression for the aAUCOVR loss can be ob-
tained directly applying the sigmoid approximation to Equation (11.3).

LaAUCOVR =
1
𝑐

𝑐−1

∑
𝑖=0

LaAUC(𝐶𝑖, 𝐶𝐶
𝑖 ) , (11.6)

where LaAUC(𝐶𝑖, 𝐶𝐶
𝑖 ) represents the AUC sigmoid approximation computed using the

neural network scores belonging to class 𝑖 as targets and the neural network scores be-
longing to the remaining 𝑐 − 1 classes as non-targets.

Considering the computational complexity of the proposedmulticlass training object-
ives, in the case of the LaAUCOVO , it implies computing 𝑐 (𝑐 − 1) different aAUCs, resulting
in a quadratic growth with the number of classes. On the other hand, in the case of the
LaAUCOVR , 𝑐 different aAUCs have to be computed to obtain the final loss, observing a
linear growth with the number of classes.

11.3 Experimental setup

With this set of experiments being an extension of the analysis described in Chapter 10,
most of the experimental setup is similar to the one described in the previous chapter.
The main difference comes from the data. Due to its specific labelling format that allows
a multiclass music segmentation, only the OpenBMAT dataset is used for train and test
in the evaluation of the proposed multiclass AUC loss functions.
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11.3.1 Data description

In order to demonstrate the capabilities of the proposed multiclass AUC optimisation
techniques, we apply them in the context of a 3-class audio segmentation task that aims
to separate foreground, background and no music fragments. As already mentioned in
Section 4.1.3, this task is proposed in the OpenBMAT dataset [134], being the first of its
kind to provide annotations separating foreground and background music. Audio data
comes from broadcast domain, with emissions from different countries manually labelled.

Dataset authors predefined 10 splits, that we use to separate data for training, val-
idation and test purposes: splits zero to seven are used for training, while split eight
is reserved for training validation. Split number nine constitutes the testing set. This
translates in a total of 22 hours of audio for training, and around 3 different hours for
validation and test respectively. All the audio files have been downsampled to 16 kHz
and mixed down to a single channel.

11.3.2 Neural network classifier

The same neural architecture as described in Section 10.3.2 is implemented for the eval-
uation of multiclass AUC training objectives. The only difference comes from the final
linear layer, that uses a 3 neurons output in this set of experiments. Concerning training
details, Adam optimiser is applied with a learning rate that decays exponentially from
10−3 to 10−4 during the 20 epochs that data is presented to the neural network with a
minibatch size of 64. Model selection is done by choosing the best performing model in
terms of frame classification accuracy using the validation subset. The hyperparameter 𝛿
used to control the slope of the sigmoid has a value of 10 seeking to obtain a shape close
to the unit step function, as in [220]. After neural network training, the 3-dimensional
scores for the validation subset are extracted and then used to adjust a logistic regression
model via a stochastic gradient descent algorithm. This model is used to obtain the final
classification labels.

11.3.3 Feature extraction

The same approach to feature extraction described in Section 10.3.3 is followed in this
new set of experiments, combining 128 log Mel filter-bank energies and chroma fea-
tures [85]. Again, all features are computed every 10 ms using a 25 ms Hamming window.
Before being concatenated, log Mel energies and chroma features are first normalised to
be in the range between 0 and 1.

11.3.4 Evaluation metrics

In order to evaluate the performance of the audio segmentation system, we distinguish
two kinds of metrics, those showing information for all the possible thresholds consid-
ering the neural network scores, and those showing information for the final decisions
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made by the classification system. As an aggregate measure of the discrimination of
all the classes, we report multiclass AUC in the two variations presented previously:
AUCOVO and AUCOVR. We also show the average area under the precision versus recall
curve. In order to illustrate each of the class performance, we include the precision versus
recall curve per class with the corresponding F1 isocurves. Furthermore, we report final
classification performance with overall accuracy, and per class precision, recall and F1
score.

All metrics are computed at frame level and without collar on the full test data de-
scribed previously. Seeking to validate the statistical robustness of our proposal, all our
experiments are run 10 different times reporting mean and standard deviation or both of
them for the metrics described.

