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Chapter 1

Introduction and goals

Being able to master materials with specific attributes and implement them to our day a day
life has improved many aspects of our society, from medicine to construction, energy or com-
munications. Materials have been, and still are, the starting point for every major development
in history. From the control of fire to the metal ages, the use of paper, magnets as orientation
devices and, later on, the discovery of piezoelectric, radioactive or superconductor materials.
Each of them has brought us one step closer to the silicon and plastic based era where we stand
now, and this kind of breakthrough discoveries are what push progress forward.

Up until now, we have allowed ourselves to think in a very profit-focused way: cheaper
products, faster to build, lighter, smarter... but now the table has turned. Now we are ankles
deep into a global climate crisis, not to mention a shortage of many materials that are crucial
to our way of life. Those parameters that defined the industrialization era are not longer valid
and others like ”environmentally and energetically friendly” or ”renewable or recyclable” have
to be promoted to the front line.

This search for materials that fit our new needs has stimulated the growth of materials
science.

One of the many topics that are being explored is Magnonics. Thought to be an utter revolu-
tion in the technology and communication field, magnonics hopes to redefine the way we trans-
mit, storage and process information. Currently, electronics and spintronics are mainly based on
the movement of charges, which leads to an energy loss via the Joule effect. In magnonics, the
coding of information would relay on the movement of magnetic moment structures, avoiding
said energy loss. This promising field of study has skyrocketed the study of chiral magnets,
proposed as the perfect support for this technology, boosting all kind of experiments that aim
to characterize their structure and magnetic properties.

The M4 (Multi-functional Magnetic Molecular Materials) research group followed this line of
investigation and published in 2017 a theoretical model ([1]) for cubic helimagnets that predicts
the existence of a skyrmionic phase [2] at low temperatures, near the transition line of the
material, called Phase A (there was an already known Phase A near the critic temperature of
the material and low magnetic field H⃗) and a new and unknown magnetic phase, called Phase B,
that doesn’t fit any of the previous models (conical helicoid, simple ferromagnet or skyrmionic
lattice). We can see a schematic phase map on Figure 1.1.

This new phases appear due to the instability of the stationary points of the energy func-
tional, as explained on the mentioned article. After this publication, the M4 research group
carried out a set of experiments characterizing two cubic crystals with very similar structures,
a MnSi and a Fe1−xCoxSi.

The macroscopic magnetic properties of the Fe1−xCoxSi were obtained via VSM (Vibrating
sample-magnetometer) from which a phase diagram was drawn, hinting at low temperatures
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Figure 1.1: Phase diagram presented by Campo y Laliena [1]. Conical helicoid and skyrmionic
lattice structures are valid for blue and pink striped areas respectively. Region (?) presents an
unknown phase.

the existence of the new Phase B, but nothing leading to the new Phase A. SANS experiments
were then performed in order to determine the nature of the proposed Phase B. The preliminary
results of the SANS experiment were obtained on 2022 and, although the abnormalities that
were observed through VSM at low temperature, no skyrmions nor new phase were found. This
does not contradict the existence of a new magnetic phase, since it could be one that presents
the same pattern as a conical helicoid when looked at using neutrons.

The study of MnSi followed the same approach. The VSM results showed that, for all
three directions < 100 >< 110 > and < 111 > the typical A-Phase near Tc was observed, but
only on the H⃗|| < 111 > direction, a flat-valley-like anomaly appeared on the magnetization
measurements at low temperatures, as stated in ([3]), the new B-Phase. No secondary A-Phase
was seen at low temperatures near the transition.

This led the group to perform SANS experiments on the < 111 > direction, specifically
studying the region where the new B-Phase should materialize. No difference on the wave’s
vector modulus or direction was perceived, obtaining the imprint of the typical conical helicoid
phase, however, changes on the expected decrease of the intensity of the peaks did appear.
All this information suggests that the B-Phase is not a skyrmion lattice nor a normal conical
helicoid.

Several models that fit these results had been theorised, but magnetometry and neutron
scattering could not give any further information. At that point, complementary techniques
were needed for the sake of sheding some light to the B-Phase puzzle.

During 2022 µSR (Muon spin rotation) experiments were carried out at TRIUMF’s facilities
in Canada. Since this technique requires the existence of a magnetic model to compare the
results with, the main goal of this work will be to develop a simulation of the magnetic structure
of the crystal around the muon’s implantation site. Then, the parameters of the model will be
changed in order to fit the data provided by the experiment. The model we will be simulating,
as stated in [3], consists on the propagation of 4 helixes with one of them being out of phase by
2º.

The structure of this work is as follows: in Chapter 2 we will review general concepts of
magnetism to then frame the models and structures we are interested in. We will then pay
attention to some of the techniques used for the characterization of the samples, such as SQUID,
VSM, SANS and, finally and more in depth, µSR. Once the theory is clear, we will present the
sample used as well as the experimental set-up. The last chapter will cover the simulation code
and some fitting results.
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Chapter 2

Previous knowledge

2.1 Magnetism in chiral solids

The study of the magnetic properties of matter has interested human beings since ancient times;
however, explaining the origin of such behaviors continues to be an active field for modern
science.

The response of a material to an external magnetic field depends on whether or not it has an
atomic magnetic moment. This moment has a nuclear component and an electronic component,
which involves the electron’s angular momentum L⃗ and its intrinsic spin S⃗. Depending on how
the material responds to the application of the field, we can differentiate between several types
of magnetism: diamagnetism, present in all solids and caused by an induced magnetic moment,
and paramagnetism, caused by the existence of a magnetic moment originated by the angular
momentum J of the unpaired electrons.

Let’s assume an interatomic interaction that takes into account both the Coulomb electric
interaction and the Pauli exclusion principle. This is the cause of other types of magnetism that
could eventually produce magnetic Long Range order (LRO), shown in Figure 2.1. Depending
on the position that implies the minimum energy between two magnetic moments of spin, we
obtain different types of magnetic order: ferromagnetism, antiferromagnetism, ferrimagnetism,
etc.

Thus, the interaction between two atoms mediated by the exchange coefficient J is defined
as:

H = −
∑
i,j

JijS⃗iS⃗j (2.1)

Where S⃗i, j are the moments of each atom and Jij is the value of J between the j and i
atoms.

Figure 2.1: Representación esquemática de la orientación de esṕın en configuración ferro, anti-
ferro y ferrimagnética

Materials with magnetic order are characterized by the existence of a critical temperature Tc,
above which the material loses its long-range order. Additionally, below this critical temperature,
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ordered magnetic domains may appear, separated by domain walls, so that although a well-
defined magnetization appears within a domain, the material may not exhibit total spontaneous
magnetization.

So far, we have considered that two spins can be parallel or antiparallel. This model has been
useful for understanding electronic exchange. In addition to the exchange interaction, whose
energy minimum is found with parallel or antiparallel ordering of the magnetic moments of spin,
there are other interactions that will influence the final ordering of the system.

One of them is the Dzyaloshinskii-Moriya (DMI) interaction. This has its origin in the
antisymmetric part of the spin-orbit coupling function, so it is zero in centrosymmetric crystals.
The DMI is described by expression 2.2, in which the energy minimum corresponds to the
positions of the spin magnetic moments perpendicular to each other. Typically, the intensity of
the DMI, D, is weaker than the intensity of the exchange interaction J . The presence of both
interactions gives rise to helical magnetic structures, whose rotation angle is proportional to the
ratio of the intensities of the interactions D/J , or ’canted’ structures, as shown in Figure 2.2.

H =
∑
i,j

D⃗ij(S⃗i × S⃗j) (2.2)

Another possible origin of a non-collinear magnetic structure arises from extending the ex-
change interaction beyond first neighbors. This gives rise to a phenomenon called frustration.
In this situation, a magnetic moment is ordered so as to minimize the energy taking into account
the exchange with nearby moments, not just its immediate neighbor. This results again in a
helix, explaining why these structures can be observed in centrosymmetric crystals where DMI
is not involved.

Figure 2.2: (a) Formación de una estructura helicoidal debida a la frustración y (b) Formación
de una estructura helicoidal y canted debido a la presencia de DMI

The presence of an external magnetic field in a specific direction results in adding a Zeeman
term to the Hamiltonian, leading to conical-helical structures if the field is parallel to the axial
axis, or chiral soliton networks if the field is applied perpendicular to the helix axis. Justifying
why these structures can also be observed in centrosymmetric crystals where DMI is not involved.

To mathematically describe these structures, a function is defined that assigns, for each
atom dm and nuclear cell l in space, the magnetization M⃗l,dm at that point. This function can

be expressed as a set of plane waves through Fourier coefficients defined as S⃗K⃗,dm (equation

2.3). The vector of these plane waves is called the magnetic propagation vector K⃗ = (α, β, γ)
and reflects the relationship between magnetic moments located in different nuclear cells of the
crystal, that is, it defines the relationship between the magnetic and nuclear cells. If α,β,γ ∈ Q,
the structure is called commensurate, otherwise it will be incommensurate.