11.4 Results

Table 11.1: AUCOVO, AUCOVR and average area under the precision versus recall curve on test data for the
audio segmentation systems trained using the proposed multiclass AUC training objectives compared to two
variants of cross entropy based training (Mean ± standard deviation over 10 different experiments).

Training objective AUCOVO(%) AUCOVR(%)
Avg. AUC (%)
prec vs recall

Softmax CE 81.69±0.84 79.42±0.69 66.05±0.97
Angular softmax 80.95±0.71 79.23±0.65 65.89±0.91

aAUCOVO 83.67±0.54 81.28±0.61 69.55±0.80
aAUCOVR 82.46±0.81 80.33±0.71 68.51±0.90

As the starting point of our experimentation, we aim to obtain a baseline system so
that further results could be compared. Using the experimental framework described pre-
viously, a neural network was trained using a cross entropy loss function. Note that, in
this work, cross entropy is implemented as a multiclass loss, also known as softmax cross
entropy in the literature. Furthermore, results are also compared with a well known vari-
ant of the softmax cross entropy, the angular softmax loss [233]. Both systems serve as a
comparison point for our proposed multiclass AUC training objectives. Table 11.1 com-
pares the AUCOVO, AUCOVR and average area under the precision versus recall curve on
test data for our proposed multiclass AUC loss functions and the two cross entropy train-
ing variants. It must be noted that both aAUCOVO and aAUCOVR provide an improvement
compared to softmax and angular softmax training in all the metrics presented. This is
most noticeable in the OVO approach that yields an approximate 2.5% average relative
improvement in both AUC multiclass metrics and an approximate 5% average relative
improvement in area under the precision versus recall curve when compared to softmax
CE training.

Figure 11.1 summarises the neural network scores performance per class for different
thresholds comparing our proposed AUC multiclass loss functions to the two cross en-
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Figure 11.1: Precision versus recall curves, F1 isocurves, and area under the precision versus recall curve per
class on the test data for the proposed multiclass AUC training objectives compared to two variants of cross
entropy based training (Average curve obtained over 10 different experiments).

tropy variations presented, showing precision versus recall curves and the corresponding
F1 isocurves. In general, we can see that both of our proposals achieve an improvement in
the classification of no music and background music classes, without a significant drop in
performance in the foreground music class. The improvement in the background music
class is consistent between the OVO and OVR approach (around 14% average relative im-
provement compared to cross entropy training in area under the precision versus recall
curve). However, the OVO approach is able to obtain better results on the no music class
(around 4% average relative improvement compared to cross entropy training in area un-
der the precision versus recall curve), achieving a better overall result and matching the
metrics shown in Table 11.1. It can be observed again that, when comparing softmax CE
and angular softmax losses, the last one yields similar results to softmax CE training with
a minor overall drop in performance.

Finally, Table 11.2 shows the results obtained by the final classification labels in terms
of overall accuracy and per class precision, recall and F1 for our proposed multiclass AUC
training objectives compared to both cross entropy variants. In this case, the AUC op-
timisation techniques derive in an average relative improvement of 14.03% and 8.77% re-
spectively for the OVO and OVR approach, compared to softmax CE in terms of overall
accuracy. Again, the OVO approach seems to outperform the OVR approach. This sug-
gests that, in general terms, the combination of pairs of classes performed in the OVO
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Table 11.2: Final classification overall accuracy, precision, recall and F1 per class on the test data for the audio
segmentation systems trained using the proposed multiclass AUC function losses compared to two variants of
cross entropy based training (Mean ± standard deviation over 10 different experiments).

Training objective Overall accuracy

Softmax CE 0.57±0.03
Angular softmax 0.56±0.03

aAUCOVO 0.65±0.02
aAUCOVR 0.62±0.02

Training objective
no-music

Precision Recall F1

Softmax CE 0.76±0.04 0.46±0.05 0.57±0.04
Angular softmax 0.71±0.04 0.48±0.03 0.57±0.03

aAUCOVO 0.81±0.03 0.70±0.03 0.75±0.03
aAUCOVR 0.80±0.03 0.51±0.03 0.63±0.02

Training objective
bg-music

Precision Recall F1

Softmax CE 0.49±0.02 0.69±0.06 0.57±0.03
Angular softmax 0.51±0.03 0.63±0.05 0.56±0.04

aAUCOVO 0.50±0.04 0.72±0.05 0.59±0.03
aAUCOVR 0.49±0.02 0.70±0.04 0.58±0.02

Training objective
fg-music

Precision Recall F1

Softmax CE 0.66±0.06 0.63±0.04 0.63±0.03
Angular softmax 0.60±0.04 0.64±0.03 0.62±0.04

aAUCOVO 0.54±0.03 0.67±0.04 0.60±0.03
aAUCOVR 0.58±0.02 0.71±0.05 0.61±0.03

solution is more powerful than the binary transformation performed in the OVR solution.
It can be observed that this boost in performance comes mainly from the increment in
the F1 metric for the no music class that rises from an average value of 0.57 in the softmax
CE training to 0.75 in the aAUCOVO training. Angular softmax shows a similar trend as
the one observed in the previous results, with a performance slightly below softmax CE
training and underperforming our proposed multiclass AUC loss functions.

11.5 Conclusions

In this chapter, a generalisation of the AUC optimisation framework that can be applied
to an arbitrary number of classes has been introduced and validated experimentally. De-
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rived from the presented multiclass extensions of the AUC metric, we introduce two
training objectives based on a one-versus-one and a one-versus-rest approach respect-
ively. The first one extends the AUC metric to the multiclass domain by averaging pair-
wise comparisons of classes, while the second one defines a multiclass AUCmetric as the
mean of 𝑐 binary AUC metrics. For both cases, extending the optimisation framework to
the multiclass domain implies computing a number of AUC metrics using different sets
of scores appropriately. In order to obtain a differentiable expression for these AUC com-
putations and following the same approach described in Chapter 10, a sigmoid approxim-
ation is applied. The formulation of the multiclass AUC loss functions is straightforward
then, being the average of different binary AUC sigmoid approximations using the dif-
ferent sets of target and non-target scores as described in the multiclass AUC metrics.

This proposal is evaluated in a 3 class audio segmentation task that aims to separate
foreground music, background music and no music using an experimental setup based
on recurrent neural networks with a limited training dataset consisting only of around
20 hours of audio. Despite the validity of the theoretical framework presented, further
research would be needed to explore the possible effects of using a larger number of
classes on the performance of the proposed training objectives.

Experimental results suggest that the multiclass AUC optimisation outperforms tra-
ditional training objectives such as softmax cross entropy or angular softmax, under the
circumstances of a limited training dataset being used. In particular, for this task, we
report an average relative improvement close to 14% in terms of overall accuracy us-
ing our proposed aAUCOVO training criterion. Comparing the two different approaches
considered, even though both of them outperform cross entropy criterion, the OVO ap-
proach outperforms the OVR approach in all of our experiments. This fact suggests that
the combination of pairs of classes is a more robust training criterion than the use of
one-versus-rest binarisation solutions.
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“Genius begins great works; labour alone finishes them.”

Joseph Joubert
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12.3 Future lines

12.1 Conclusions

The application of deep learning solutions in order to automatically extract informa-
tion from audio signals has become a common practice among the audio processing

community. Current technology capabilities support its use in industry and other envir-
onments outside laboratory conditions. Even tough deep learning research has observed
huge advances in recent years, several questions still need further research. Within the
different chapters of this thesis dissertation, a study of several audio segmentation tasks
has been presented, exploring its current limitations for different scenarios. This study
has mainly focused on two important topics: data availability and generalisation. For the
first one, part of the work presented in this thesis has investigated ways to improve the
performance of audio segmentation systems even when the training datasets are limited
in size. Concerning generalisation, some experiments performed aimed to train robust
audio segmentation models that can work in different domain conditions.
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Research efforts presented in this thesis dissertation have been centred around three
main areas: speech activity detection in challenging environments, multiclass audio seg-
mentation, and AUC optimisation for audio segmentation. In the following lines a sum-
mary of the main conclusions obtained for each of them is provided.