M⃗l,dm =
∑
K⃗

S⃗K⃗,dme
−i2πK⃗R⃗l (2.3)
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The indices dm and l in equation 2.3 label the atom dm within the cell l. In Figure 2.3, the
values of l= 1,2,3 can be seen, while since there is only one atom per cell, it is not necessary to
indicate dm.

In Figure 2.3, the propagation vector K⃗, which as we have already explained, marks the
relationship or change of equivalent magnetic moments in different cells, will take a value of
K⃗ = (0, 0, 12) in the case of an antiferromagnetic ordering system since the magnetic moment
repeats its ordering every 2 nuclear cells of the crystal (in the case of a single magnetic atom
per nuclear unit cell). To describe a ferromagnetic system, K⃗ = (0, 0, 0) is used because the
moment does not vary, that is, the magnetic cell coincides with the nuclear cell.

Figure 2.3: Celda magnética frente a celda nuclear en sistema antiferromagnético (izq) frente a
ferromagnético (dcha)

The simplest Hamiltonian to describe a chiral magnetic system is shown in equation 2.4,
where J, D, B, and S are parameters corresponding to the intensity of the exchange interaction,
DMI, external field, and magnetic moment.

H = −
∑
i,j

JijS⃗iS⃗j −
∑
i,j

D⃗ij(S⃗i × S⃗j)− gµB
∑
i

S⃗iB⃗ (2.4)

The solutions of the Hamiltonian like the above for cubic magnets include helical magnetic
structures, conical helices, simple ferromagnetics, and skyrmionic lattices.

2.2 Previous experimental techniques

The same subject can be investigated in many different ways, each of them bringing to light
different properties or aspects of a sample, so that as much information as possible is obtained.
The complementary techniques employed over the course of this study are going to be briefly
introduced in the following pages, that way, the reader can follow the same steps the group took
and how each of them led to a new piece of information.

2.2.1 Vibrating Sample Magnetometer (VSM)

This instrument measures magnetic properties of a sample based on Faraday’s law of induction.
A magnetic sample is placed inside a constant magnetic field created with an electromagnet.
The magnetic dipolar moment of the sample will try to align with the external field. The sample
is then forced to vibrate, generally by a piezoelectric actuator, so that the magnetic field created
by the sample’s dipole moment changes with time when moved up and down.

This changing magnetic field induces a current in the so called pickup coils. These sensors
are placed in a way on which the external magnetic field generated by the electromagnet is
cancelled and only the one created by the sample is taken into account. The voltage induced in
the pick-up coils is proportional to the sample’s magnetic moment and does not depend on the
strength of the applied magnetic field.
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Figure 2.4: (left) Phase diagram of MnSi sample with H⃗|| < 111 > from VSM measurements.
(right) Magnetization versus field at 2K and 29K with H⃗|| < 111 > from [3]

In Figure 2.4 we can see, at temperatures close to the material’s Tc = 30K, an A-Phase
region as expected. Besides that, at temperatures below 7 K and fields between 4000− 6000Oe,
a possible B-Phase, hinted by a depression at the magnetization measurements.

2.2.2 Neutron Scattering

This technique allows the study of nuclear and magnetic structures ranging in size from sub-Å
to micrometers (µm) and movements with energies ranging from neV to meV, which places
us in the appropriate energy range for the study of magnetic structures and their dynamics.
The neutron interacts with matter in two ways: through nuclear strong interaction with nuclei
and through electromagnetic interaction with unpaired electrons and those nuclei that possess
magnetic moment. The first interaction will be used to define the nuclear structure, while the
second will provide information about the magnetism of the sample.

A neutron scattering experiment consists of irradiating the study system with a neutron
beam and counting the number of neutrons scattered in a certain direction and energy. This
information is given by the double cross-section:

d2σ

dΩ
k⃗f
dEf

=
kf
ki

(
2πm

h
)2| < k⃗fσf ;ψf |Hint |⃗kiσi;ψi > |

2
δ(Eψi − Eψf + hν)(2.5)

The neutron-matter interaction is described by the interaction Hamiltonian, denoted byHint.
The states before and after the interaction are distinguished by the indices i and f, respectively.
The variable k⃗ defines the wave vector of the beam. The incident wave is a plane wave. The
wave that describes the scattered beam is spherical; however, due to the large distance between
the sample and the detector, we can approximate it to a plane wave. From both wave vectors,
we can define the scattering vector q⃗ = k⃗f − k⃗i, which is related to the transfer of momentum
between neutron and sample, and the spin state of the beam is fixed by σ. The last term hν
can be defined in terms of the neutron energies as hν = Ei − Ef . On the other hand, the state
of the sample is described by ψ, and Eψ is its energy.

The strong interaction is intense and of very short range, only effective when the neutron is
close to the atomic nucleus. The potential employed to reproduce these conditions is the Fermi
pseudo-potential (expression 2.6), where r⃗d is the distance between the neutron and the nucleus
d.
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Vd(r⃗d) =
2πℏ2

m
bdδ(r⃗d) (2.6)

The pseudo-potential depends on the parameter bd, called the scattering length. The scat-
tering length is a constant independent of the directions of the beam. It is different for each
nucleus and provides information about how the interaction is. It is a complex number whose
real part is the scattering amplitude. This is the reason why neutron scattering is effective in
distinguishing isotopes of the same element.

To mathematically describe the sample structure, we introduce the pair correlation function
(equation 2.7). This function indicates the probability of finding two atoms at a distance r at a
given time.

G(r⃗, t) = − 1

N

∑
i,j

< δ(r⃗ − [r⃗i(0)− r⃗j(t)] > (2.7)

The Fourier transform in time and space of the pair correlation function is the dynamic
structure factor S(q⃗, ν) , which provides information about the position of the atoms and is
related to the coherent part of the scattering function Icohn (q⃗, ν). When it is integrated over all
energies, we end up with the elastic part of the scattering.

Icohn (q⃗, ν) =
d2σ

dΩdEf
=
σcoh

4π

kf
ki
NnS⃗(q⃗, ν) (2.8)

Icohn (q⃗) =
(2π)2

V0

∑
G⃗

δ(G⃗− q⃗)|Nq|2 (2.9)

This way, we can express the number of scattered neutrons in a direction, collected in equa-
tion 2.9 and known as the coherent scattering law, where |Nq| is the nuclear structure factor,

and G⃗ labels the nodes of the reciprocal lattice. This indicates that we will have scattering
points when the scattering vector coincides with a node of the reciprocal lattice, i.e., G⃗ = q⃗.
The intensity of these peaks is controlled by the nuclear structure factor, defined as:

Nq⃗ =
∑
m

bme
i2πq⃗r⃗me−Wm(q⃗) (2.10)

The label m corresponds to an atom of the lattice, so the structure factor depends on the
scattering length corresponding to that atom, a phase related to the position of the atom, and
a Debye-Waller factor, which reproduces the small displacements of the atom m with respect to
its equilibrium position in the lattice.

So far we have considered the sample’s structure but we have yet to consider the magnetic
part. The law of magnetic scattering can be written as shown in equation 2.11. This expression
has been simplified by defining the magnetic structure factor M⃗q⃗K⃗ (equation 2.12). The compo-
nent perpendicular to the scattering vector q⃗ is called the magnetic interaction vector, and the
square of its modulus gives the intensity of the diffraction peaks.

Icohm (q⃗) =
(2π)2

V0

∑
G⃗,K⃗

δ(G⃗− q⃗ − K⃗)|M⃗⊥ q⃗|2 where |M⃗⊥ q⃗| = |q̂ × (M⃗q⃗K⃗ × q̂)| (2.11)

M⃗q⃗K⃗ =
∑
dm,K⃗

Fdm(q⃗)Tdm(q⃗)ei2πq⃗r⃗dmS⃗K⃗dm (2.12)

where S⃗K⃗dm denotes the Fourier coefficients. The diffraction peaks will no longer occur at

points where q⃗ = G⃗, but satellites will appear at distances K⃗ from the nuclear scattering peaks.
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The total intensity for unpolarized scattered neutron beams, taking into account both the
nuclear and magnetic parts, is given by:

I(q⃗) = |M⃗⊥ q⃗|2 + |Nq⃗|2 for q⃗ = G⃗± K⃗ (2.13)

Small angle neutron scattering

Any magnetic structure can be described according to the propagation vector K⃗ formalism
explained in the previous section. A smaller value of this vector corresponds to a larger number
of nuclear cells contained in each magnetic cell. In other words, the magnitude of the K⃗ vector
is related to the spatial period of the structure.

Magnetic diffraction maximums are fixed at points that satisfy q⃗ = G⃗± K⃗. For this reason,
if the structure being studied has a very small propagation vector K⃗, we will find the diffraction
peaks of the satellites at very small values of the scattering vector, having to resort to low-angle
or SANS (small angle neutron scattering) techniques that specialize in neutron scattering at
small values of q⃗. This technique is explained at depth in [4].