12.1.1 Speech activity detection in challenging environments

The first part of this thesis has been devoted to the SAD task, considering the challenging
domain proposed in the Fearless steps challenge with audio from Apollo space missions.
Motivated by the release of new data in the second phase of the challenge that allowed
the development of supervised deep learning solutions, initial experiments performed
in Chapter 5 explored the use CRNN models in the context of the SAD task. In addi-
tion to several CRNN systems using 1D and 2D filters in the convolutional stage, a novel
architecture is proposed that combines information from both kind of filters in an inter-
mediate feature space. The results obtained using the described CRNN models largely
outperform the baseline provided by the challenge organisation. Performance observed
for these models is in line with previous results in the literature where 2D convolutional
stages achieved better results than 1D filters. Moreover, experimental results hint that
combining the information provided by 1D and 2D filters is beneficial for the SAD sys-
tem, showing the best results in the development and evaluation sets. In terms of the
evaluation metric, competitive results in the challenge were obtained, with the best sub-
mission ranking seventh among the 28 submissions to the challenge SAD task, and fourth
among the 7 participant teams.

With the introduction of Apollo space missions audio data by the Fearless steps chal-
lenge, the need for methods to transfer knowledge from other domains to new environ-
ments became apparent. The research work described in Chapter 6 evaluates the capab-
ilities of a SAD system trained on common datasets to perform on a new domain such as
the one presented in the Fearless steps challenge. Different methods to adapt a baseline
model to this new domain are tested. Furthermore, this adaptation is done in a fully un-
supervised way, increasing its practical application in several scenarios. Experimental
results suggest that methods minimising statistical distribution shift between source and
target domains are the most promising. In particular, the Deep CORAL method provides
a significant improvement in the original challenge evaluation metric. In addition, the
cascaded application of Deep CORAL and pseudo-labelling reports the best result in this
analysis, suggesting that both techniques may be complementary. The first one provides
an overall improvement in the DET curve, while the second one improves the AUC value
by modifying the DET curve in areas with high FPR and FNR values. In general terms,
the improvement in performance observed can substantially reduce the gap between a
system trained using in domain data and a system adapted in an completely unsupervised
way.

Novel advances in self-supervised representation learning showed improvements in
a number of speech processing tasks under a variety of domains. Motivated by this fact,
the work detailed in Chapter 7 incorporates these advances to be applied in audio seg-
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mentation systems, namely in the SAD task. These methods are used with the goal of
solving possible mismatches in test data from new datasets released for the Fearless steps
challenge phase III and IV from years 2021 and 2022 respectively. Two different systems
were considered in our submissions: in the 2021 edition, an approach inspired on the
wav2vec model is followed. This solution is based on a contrastive loss that learns a fea-
ture representation combining a strided CNN encoder with a RNN in order to provide a
context embedding. Furthermore, for the 2022 edition recent advances in self-supervised
learning were also evaluated by using wavLM models in the context of the SAD task. In
both cases, the representations obtained are then used as input to train different variants
of a CRNN architecture. For both editions of the challenge considered, empirical findings
indicate that recent advances in self-supervised feature learning allow to develop au-
dio segmentation systems that are significantly less sensitive to domain mismatch when
compared to systems using traditional perceptual features such as log Mel filter-bank
energies.