The structures that we wanted to observe are magnetic helices formed by DMI so that the
rotation angle at each loop of the helix is given by the ratio D/J which is very small, so a single
period of the helix will occupy many nuclear cells.

There are two basic settings depending on the relative direction between the incident beam
k⃗i and the applied field H⃗. As we have discussed in the previous section, the scattering vector
q⃗ is defined as q⃗ = k⃗f − k⃗i, confined to the detector plane. The intensity of the diffraction

peaks is proportional to the square modulus of the magnetic interaction vector M⃗⊥q⃗. Thus, the

appearance or not of diffraction peaks will depend on two factors: that the value of |M⃗⊥ q⃗| is not
zero and that the scattering vector q⃗ can satisfy the Dirac delta of equation 2.11 δ(G⃗− q⃗ − K⃗).

Figure 2.5: Possible settings of magnetic SANS experiment

Let us suppose a magnetic helical structure whose axis is parallel or perpendicular to the
incoming neutron beam K⃗i. The beam is fixed so that the point G⃗ = (0, 0, 0) is at the center of
the detector, so that the diffraction maxima due to magnetic scattering or satellites appear at
q⃗ = ±K⃗. Depending on the relative position between the incident beam and the applied field,
we will have two possible results, illustrated in Figure 2.5:
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a. Helical axis||k⃗i: Since the q⃗ vector is contained in the detector plane, the point (q⃗ ± K⃗)
is not accessible in this configuration, so no intensity peaks will be observed. In short, by
irradiating with the beam parallel to the field, we cannot observe a helical structure whose
axis is also parallel to the field.

b. Helical axis⊥ k⃗i: In this case, the vector K⃗ lies in the plane and is accessible to q⃗, which
results in peaks of intensity in the detector. When the incident beam is perpendicular to
the helical axis, we observe two diffraction peaks or satellites corresponding to q⃗ = ±K⃗,
since, as seen in the figure, this configuration causes K⃗ to lie in the same plane as q⃗.

If we put a field parallel to the helical axis and increase the magnetic field H⃗, the magnetic
moments that form the helix will tilt, forming a conical helix. The component M⃗⊥q⃗

decreases at the expense of the component parallel to the field, resulting in lower intensity.

The same can be used in order to observe other magnetic structures, resulting in different
patterns. Both of the regions of interest (new A-Phase and unknown B-Phase) were explored in
the MnSi sample using the time-of-flight type small and wide angle neutron scattering instru-
ment TAIKAN [5] in the materials and life science facility (MLF) in J-PARC. The measurements
were performed in thermal equilibrium condition at temperatures between 2 K and 35 K, and
with applied magnetic fields below 0.8 T. The results did not show the new A-Phase, charac-
terized by the 6 points pattern of the triangular skyrmionic magnetic phase. According to the
magnetometry results, the new unknown phase appears below 7K and above 0.35T ([6]), where
a conical helix pattern (Figura 2.6) was observed. The intensity of this pattern was lower than
a classic conical helix magnetic structure, so that the existence of a new, non skyrmionic phase,
is supported.

Figure 2.6: SANS pattern in the H⃗||[111] ⊥ k⃗i configuration (a) at 2 K, 0.3T and (b)2 K, 0.5T.

The distance from the center at which the satellites appear corresponds to the module of the
propagation vector of the helical magnetic structure of MnSi:

|K⃗| = 0.035Å−1 (2.14)
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Chapter 3

Muon Spin Rotation (µSR)

Every experimental technique that uses particles as a probe to study matter depends on that
particle’s properties and on the interactions of that particle with its surroundings (other particles,
nuclei, electrons, atoms, molecules...). We have used neutrons because of their magnetic and
strong force interactions with matter, now we are going to use another basic particle, the muon.

The muon is a fermion (S = 1
2), negatively or positively charged, with a mass of 0.106 GeV

(207 times heavier than that of the electron) which gives it an enormous penetration power.
They can only be naturally found on Earth as a result of particles in the Earth’s atmosphere
colliding with cosmic rays high energy protons. They have a short lifetime of 2, 2µs but, because
they move close to the speed of light, they travel long distances before decaying. They decay
via the weak interaction producing an electron, a neutrino and an anti-neutrino.

µ+ −→ e+ + νe + ν̄µ (3.1)

µ− −→ e− + νµ + ν̄e (3.2)

A very advantageous property of this decay is that, although neutrinos do not interact with
matter, making it difficult to detect them, electrons or positrons are easier to see, and they
are emitted following an angular distribution given in 3.3, characterised by an asymmetry that
benefits the direction on which the magnetic intrinsic moment of the muon is pointing. The
asymmetry parameter aas(ϵ) varies with the positron kinetic energy ϵ as 2ϵ−1

3−2ϵ .

W (θ) = [1 + aas(ϵ) cos(θ)] (3.3)

Figure 3.1: (Left) Polar diagram of the angular distribution W (θ) of positrons from muon
decay. (Right) Schematic view of the Larmor precession of spin Sµ around Bloc.

The magnetic intrinsic moment is, like the mass or the charge, an intrinsic property of a
particle and accounts for how it interacts with a magnetic field. It is a consequence of the
existing spin momentum of a charged particle, which creates a small circuit of moving charges.
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This settles the base for a µSR experiment. The main goal of the experiment is to follow the
muon’s spin polarization as it penetrates the sample and interacts with its magnetic local field
Bloc. This is achieved by implanting polarized muons to the target and studying the direction
on which the positron or electron is emitted, which gives us the polarization of the muon when it
disintegrates. The final polarization, along with other variables previously obtained such as the
muon’s implantation sites inside the sample, the nuclear structure and magnetic model of the
sample with a given propagation vector K⃗, gives us further information on how the magnetism
inside our sample behaves and can help us refine or discard the model proposed.

The evolution of the polarization of the muon’s spin inside the sample, from the initial
polarized beam to the direction on which positrons are emitted is linked to Bloc through the
Larmor equation (3.4). If the muon’s spin Sµ precesses the local field Bloc (Figure 3.1) oriented
at an angle θ from Sµ, the solution for the Larmor equation yields:

Sµ(t) = S||
µ(0)u+ S⊥

µ (0)[cos(ωµt)v− sin(ωµt)w] (3.4)

where the angular frequency is ωµ = γµBloc = 2πνµBloc. We have used a system with three

orthogonal unit vectors u, v, w so that u||Bloc and v||Sµ(0). This solution shows that the S
||
µ(0)

component of Sµ, parallel to Bloc remains constant, while the perpendicular one rotates around
Bloc with Larmor’s angular frequency ωµ. We define γµ as the gyromagnetic ratio and it is
related to the muon’s magnetic moment mµ as:

mµ = γµℏSµ =
ℏ
2
γµ (3.5)

While the vector formalism we just presented is easier for understanding the concept, we will
use the tensor formalism [7]. For this we are going to use a longitudinal operator PL and two
transverse ones PT1 and PT2 with which we can build a tensor M(t) in order to express:

Sµ(t) = M(t)Sµ(0) (3.6)

M(t) = PL(u) +PT1(u) cos(ωµt)−PT2(u) sin(ωµt) (3.7)

M(t) can be written through its Cartesian components,Mαβ(t). Defining dp as the direction
of positron moment and iµ as the direction of Sµ(0), we define polarisation as:

Piµ,dp(t) =
⟨Sµ(t)⟩
Sµ(0)

dp (3.8)

From where we can derive the final polarisation equation:

Piµ,dp(t) =
∑
α,β

⟨Mαβ(t)⟩iβµdαp (3.9)

Once we know how the polarization of the muon behaves when affected by a local magnetic
field B⃗loc, we need to be able to relate that to the measurements taken by the detectors.

Let’s consider the transverse-field geometry of a µSR experiment, since it is the one we will
simulate in the next chapter. This setting is characterized by an external magnetic field applied
perpendicular to the initial muon beam. Following Figure 3.2, when a muon crosses the “muon
time 0 detector” at t0, an electronic clock starts counting and stops when the positron reaches
the “positron detector” at time tn. We define tn = n∆t+ t0, where “n” accounts for the number
of digitization channels and ∆t for the time resolution. An histogram representing the number
of positrons detected against the time they have spent inside the sample can be built from this.
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Figure 3.2: Transverse-field geometry of a µSR setting.

The positron count N(tn) can be expressed as equation 3.10 where the ± sign stands for the
position of the detector (either in the “forward” direction, same direction as Sµ as represented
in Figure 3.2, or in the “backward” direction, opposite to Sµ).

N±(tn) = N0exp(−tn/τµ)[1± a0P
exp(tn)] (3.10)

N0 sets the scale of counts, τµ is the muon’s lifetime, P exp(tn) is the normalised polarisation
function and a0 is an experimental parameter that stands for the initial asymmetry, dependent
of experimental conditions. We can distinguish two parts involved in the number of positrons
detected. The exponential deals with the muon’s natural decay over time while the second one
concerns the polarization change. The previous equation can be manipulated into equation 3.11.

a0ηµP
exp(tn) =

N+(tn)−N−(tn)

N+(tn) +N−(tn)
, (3.11)

where the coefficient ηµ has been added for taking into account P exp(t < t0). This way
we experimentally obtain the polarisation function and relate it to the local magnetic field, as
stated in equation 3.9

Now that we understand both how the emperimental setting attains the experimental polar-
ization through time 3.11 and its relation with the precession of the muon spin around the local
magnetic field 3.9 we can better comprehend the typical spectre of a µSR experiment, seen in
Figure 3.3.

Figure 3.3: Typical spectre of a transverse field geometry µSR experiment

12



On the left, muon spin polarization is plotted against time and, following Larmor’s equation
3.4, the spectre presents oscillations that are damped over time. The origin of the damping
phenomena will be further explained on Chapter 4, Section 4.5, fully dedicated to Larmor’s
equation. Applying the Fourier Fast Transformation (FFT) to the Polarization-time data, we
can plot the FFT intensity over frequency (right side of Figure 3.3). The frequency can be
directly linked to the B⃗loc at the muon implantation site when it dies, so by looking at the
position of the peaks in the FT − µSR Figure, we obtain the module of the existing local field.

This technique has an extremely high sensitivity to internal magnetic fields, such as those
with nuclear or electronic origin. It can also measure field fluctuations from 104 − 1012Hz
complementing Nuclear Magnetic Resonance (NMR). It has close to no limitations regarding
sample sizing and works under a great variety of scenarios (temperature, magnetic fields up to
8T, electric fields, high pressure, irradiated with light...)

3.1 Setting and experiment

Transverse-field (TF) µSR experiments were carried out on the NuTime spectrometer installed
on the M15 beamline of the centre for molecular and materials science (CMMS) facility at
TRIUMF, Canada. M15 is equipped with dual spin-rotators, which serve both to separate
positrons from the beam and to rotate the muon spin perpendicular to the beam direction.

We can take the sketch of the transverse geometry experiment (Figure 3.2) one step further,
getting a closer look at how TRIUMF’s real setting was designed (Fig 3.4). The muon’s initial
polarisation iµ is contained in the x-axis and the field applied paralel to the z-axis. There are
two sets of detectors, one in the y-axis, as shown in the figure, and another one along the x-axis.

Figure 3.4: TRIUMF’s µSR transverse geometry setting diagram

This means that we can measure the polarization change on the y-axis or x-axis, so that
taking the x-axis as an example, our results would follow the expression below:

PX,X(t) =
∑
α,β

⟨Mαβ(t)⟩iβµdαp = ⟨MXX(t)⟩ (3.12)
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Two crystals with the same size: 4.86 × 3.65 × 1.65 mm3 were placed on top of a ”muon-
veto” scintillator. The crystals were then covered with a Ag foil (Figure 3.6. The muon veto
together with the four positron counters form a cryostat insert and sample holder. TF µSR
spectra with approximately 3·107 muon decay events were taken under conditions of zero field
cooled ZFC, where the external magnetic field was applied by a 7 T superconducting magnet in
the configuration: B⃗||⟨111⟩ ⊥ S⃗µ(0). The measurements were done in the temperature range 2
K to 50 K and field range 0 T to 0.75 T.

Figure 3.5: Sample covered in Ag foil and 4 positron counters

Figure 3.6: NuTime spectometer at M15 beamline, TRIUMF facility.
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Chapter 4

Simulation software development

Once the experimental polarization has been measured, the results are to be compared to those
of the simulation. This simulation has been designed to reproduce the sample’s nuclear and
magnetic structure based on previous experiments (VSM, SANS...). Once the sample’s known
parameters are fixed, we simulate a magnetic model and proceed to calculate the internal mag-
netic fields and their interaction with the simulated muons. By contrasting the outcome with the
experimental results, we can perceive to which extent the proposed magnetic model reproduces
what can be observed experimentally.

The code is written in Python and follows the diagram shown in Figure 4.1. A text file
containing the value of every known variable allows the simulation of an experimental setup,
a nuclear struscture, a magnetic structure and the muon implantation sites. Up to here,based
on previous experimental results. The next step is to simulate the magnetic model we want to
test, in our case, the 4 helix magnetic structure. The combination of the resulting magnetic
structure and the muon’s implantation sites will allow us to simulate the local magnetic field
each muon senses before decaying. The last block uses the simulated B⃗loc and applies the larmor
equation to the muon’s spin, simulating their final polarization, S⃗Sim

µf . This is then compared

to the experimental final polarizations S⃗Exp
µf measured on the NuTime spectrometer.

Figure 4.1: Simulation working diagram. “Variable.txt” provides the values needed for the
simulation. “Data Import.txt” provides experimental results. ddm is the position of the nuclear
structure atoms, dµ position of the muon, m⃗u,m⃗h magnetic moments parallel and perpendicular

to the propagation vector K⃗ and S⃗µ is the polarization of the muon.
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4.1 Experimental setting and MnSi nuclear structure

The first part of the simulation involves the axis and constant parameters throughout the ex-
periment. The setting reproduces a transverse field geometry µSR experiment. The external
field Bext will be applied parallel to the sample’s [111] direction, aligned with the z axis. The
muon beam will follow the [1̄10] direction, defining the x axis. The temperature and module
of Bext will be fixed at this stage of the simulation, covering ranges from 2-40K and 0-0,75T
respectively.

Figure 4.2: Transverse-field geometry setting with sample positioning.

The sample is a MnSi compound, a cubic crystal lattice with no inversion. The compound
behaves as a paramagnet over 29K, while below this temperature spins create helical, conical,
skyrmionic or simple ferromagnetic structures. Its unit cell is formed by 4 manganese atoms
and 4 silicon ones, cristallizing in a P213 spatial group (No. 198) with a lattice parameter
a0 = 4, 558Å.

Figure 4.3: MnSi crystal structure.

Our attention is going to be focused on the manganese ions, occupying the 4a Wyckoff
positions (x, x, x) with xMn = 0, 138. Each position will be labeled as γ = 1, 2, 3, 4.

d⃗Mn(γ = 1) =⇒ (xMn, xMn, xMn)
d⃗Mn(γ = 2) =⇒ (12 − xMn, 1− xMn,

1
2 + xMn)

d⃗Mn(γ = 3) =⇒ (1− xMn,
1
2 + xMn,

1
2 − xMn)

d⃗Mn(γ = 4) =⇒ (12 + xMn,
1
2 − xMn, 1− xMn)
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4.2 Magnetic model. 4 Helixes magnetic structure

The magnetic model is key in this experiment. From the known conical helical magnetic structure
that forms in the ordered phase of the crystal, we are going to simulate the de-phasing of the
helices to then compare it to the experimental results. This magnetic model will define the
magnetic fields the muon perceives when implanted and, therefore, the polarisation it acquires
before decaying.

As explained in the first chapter, every magnetic structure can be defined through the mag-
netic propagation vector K⃗ formalism (Equation 2.3). In this formalism we define S⃗

k⃗,dm
as the

Fourier coefficients. On our setting, the real part of S⃗
k⃗,dm

will be defined in the x-axis and

the imaginary part in the y-axis, while K⃗ follows the z-axis. The value of its module is known
thanks to previous SANS measurements (2.14)

K = |K⃗| = 0, 035Å−1, (4.1)

setting a wavelength λ = 2π
K = 180Å. We then define an helix originated in every manganese

atom labeled “dm” inside a given unit cell labeled “d”, by calculating the propagation vector
Kd,dm = K⃗R⃗d,dm , where R⃗d,dm is the “d” atom, “dm” manganese position. For this, the software
creates a loop that goes through the 4 manganese positions of a unit cell. For the manganese
holding the γ Wyckoff position, we make a loop through every cell, defined by (ai, bi, ci) with
ai, bi, ci = 0, ...., N , where N is the number of cells in one direction of the sample. Our sample
has N = 80 cells in each direction. We start by fixing the ai index, on the yz-plane, and define
a sphere to limit the other bi, ci indexes as sketched in Figure 4.4. We are only calculating
magnetic moments of manganese atoms close to the [111] direction.

Figure 4.4: Transverse-field geometry setting with sample positioning.