12.1.2 Multiclass audio segmentation

In the second part of this dissertation, the focus has been set on a more general audio
segmentation task seeking to separate speech, music, noise and a combination of them.
This task may be specially relevant from the perspective of audio information retrieval,
combining in a single system two binary audio segmentation systems such as speech and
music detection, and going beyond that description modelling the possible combinations
of both classes. Chapter 8 introduced an approach to the multiclass audio segmenta-
tion task proposed by the Albayzín 2010 evaluation that is based on the use of recurrent
neural networks. These RNNs are combined with an HMM resegmentation module as a
smoothing technique in order to correct possible errors due to spurious transitions in the
neural network scores. A new block is proposed for the neural architecture seeking to
remove redundant temporal information. By applying a temporal pooling layer, the num-
ber of operations per second is reduced without increasing the number of parameters of
the model. Also, mixup data agnostic augmentation technique is applied to improve the
model generalisation capabilities without adding external data sources. The set of ex-
periments presented in this chapter showed that time pooling architectures can be used
between two BLSTM layers to remove redundant temporal information, improving the
overall performance of the segmentation system. The improvement observed when us-
ing mixup augmentation was specially significant for classes that can be modelled as the
combination of two classes. In general terms, competitive results were obtained with the
RNN based approach, outperforming the best results in the literature so far and a similar
approach based on DNN proposed for the DCASE sound environment detection task.

Results from Chapter 7 showed the potential of self-supervised representation learn-
ing in a binary audio segmentation task such as SAD. Aiming to obtain a wider perspect-
ive of these techniques in audio segmentation applications, thework described in Chapter
9 explored representation learning in the context of multiclass audio segmentation tasks.
For that, an analysis of different ways to benefit from these abstract representations is
performed, with an special focus on remarking its possible limitations when representing
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different acoustic classes simultaneously. While experiments on Albayzín 2010 dataset
fromChapter 8 relied on a combination of different sets of features, the approach followed
in this chapter aims to replace these features with representations obtained through self-
supervised learning. Namely, an approach inspired by wav2vec models is evaluated as
feature extractor under different training conditions and using different models as clas-
sifiers. A general trend can be observed in results for wav2vec representations leading to
a significant improvement in the performance of audio segmentation system for classes
containing speech. Yet, the opposite behaviour occurs for the segmentation of isolated
music. Any configuration evaluated using wav2vec representation was able to improve
the results for the baseline features in the music class. This fact limits the overall im-
provement observed when using wav2vec features in terms of average class error.

12.1.3 AUC optimisation for audio segmentation

The third and last part of this manuscript has investigated the application of new training
objectives in audio segmentation with the main goal of mitigating the issues derived from
a limited training dataset. The AUC metric serves as an overall description of the detec-
tion performance for all possible thresholds. In the context of metric learning techniques,
a number of works have already proposed to train a classifier using a loss function based
on the AUC metric. Additionally, partial AUC only measures the area under the ROC
curve that is restricted between two false positive rates. Using this generalisation as a
loss function may be interesting in applications with large differences in cost between
false positives and false negatives. The first approximation to AUC optimisation is in-
troduced in Chapter 10, that presents an optimisation framework based on deep neural
networks applied to the music detection task. The experimental setup proposed consists
of a classifier based on recurrent neural networks, that is trained with a limited training
dataset consisting only of around 20 hours of audio. With the introduction of these new
optimisation techniques, the aim was to increase the performance of music detection in
this context of limited training data. Findings extracted from the set of experiments de-
scribed in this chapter suggest that AUC and partial AUC optimisation techniques both
outperform traditional training objectives such as cross entropy. Particularly, a perform-
ance better than the one obtained using a cross entropy loss function is observed for any
of the AUC based loss functions evaluated, with the best performance obtained by the
system using the proposed aAUCsum loss function. These results correlate with differ-
ent published studies dealing with well-known speech processing tasks affirming that
pAUC optimisation techniques report better performance than AUC based optimisation
techniques.