Once we calculate the exact position of the dm manganese atom inside the d = (ai, bi, ci)
cell, we obtain Kd,dm propagation vector and, therefore, its magnetic moment m⃗dm. It will have
one component parallel to the z-axis (the direction of the propagation of the helix) named m⃗u

and another one in the x-y plane, m⃗h, defined as:

m⃗dm = mh{S⃗Real
k⃗,dm

cos(Kd,dm + ϕγ)x̂± S⃗Imag

k⃗,dm
sin(Kd,dm + ϕγ)ŷ}+muB⃗extẑ (4.2)

where mu is the magnetic moment of uniform component parallel to Bext and mh the mag-
netic moment of helix, both dependent of the intensity of the applied field and temperature,
expressed in units of the bohr magneton. In our particular case, the phase ϕγ equals -2º if γ = 1
and 0º otherwise, representing the de-phasing of one helix versus the other three. The ± stands
for the left-handed helicity (−) or right handed helicity (+). Notice the coordinate system used

17



in this equation corresponds to the one we used in Figure 3.2. The values used for the magnetic
moment m , from which mu and mh are calculated are m(T = 2K) = 0.4, m(T = 10K) = 0.393
and m(T = 28K) = 0.283 in Bohr magneton units. In order to facilitate equations in the future
we are going to define m⃗c = mhx̂ and m⃗s = mhŷ to re-write:

m⃗dm = {m⃗cS⃗
Real
k⃗,dm

cos(Kd,dm + ϕγ)± m⃗sS⃗
Imag

k⃗,dm
sin(Kd,dm + ϕγ)}+mu

⃗Bext,ẑ (4.3)

The position of every manganese dm along with their magnetic moment m⃗dm is kept on
a matrix. The graphic representation of the magnetic moment of the “Mn 1” along the [111]
direction of the sample, simulated by the program, is shown in Figure 4.5.

Figure 4.5: (a) Representation of the m⃗h of Mn with Wycoff position (0.138, 0.138, 0.138)
along the [111] direction. (b) Representation of the four Mn atoms in the unit cell (labeled in

red) and their respective m⃗u (orange).

4.3 Muon implantation site

Just like the position on which Mn atoms locate inside the unit cell, we can define the position
dµ on which the muons implant inside the crystal. Because of its positive electric charge, the
muon is implanted in an interstitial site that can be calculated ???. In our case, the muon is
located at the Wyckoff position 4a with xµ = 0.532. This positions are labeled as η.

d⃗µ(η = 1) =⇒ (xµ, xµ, xµ)

d⃗µ(η = 2) =⇒ (32 − xµ, 1− xµ,
1
2 + xµ − 1)

d⃗µ(η = 3) =⇒ (1− xµ,
1
2 + xµ − 1, 32 − xµ)

d⃗µ(η = 4) =⇒ (12 + xµ − 1, 12 − xµ, 1− xµ)

Besides the position, it is important to know the initial spin polarization of the muon. Muons
are spin polarized opposite to their momentum, so when a muon is transported down the beam
line, it arrives nearly perfectly spin polarized. We fix the initial polarization of Sµ to the direction
defined by θµ = 1

2π and ϕµ, where θµ is the polar angle of the muon spin at the moment of

implantation and ϕµ the azimutal angle, dependant on the applied magnetic field B⃗ext.

4.4 Local field at muon’s site

The calculation of the intensity and direction of the magnetic field at the muon’s site B⃗loc is
the rough part of building this simulation. In order to imagine what the muon perceives before
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decaying we have to take into account several interactions between muon and sample, direct and
indirect, that we have reduced to:

B⃗loc = B⃗ext + B⃗dem + B⃗RKKY + B⃗dip + B⃗Lor (4.4)

It is worth mentioning that Fermi’s magnetic field B⃗Fermi that represents the muon’s inter-
action with the electronic density at its site (conduction electrons) has been left out, following
the thoughts of several studies regarding MnSi samples[7][8].

During the following subsections, every magnetic field taken into account, except for the
externally applied one B⃗ext, is going to be calculated for a muon η located on a unit cell in the
center of the sample. One extra section will develop the transformation of this result to every
muon’s site on the sample, in a way that avoids an endless loop through all of them re-calculating
each field.

4.4.1 Demagnetisation Field. B⃗dem

Every magnetic material has a demagnetisation field. The form anisotropy of a magnetic sample
has its origin on the sample’s geometry and is defined by the demagnetisation factor tensor Ñ.
This effect consists on the creation of a magnetic field B⃗dem opposed to the total magnetization
M⃗ of the sample, following equation 4.5. This means that the muon does not perceive the whole
applied field, but a smaller effective field dependant on the sample’s geometry.

B⃗dem = −Ñµ0µB
4M⃗

a3
(4.5)

where a is the lattice constant and µB is Bohr’s magneton. Depending on the direction on
which we apply the external field, the tensor Ñ will take a different value. In this simulation we
have used the experimental value Na = Nb = Nc = 0.55 [9] where Na, Nb, Nc are the diagonal
values of the tensor.

4.4.2 Hyperfine Field. B⃗RKKY

Compounds with unpaired “d” electrons have a higher electronic density at the ion’s site than
between sites, which can be translated into localized magnetic density at crystal sites. This lo-
calized electrons’ magnetic moments are going to interact with that of the muon in two different
ways: the classical dipole interaction and, in metals, through the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction.

The RKKY is a indirect exchange that describes the interaction between the muon magnetic
moment and the magnetic moments of close unpaired electrons through conduction electrons.
Since the interaction is at a local level, we limit the calculus to a sphere of radius equal to the
lattice constant.

Following equation 4.6, for each muon η of a given unit cell located at the center of the
sample, defined by the position r⃗η, the simulation runs through every manganese atom γ defined
by r⃗γ that fulfils the condition |r⃗η − r⃗γ | ≤ a and adds up their magnetization m⃗dm obtaining

M⃗average =
∑

m⃗dm

N ′ .

B⃗RKKY (η) =
µ0
4π

N ′∑
dm=1

m⃗dm

Vc

VmolHRKKY

N ′ (4.6)

The volume of the unit cell Vc and the volume of a mol of MnSi Vmol are known experimental
parameters, as well as the RKKY constant HRKKY = −0.9276 mol

emu . N
′ stands for the number

of manganese atoms that fulfil |r⃗η − r⃗γ | ≤ a.
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4.4.3 Dipolar Field. B⃗dip

Another interaction between the magnetic moment of localized “d” unpaired electrons and the
magnetic moment of the muon is the long range classic dipole interaction. The dipolar field
calculated at the site of a given muon η, B⃗dip(η), is expressed as a sum of contributions from
magnetic moments m⃗dm over the whole crystal, as shown in equation 4.7. The distance between
the η muon and the γ manganese atom is defined as r⃗dm = r⃗η − r⃗γ . The field created by a
moment at distance rdm decreases with r−3

dm, while the number of moments at that distance
increases with r2dm, which means that the sum does not converge.

B⃗dip(η) =
µ0
4π

N∑
dm=1

[
−m⃗dm

r3dm
+

3(m⃗dmr⃗dm)r⃗dm
r5dm

]
(4.7)

This can be solved restricting the sum inside a sphere centered in rη with a radius big enough
so that the lattice sum convergence is reached. This sphere is called the Lorentz sphere with
radius RLorentz = 90Å in our simulation.

The same procedure used to calculate the hyperfine field is followed here. For a given muon
η located at the center of the sample, defined by r⃗η, the program runs through every magnetic
moment m⃗dm at r⃗dm that respects the condition |r⃗η − r⃗i| ≤ RLorentz while applying equation
4.7.

4.4.4 Lorentz Field. B⃗Lor

Another part of the dipole interaction is the contribution of the “surface” of the Lorentz sphere,
or more precisely, the vector sum of dipoles located inside the Lorentz sphere. For this we need
to add all the magnetic moments inside the sphere and then divide them by the volume of the
sphere, as expressed in the following equation:

B⃗Lor(η) =
µ0
3

∑
VLor

m⃗dm

VLor
(4.8)

With this contributions, we can imagine the local field at the center of the sample for a muon
η as depicted in Figure 4.6.

Figure 4.6: Representation of sample (grey) with the Lorentz sphere (white) centered on a
muon, with every field that contributes to B⃗loc skecthed.
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4.4.5 Total Field. B⃗loc

The previous formulas were written for a specific muon site r⃗η at some point along the ⟨111⟩
direction. If we need to obtain the value of each field, for every muon site in every unit cell of the
sample, the length of those calculations would consume enormous amounts of time. The path
we are going to follow instead tries to minimize the number of re-calculations we need, taking
advantage of the periodicity of the helical structure. Suppose we have already calculated the
B⃗loc at r⃗µ, using the formulas from sections 4.4.1 4.4.3 4.4.4 and 4.4.2 where m⃗dm had previously
been calculated in equation 4.3.

If we restrict to the plane perpendicular to the propagation direction, the movement would
be defined by (a⟨1̄10⟩+b⟨1̄1̄2⟩) being “a” and “b” integer numbers. If we take the position of the
dm manganese atom at the d unit cell R⃗d,dm and the implantation position of the muon r⃗η, the

distance between them r = |r⃗η − R⃗d,dm | and move both of them along the a⟨1̄10⟩+ b⟨1̄1̄2⟩ plane
to a new position R⃗d′,dm and r⃗′η so that the distance r stays the same, neither the propagation
vector, nor the magnetization at muon’s site (see 4.2), change.

Kd′,dm = K⃗R⃗d′,dm = K⃗R⃗d,dm +K(1, 1, 1)(−a− b, a− b, 2b) = K⃗R⃗d,dm (4.9)

This means that we only need to evaluate the muon implanted along the ⟨111⟩ direction,
since moving along the perpendicular plane does not affect the result. Next, for evaluating the
magnetization on a cell d+ h along the ⟨111⟩ direction, we can do so by applying the following
equation:

M⃗d+h,dm = [m⃗c cos(Kd,dm)− m⃗s sin(Kd,dm)] cos(K⃗x⃗h + ϕdm)

− [m⃗c sin(Kd,dm) + m⃗s cos(Kd,dm)] sin(K⃗x⃗h + ϕdm)

+muB⃗ext

where x⃗h = (h, h, h) would move forward in the propagation direction ⟨111⟩ from the d unit
cell to the d+ h unit cell. If we name this movement forward as β = K⃗x⃗h and define M⃗Bc , M⃗Bs

and M⃗Bu as:

M⃗Bc = [m⃗c cos(Kd,dm)− m⃗s sin(Kd,dm)]

M⃗Bs = −[m⃗c sin(Kd,dm) + m⃗s cos(Kd,dm)]

M⃗Bu = muB⃗ext

we get the final equation describing B⃗loc(γ) for a muon η produced by the γ-type magnanese
atoms around it as:

B⃗loc(γ) = B⃗ext + B⃗dem + B⃗c(γ) cos(β + ϕdm) + B⃗s(γ) sin(β + ϕdm) + B⃗u(γ) (4.10)

This way, as an example, the B⃗Lor,c(η) would be obtained by substituting M⃗Bc in the Lorentz
equation 4.8. This way, repeating the process with the other fields:

B⃗c(γ) = B⃗Lor,c(γ) + B⃗RKKY,c(γ) + B⃗Dip,c(γ) (4.11)

The sum to all four γ manganese, with ϕ(γ = 1) = -2º and ϕ(γ = 2, 3, 4) =0º provides the
final local field at the muon site, B⃗loc.

In summary, we have achieved a way of calculating the different fields at each muon site for
a cell located in the middle of the sample, while being able to obtain the B⃗loc at any point in
the propagation direction and any point on its perpendicular planes.
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4.5 Larmor equation

Once the field at the muon’s site B⃗loc is calculated, we use it to simulate the change of the
muon’s spin polarization S⃗µ. This is achieved by applying the Larmor equation, as explained in
Chapter 2. The expression for the final polarization used the Cartesian components of the M(t)
tensor (equation 3.9). If we substitute the longitudinal and transverse operators PL, PT1 and
PT2 (defined on [7] Section C.1) and, in order to simplify the notation, we label the module of
B⃗loc as B and its Cartesian components as B⃗α, B⃗β, B⃗γ , we arrive to:

Mαα(t) =
B⃗2

α

B2
e−λzt +

[
1− B⃗2

α

B2

]
cos(ωt)e−Gt2−λxt (4.12)

Mαβ(t) =
B⃗α × B⃗β

B2
[1− cos(ωt)] e−Gt2−λxt +

B⃗γ

B
sin(ωt)e−Gt2−λxt (4.13)

Mαγ(t) =
B⃗α × B⃗γ

B2
[1− cos(ωt)] e−Gt2−λxt +

B⃗β

B
sin(ωt)e−Gt2−λxt (4.14)

In expressions 4.124.134.15 spin relaxation has been taken into account. This physical phe-
nomena describes the gradual loss of the spin orientation in the static field B⃗loc [10]. We can
distinguish spin–lattice relaxation, expressed through λz = 0.03µs−1 and related to the lattice
vibrations of surrounding atoms and spin–spin relaxation, expressed through λx = 2µs−1 and
related to the fact that interactions between nearby spins tend to destroy the phase coherence in
the Larmor precession. We also consider other effects like the muon being mobile (not perfectly
fixed) or the effect of the neighboring spins fluctuating strongly and averaging out the local
fields. This leads a damping of the external field precession described by a Gaussian-type factor
“Gauss factor” G:

G =
1

2
γ2µδ

2 (4.15)

where γµ is the muon gyromagnetic ratio, γµ = 851.616× 106 radsT and δ = 0.0008T stands for
the root-mean-square of a Gaussian field distribution.

After the components of the M(t) tensor are known, the change in polarization can be
expressed as follows:

S⃗α(t) =Mαα(t) cos(ϕµ) sin(θµ) +Mαβ(t) sin(ϕµ) sin(θµ) +Mαγ(t) cos(θµ) (4.16)
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Chapter 5

First results and future work

The raw result of a TF − µSR experiment looks like the left graph on Figure 5.1 by building
a histogram of the detected positron as a function of time. Then the background signal (time-
independent and beam-dependent) is removed and the radioactive exponential decay component
is corrected and the polarization normalized, in order to obtain the graph on the right.

Figure 5.1: Direct result of TF − µSR experiment and treated polarization signal

The spectre we are left with presents oscillations originated due to the Larmor precession
of the muon spin around the local field. The frequency of the oscillation depends on the local
field at the muon site, so that a change from time to frequency facilitates reading the physical
information attained by this measurements. The transformation from time to frequency (related
to magnetic local field) is done via the Fourier Fast Transformation (FFT). Plotting the FFT
against frequency ∼ Bloc peaks will signal the values of the magnetic field (or fields) the muon
senses before decaying. In order to understand this better, let us imagine a simple example: if
we considered a magnetically homogeneous sample, there would only be one magnetic field, so
that the muons stopping at any site of the sample would sense the same Bloc and precess that
field with the same Larmor frequency, creating only one FFT peak. If the sample were to be
inhomogeneous, depending on factors like the implantation site the modeule of the local field
would change, resulting in muon spins precessing at different frequencies, creating several peaks
with different amplitudes.

The respective amplitudes of different peaks account for the proportion of muons that sense
one value or another. The amplitude of the FFT not only gives us the module of the local
magnetic field, but will also allow us to compare it to other experimental settup geometries and
obtain the direction of said field. Applied external field or temperature also modify the position
and number of peaks, since Bloc is strongly affected by Bext
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So far we have discussed “peaks” as if they were ideal, but their width also holds important
information. Parameters introduced in the previous section like relaxation factors. Real samples
also carry some instrinsic disorder in comparison with theoretical ideal ones, so that a distribu-
tion (Figure 5.2) of the fields around a mean value ⟨Bµ⟩ is produced (Gaussian distribution, for
further explanation see [11]).

Figure 5.2: Left: ideal field distribution for the field value. Right: more real distribution with
a width determined by the Gaussian distribution

While working with “simpler” samples the analysis of the results can be achieved, in samples
with a certain level of complexity it is advantageous, if not necessary, to design a simulation
of the experiment. This way simulated and real results can be compared and, by varying our
model, we can discover the contribution each of our parameters has on the final outcome, a
connection incredibly hard to draw by just analyzing the experimental results.

The simulation software described on the previous chapter has been used for modelling a
µSR experiment at a temperature of 2K and different values of applied external magnetic field.
The simulated final averaged polarisation has been plotted against time and compared to the
experimental final polarisation (left column of Figure 5.3).

Both the simulation and experimental data have been equally treated and the Fourier Fast
Transform has been obtained (right column of Figure 5.3).

Figure 5.3: Simulation vs experimental results comparison- 2K and B = 0.03T

24



Figure 5.4: Simulation vs experimental results comparison. 2K and B = 0.05T

The intensity of the FFT peaks of the simulation results has been multiplied by a 0.15 factor
with the objective of facilitating the comparison between peaks positions. The FFT has been
represented against the magnetic field. We can clearly appreciate how close both results are,
implying the design of the simulation can be considered trustworthy.

Now that the simulation is finished, several steps can be taken. On one hand, the simulation
could always be improved. The simulated results are close enough to the experimental ones
but a better depolarization effect should be achieved by the model. On the other hand, this
simulation, although already shapable in terms of muon implantation sites and nuclear struture,
only has two magnetic models programmed (simple ferromagnetic and helicoid ferromagnetic).
The final goal is to simulate the muon signal for any magnetic structure, for that it is foreseen
to use the general magnetic crystallographic file (mCIF) as an entry to our code. In the same
line, other experimental geometries besides TF should also be considered. While many other
experimental techniques have a wide range of data simulation and data treatment programs,
very few (if any at all) exist nowadays as a universal µSR simulating software. Moreover, we
intend to use our simulation module as a function to be employed in a least square minimization
routine to be able to fit the parameters of the model.