Most of the works presented so far that aim to optimise the AUC metric using a deep
learning framework are limited to binary tasks, as this is the usual situation when ap-
plying the AUC metric. Part of this dissertation has described in Chapters 8 and 9 how
multiclass tasks pose new challenges for audio segmentation systems. Furthermore, the
problem of data scarcity is evenmore relevant for multiclass audio segmentation systems,
using detailed taxonomies that are more complex than using a binary labelling schema.
Considering these ideas, it would be interesting to be able to benefit from the improve-
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ment in performance observed when using AUC optimisation techniques in audio seg-
mentation tasks with more than two classes. As a natural extension of the work from
Chapter 10, Chapter 11 goes beyond binary AUC optimisation techniques to propose a
generalisation of these techniques so that they can be applied to an arbitrary number
of classes. For that, multiclass variations of the AUC metric proposed in the literature
are used as the starting point for the formulation. Namely, two training objectives were
proposed: one that is based on a one-versus-one approach, and one that is based on a
one-versus-rest approach. Experimental results suggest that, under the circumstances
of a limited training dataset being used, multiclass AUC optimisation outperforms tradi-
tional training objectives such as softmax cross entropy or angular softmax. Concerning
the two approaches tested, even though both of them outperform cross entropy criterion,
in all the experiments conducted the OVO approach provides consistently better results
than the OVR approach. This hints that the combination of pairs of classes may be a
more robust training criterion than using one-versus-rest binarisation solutions.

12.2 Scientific contributions

The research work carried out along this thesis has produced multiple contributions to
peer-review journals and conference proceedings, involving the different research lines
presented. These contributions are listed in the following lines:

12.2.1 Journal articles

• P. Gimeno, I. Viñals, A. Ortega, A. Miguel, and E. Lleida, “Multiclass audio seg-
mentation based on recurrent neural networks for broadcast domain data,” EURA-
SIP Journal on Audio, Speech, and Music Processing, 2020, vol. 2020, no. 1, pp. 1–19.

• P. Gimeno, V. Mingote, A. Ortega, A. Miguel, and E. Lleida, “Generalising AUC op-
timisation to multiclass classification for audio segmentation with limited training
data,” IEEE Signal Processing Letters, 2021, vol. 28, pp. 1135–1139.

• V. Mingote, I. Viñals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, “Multimodal
diarization systems by training enrollment models as identity representations,” Ap-
plied Sciences, 2022, vol. 12, no. 3, pp. 1141.

• P.Gimeno, D. Ribas, A. Ortega, A.Miguel, and E. Lleida, “Unsupervised adaptation
of deep speech activity detectionmodels to unseen domains,”Applied Sciences, 2022,
vol. 12, no. 4, pp. 1832.

12.2.2 Conference proceedings

• I. Viñals, P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “Estimation of the num-
ber of speakers with variational bayesian PLDA in the DIHARD diarization chal-
lenge.,” in Proc. ISCA Interspeech, 2018, pp. 2803–2807.
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• P. Gimeno, I. Viñals, A. Ortega, A. Miguel, and E. Lleida, “A recurrent neural
network approach to audio segmentation for broadcast domain data,” in Proc. Iber-
SPEECH, 2018, pp. 87–91.

• P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “Partial AUC optimisation using
recurrent neural networks for music detection with limited training data,” in Proc.
ISCA Interspeech, 2020, pp. 3067–3071.

• P. Gimeno, D. Ribas, A. Ortega, A. Miguel, and E. Lleida, “Convolutional recurrent
neural networks for speech activity detection in naturalistic audio from Apollo
missions,” in Proc. IberSPEECH, 2021, pp. 26–30.

• V. Mingote, I. Viñals, P. Gimeno, A. Miguel, A. Ortega, and E. Lleida, “ViVoLAB
multimodal diarization system for RTVE 2020 challenge,” in Proc. IberSPEECH,
2021, pp. 76–80.

• I. Viñals, P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “Diarization and iden-
tity attribution compatibility in the Albayzin 2020 challenge,” in Proc. IberSPEECH,
2021, pp. 94–98.

• P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “Unsupervised representation
learning for speech activity detection in the Fearless Steps challenge 2021,” in Proc.
ISCA Interspeech, 2021, pp. 4359–4363.

• P. Gimeno, A. Ortega, A. Miguel, and E. Lleida, “A study on the use of wav2vec
representations for multiclass audio segmentation,” in Proc. IberSPEECH, 2022, pp.
56–60.