The fitting process will detail the theorised model and give insight on its level of goodness,
besides refining the theorised value of the parameters used. Then, once the treatment of the
data is finished, the actual analysis can begin

Over all, this work provides a strong tool for future magnetic research, since other magnetic
models could be added to it and many “customizable” options are already incorporated to it.
On the learning part, not only has it required achieving a deep understanding of a completely
new experimental technique for me, an understanding that I dare say has gone deeper than the
one needed for solely applying the technique, but it has also made me see the importance of
using complementary techniques in experimental science. It has given me the great experience
of following over several years the work of the M4 research group working on the same set
of samples from different perspectives, from the first magnetometry characterizations, to the
SANS data treatment and now µSR experiments and simulations, I have seen them combining
experimental techniques, programming resources and, after every step, re-thinking what the
following course of action will be. I have enjoyed being able to contribute with this code and
definitely look forward to seeing it evolve as new contributions are added.
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Appendix A

Pyhton Code

Definition of Manganese nuclear structure parameters:

R = ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] ) # Vector of cubic un i t c e l l
x Mn = f l o a t (Var [ 'x Mn ' ] ) # Pos s i t i on of Mn in uni t c e l l
a 1 = f l o a t (Var [ ' a 1 ' ] ) # Lat t i c e constant
Cellm = f l o a t (Var [ 'Cellm ' ] ) # Number of uni t c e l l s for muons

# 4Mn s u b l a t t i c e s in uni t c e l l
v1 = ( [ [ x Mn , x Mn , x Mn ] , [0.5−x Mn , 1−x Mn , 0.5+x Mn ] ,

[1−x Mn , 0.5+x Mn , 0.5−x Mn ] , [0 .5+x Mn , 0.5−x Mn , 1−x Mn ] ] )
d Mn = a 1 ∗ v1

Definition of Manganese magnetic structure:

kmod = f l o a t (Var [ 'kmod ' ] ) / ( 2 ∗ pi ) # Modulus of propagat ion vec to r
phid = np . array (Var [ ' phid ' ] ) # phase on the 4 Mn

i f (Var [ 'MagPh ' ]==1):

#Def ines FouReal on X−axis , Fou imag on Y−ax i s and kd i r on Z−Axis
# kd i r = d i r e c t i o n of propagat ion vec to r
kd i r = (Var [ 'FouReal ' ] ) ∗ s i n (Rotang ) + (Var [ ' kd i r ' ] ) ∗ cos (Rotang )
n = kd i r /np . l i n a l g . norm( kd i r ) # uni tary
k = kmod∗n # Propagation vec to r
FouReal = (Var [ 'FouReal ' ] ) ∗ cos (Rotang ) − Var [ ' kd i r ' ] ) ∗ s i n (Rotang )
FouImag = (Var [ 'FouImag ' ] )
#Four ie r c o e f f
S1 = FouReal/norm(FouReal ) + 1 j ∗FouImag/norm(FouImag )
m h , m u = M Moment u(Var [ 'Temp ' ] ) , (Var [ 'Bext ' ] ) , (Var [ 'm ' ] ) )

Calculation of Manganese magnetic moments following the 4 helix model:

Ce l l = in t (Var [ 'Cellm ' ] )
Mdem = 0
Lima = round (Var [ ' Lor rad ' ] /Var [ ' a 1 ' ] )

# The K1Ri w i l l po int to a s p e c i f i c c e l l
k1R1 = 2∗ pi ∗Var [ ' a 1 ' ]∗k@R [ 0 ] . reshape (−1 ,1) # R[ 0 ] = (000)
k1R2 = 2∗ pi ∗Var [ ' a 1 ' ]∗k@R [ 1 ] . reshape (−1 ,1) # R[ 1 ] = (010)
k1R3 = 2∗ pi ∗Var [ ' a 1 ' ]∗k@R [ 2 ] . reshape (−1 ,1) # R[ 2 ] = (001)

for dm in range ( 4 ) : # We go through a l l of the four Mn
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kr = np . t ranspose (2∗ pi ∗k@(d Mn [dm] ) )
d=0
Limbcd = 0
Limbcup = 4∗Lima
for a i in range ( Ce l l ) :
# a i goes throught the 80 c e l l s

i f ( a i > 2∗Lima and a i < Ce l l − 2∗Lima ) :
Limbcd = a i − 2∗Lima
Limbcup = a i + 2∗Lima

for bi in range (Limbcd , Limbcup ) :
for c i in range (Limbcd , Limbcup ) :
# Sum to every c e l l

# K1Ri g i v e s the c e l l , kr the Mn
k1x = k1R1∗ a i + k1R2∗ bi + k1R3∗ c i + kr

Mnorm [ 0 ] = m h∗( real ( S1 )∗ cos ( k1x ) − imag ( S1 )∗ s i n ( k1x ) )
# − for l e f t −handed h e l i c i t y , + for r i g h t
Mc[dm ] [ a i ] [ b i ] [ c i ] = Mnorm [ 0 ]
Ms [dm ] [ a i ] [ b i ] [ c i ] = −m h∗( real ( S1 )∗ s i n ( k1x )

+ imag ( S1 )∗ cos ( k1x ) )
#+ for l e f t −handed h e l i c i t y , − for r i g h t
Mu[dm ] [ a i ] [ b i ] [ c i ] = m u ∗ Bdir
Mdem = Mnorm [ 0 ] + m u ∗ Bdir + Mdem
Pos [0 ]= Var [ ' a 1 ' ] ∗ (R[ 0 ] ∗ a i + R[ 1 ] ∗ bi

+ R[ 2 ] ∗ c i ) + d Mn [dm]
P[dm ] [ a i ] [ b i ] [ c i ] = Pos [ 0 ] #Mn in c e l l ( a i , bi , c i )
Ce l lV i s [dm ] [ d]= U@Pos [ 0 ]
MVis [dm ] [ d ] = U@(Mnorm [ 0 ] + m u∗Bdir )
d = d+1

Mdem = Mdem /(4∗d)

Definition of muon implantation parameters:

x mu = f l o a t (Var [ 'x mu ' ] )
v3 = ( [ [ x mu , x mu , x mu ] , [1.5−x mu , 1−x mu , 0.5+x mu−1] ,
[1−x mu , 0.5+x mu−1, 1.5−x mu ] , [0 .5+x mu−1, 1.5−x mu , 1−x mu ] ] )
d mu = a 1 ∗v3
L = Var [ 'L ' ]
v4 = [[−1 ,−1 ,−1] , [−1 ,−1 ,−1] , [−1 ,−1 ,−1] , [−1 ,−1 ,−1]]

d e l t a t = 10∗∗(−9)
gamma L = 851 .616∗ (10∗∗6) # Muon gyromagnetic r a t i o [ rad /( s ∗T) ]
theta mu = Var [ ' theta mu ' ]∗ pi # po la r ang le of the muon sp in

at the moment of implantat ion
phi mu = Var [ ' phi mu ' ]∗ pi # azimuthal ang le of the muon sp in

at the moment of implantat ion .
Depends on B ext

Lambda z = Var [ 'Lambda z ' ]∗ ( 10∗∗6 ) #long . dynamical r e l a x a t i o n [1/ s ]
Lambda x = Var [ 'Lambda x ' ]∗ ( 10∗∗6 ) #Damping induced by magnetic

f l u c t u a t i o n s [ 1/ s ]
Delta N = (Var [ 'Delta N ' ] ) # Root−mean−square of a Gaussian f i e l d
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d i s t r i b u t i o n [T]
Gaus = (gamma L∗∗2)∗ ( Delta N ∗∗2)/2
Lambda bg = Var [ 'Lambda bg ' ]∗ ( 10∗∗6 ) #Background r e l a x a t i o n ra t e [ 1/ s ]
a 0 = Var [ ' a 0 ' ] # I n i t i a l asymmetry f a c t o r
B ext = Var [ 'Bext ' ]∗ Bdir # Magnetic f i e l d app l i ed [T]

Definition of variables for the calculation of the magnetic field at the muon site:

# De f i n i t i o n of va r i a b l e s

mu B = 9.27401∗(10∗∗( −24)) # Bohr magneton [ J/T]
mu 0 = 4∗ pi ∗(10∗∗(−7))
Acont = Var [ 'Acont ' ] # [ mol/emu ] , r e l a t e d to hype r f i n e constant H
Vmol = (Var [ ' a 1 ' ]∗∗3 )∗6 . 022∗0 . 1/4 # volume of one mol of

Mn−i on s [ cmˆ3/mol ]
Cnt = Vmol∗Var [ 'Acont ' ]∗4/ (Var [ ' a 1 ' ]∗∗3 ) # [1/Aˆ3 ]

Lor = (mu 0∗mu B∗ (10∗∗30)/(3∗ Lor vo l ) )
Dip = (mu 0∗mu B∗ (10∗∗30)/(4∗ pi ) )

Demagnetization field:

N = Var [ 'N ' ]
B dem = −N∗mu 0 ∗ ( (4∗Mdem∗mu B)/ ( (Var [ ' a 1 ' ]∗∗ (3 )∗ (10∗∗ ( −30) ) ) ) )