12.3 Future lines

This thesis dissertation has presented different approaches to improve the performance of
deep learning based audio segmentation systems under a variety of scenarios. Despite the
fact that presented solutions showed gains in both binary and multiclass segmentation
tasks, there still exist a number of limitations that may be further investigated in future
works. In the following lines we describe some possible future research lines that could
be studied in order to solve some of the challenges described in this thesis dissertation.

• Recent research has shown the great performance of self attention architectures
in different audio processing tasks. While work developed in this dissertation has
focused mainly on other structures such as RNN and CRNN models, transformer
models are also being introduced in different audio segmentation tasks with prom-
ising results [67]. Data conditions explored in this dissertation deal with limited
training datasets in some cases. A number of studies have demonstrated that trans-
former architectures need much more data than previous approaches such as CNN
models for training [234]. Under these circumstances, it would be interesting to ap-
ply a reverse approach to current transformer experimentation, where the model
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should be scaled down instead of scaled up [235]. In this context, future work may
explore the application of mentioned transformer architectures for audio segment-
ation tasks, with the goal of evaluating relatively small datasets.

• Domain adaptation techniques evaluated in Chapter 6 were able to reduce the mis-
match in performance observed when evaluating a SAD model on a different do-
main from the one that it was trained on. In addition, this was done in a com-
pletely unsupervised way, without the need of labels in the new domain. Domain
adaptation methods that minimise the statistical distribution shift between source
and target domains, such as Deep CORAL, showed one of the most promising res-
ults. Some recent work has introduced the use of higher-order statistics for unsu-
pervised domain adaptation [236] [237], generalising the idea presented in Deep
CORAL as an arbitrary order moment matching technique. Some future work lines
may point in this direction, applying this idea to the SAD task.

• The combination of RNN classifiers and an HMM resegmentation module achieved
state-of-the-art results in the Albayzín 2010 multiclass segmentation task presen-
ted in Chapter 8. Through the introduction of temporal pooling techniques in the
RNN classifier, results were improved without increasing the complexity of the
model and reducing the number of operations per seconds. However, temporal
pooling techniques in the RNN classifier are still underperforming when compared
to our proposed HMM resegmentation module. Results presented in this disserta-
tion provide an interesting insight into the introduction of pure DNN smoothing
in audio segmentation tasks. Yet further research is needed on sequence compres-
sion techniques to fill the gap between HMM and DNN smoothing. While tech-
niques evaluated in this thesis such as average pooling or max pooling are fixed
length subsampling techniques, some works have presented new approaches that
rely on variable length subsampling to reduce the temporal information of a se-
quence [238] [239]. Future work could evaluate these recent advances in variable
length subsampling in audio segmentation tasks.

• The limitations of current self-supervised representation learning models when
used inmulticlass segmentation environmentswas shown in experiments described
in Chapter 9. Evaluated wav2vec representations demonstrated significant im-
provements in performance for classes containing speech. However, thesewav2vec
representations underperform traditional features in the segmentation of isolated
music. This problem is partially mitigated by eliminating standard augmentation
techniques in the training process, but even in the best case a poor performance
is observed for the music class. Further research should investigate the generation
of robust audio representations, capable of dealing with speech and music simul-
taneously. This topic is already an active research line with several researchers
working towards that direction. For instance, work developed in the context of
the HEAR challenge [240] seeks to develop a general purpose audio representation
that provides a strong basis for learning in a wide variety of tasks and scenarios.
Some recent models such as BYOL [241] have developed new learning methods to
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obtain general audio representations that can be applied to different downstream
tasks.

• The generalisation of AUC optimisation techniques for multiclass classification
presented in Chapter 11 can be theoretically applied to an arbitrary number of
classes. Experimental validation of this proposal was performed in the context of
an audio segmentation task that needs to separate three acoustic classes. In or-
der to compute these new loss functions a number of binary AUC metric need to
be obtained first, increasing computational complexity linearly with the number
of classes in the case of the OVR approach, and quadratically in the case of the
OVO approach. Further research should evaluate the mentioned training object-
ives in other multiclass audio segmentation tasks, focusing on investigating how
to efficiently scale them to tasks that involve a larger number of classes.
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