Hyperfine field:

Lim = 1
a = b = c = (Cellm/2)−1

for eta in range ( 4 ) :
Ri = d mu [ eta ] + Var [ ' a 1 ' ] ∗ (R[ 0 ] ∗ a + R[ 1 ] ∗ b + R[ 2 ] ∗ c )
# Where d mu i s the po s i t i o n of the muon eta
for gamma in range ( 4 ) : # We c a l c u l a t e for every Mn gamma

C = 0
Msumc = 0
Msums = 0
Msumu = 0
for a i in range (−Lim , Lim+1):

for bi in range (−Lim , Lim+1): # Sum to each l−th c e l l
for c i in range (−Lim , Lim+1):

Ps [ 0 ] = P[gamma ] [ i n t ( a+a i ) ] [ i n t (b+bi ) ] [ i n t ( c+c i ) ]
# Distance from muon eta to Mn gamma
Dif [ 0 ] = Ri − Ps
i f np . l i n a l g . norm( Dif ) < Var [ ' a 1 ' ] :
#I f c l o s e r than the c e l l parameter they add to M

C = C + 1
MDc[ 0 ] =

Mc[gamma ] [ i n t ( a+a i ) ] [ i n t (b+bi ) ] [ i n t ( c+c i ) ]
Msumc = MDc[ 0 ] + Msumc
MDs[ 0 ] =

Ms[gamma ] [ i n t ( a+a i ) ] [ i n t (b+bi ) ] [ i n t ( c+c i ) ]
Msums = MDs[ 0 ] + Msums
MDu[ 0 ] =
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Mu[gamma ] [ i n t ( a+a i ) ] [ i n t (b+bi ) ] [ i n t ( c+c i ) ]
Msumu = MDu[ 0 ] + Msumu

i f C == 0 :
Conc [ eta ] [ gamma]= Cons [ eta ] [ gamma]= Conu [ eta ] [ gamma]= 0

else :
Conc [ eta ] [ gamma] = (1/4)∗ ( f l o a t (Cnt )/ f l o a t (C) )∗Msumc
Cons [ eta ] [ gamma] = (1/4)∗ ( f l o a t (Cnt )/ f l o a t (C) )∗Msums
Conu [ eta ] [ gamma] = (1/4)∗ ( f l o a t (Cnt )/ f l o a t (C) )∗Msumu

B cont cos [ eta ] = Dip∗Conc [ eta ]
B cont s in [ eta ] = Dip∗Cons [ eta ]
B cont u [ eta ] = Dip∗Conu [ eta ]

Lorentz and Dipolar fields:

Lima = round (Var [ ' Lor rad ' ] /Var [ ' a 1 ' ] )
a = Ce l l /2 −1

for eta in range ( 4 ) :
Ri = d mu [ eta ] + Var [ ' a 1 ' ] ∗ (R[ 0 ] ∗ a + R[ 1 ] ∗ a + R[ 2 ] ∗ a )
for gamma in range ( 4 ) :

Msum1c =0
Msum2c =0
Msum1s =0
Msum2s =0
Msum1u =0
Msum2u =0
for a i in range (−Lima , Lima+1):

for bi in range (−Lima , Lima+1): # Sum to each l−th c e l l
for c i in range (−Lima , Lima+1):

Ps [ 0 ] = P[gamma ] [ i n t ( a+a i ) ] [ i n t ( a+bi ) ] [ i n t ( a+c i ) ]
Di f [ 0 ] = Ri − Ps # Distance muon eta − Mn gamma
i f np . l i n a l g . norm( Dif ) < Var [ ' Lor rad ' ] :

MDc[ 0 ] =
Mc[gamma ] [ i n t ( a+a i ) ] [ i n t ( a+bi ) ] [ i n t ( a+c i ) ]

Msum1c = MDc[ 0 ] + Msum1c
MDs[ 0 ] =

Ms[gamma ] [ i n t ( a+a i ) ] [ i n t ( a+bi ) ] [ i n t ( a+c i ) ]
Msum1s = MDs[ 0 ] + Msum1s
MDu[ 0 ] =

Mu[gamma ] [ i n t ( a+a i ) ] [ i n t ( a+bi ) ] [ i n t ( a+c i ) ]
Msum1u = MDu[ 0 ] + Msum1u

Dif3 = np . l i n a l g . norm( Dif )∗∗3
Dif5 = np . l i n a l g . norm( Dif )∗∗5

Msum2c = −(1/Dif3 )∗MDc + (3/ Dif5 )
∗(MDc@Dif . reshape (−1 ,1))∗ Dif + Msum2c

Msum2s = −(1/Dif3 )∗MDs + (3/ Dif5 )
∗(MDs@Dif . reshape (−1 ,1))∗ Dif + Msum2s

Msum2u = −(1/Dif3 )∗MDu + (3/ Dif5 )
∗(MDu@Dif . reshape (−1 ,1))∗ Dif + Msum2u
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H1c [gamma] = Msum1c
H2c [ gamma] = Msum2c
H1s [ gamma] = Msum1s
H2s [ gamma] = Msum2s
H1u [ eta ] [ gamma] = Msum1u
H2u [ eta ] [ gamma] = Msum2u

B Lor cos [ eta ] = Lor∗H1c # Lorentz f i e l d [T]
B Lor s in [ eta ] = Lor∗H1s # Lorentz f i e l d [T]
B Lor u [ eta ] = Lor∗H1u [ eta ] # Lorentz f i e l d [T]

B Dip cos [ eta ] = Dip∗H2c # Dipolar f i e l d [T]
B Dip s in [ eta ] = Dip∗H2s # Dipolar f i e l d [T]
B Dip u [ eta ] = Dip∗H2u [ eta ] # Dipolar f i e l d [T]

Addition of every field:

phi = phid∗ pi /180
Sxt d = np . z e ro s ( shape=(4 , l en (Time ) ) )

for eta in range ( 4 ) :
B cos [ eta ] = B Dip cos [ eta ] + B cont cos [ eta ] + B Lor cos [ eta ]
# Addit ion of d ipo l a r + hype r f i n e + Lorentz on each muon
B sin [ eta ] = B Dip s in [ eta ] + B cont s in [ eta ] + B Lor s in [ eta ]
B u [ eta ] = B Dip u [ eta ] + B cont u [ eta ] + B Lor u [ eta ]
B c = B cos [ eta ]
B s = B sin [ eta ]
B u2 [ eta ] = Dip∗sum(H2u [ eta ] )

+ Dip∗sum(Conu [ eta ] ) + Lor∗sum(H1u [ eta ] )
d = 0
for alpha in np . arange (0 , 2∗np . p i + np . p i /180 , np . p i /180 ) :

B = B ext + B dem + B u2 [ eta ] \
+ B c [ 0 ] ∗ cos ( alpha+phi [ 0 ] ) + B s [ 0 ] ∗ s i n ( alpha+phi [ 0 ] ) \
+ B c [ 1 ] ∗ cos ( alpha+phi [ 1 ] ) + B s [ 1 ] ∗ s i n ( alpha+phi [ 1 ] ) \
+ B c [ 2 ] ∗ cos ( alpha+phi [ 2 ] ) + B s [ 2 ] ∗ s i n ( alpha+phi [ 2 ] ) \
+ B c [ 3 ] ∗ cos ( alpha+phi [ 3 ] ) + B s [ 3 ] ∗ s i n ( alpha+phi [ 3 ] )

B = (U@B. reshape ( −1 ,1)) . reshape (−1 ,1)
B mod [ eta ] [ d ] = np . l i n a l g . norm(B)
omega = gamma L∗B mod [ eta ] [ d ]
d = d + 1 ;

# model
for i in range (Var [ 'L ' ] ) :

t [ i ] = i ∗ d e l t a t
Sxt m [ eta ] [ i ] += \

a 0 ∗ fun . Larmor ( t , i , B, omega , theta mu , \
phi mu , Lambda z , Lambda x , Gaus )

B mod L = np . l i n a l g . norm(B)
# model in data po in t s

for i in range ( l en (Time ) ) :
t [ i ] = xdata [ i ]
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Sxt d [ eta ] [ i ] += a 0 ∗ fun . Larmor ( St , i , B,\
omega , theta mu , phi mu , Lambda z , Lambda x , Gaus )

Mxx = ( (B[ 0 ]∗∗2/B mod L∗∗2)∗ exp(−Lambda z∗ t [ i ] ) ) +\
(1−B[0 ]∗∗2/B mod L∗∗2)∗ cos ( omega∗ t [ i ] )∗\

exp(−Gaus∗ t [ i ]∗∗2−Lambda x∗ t [ i ] )
Mxy = ( ( (B [ 0 ]@B[ 1 ] ) / B mod L∗∗2)∗(1− cos ( omega∗ t [ i ] ) ) \

∗exp(−Gaus∗ t [ i ]∗∗2−Lambda x∗ t [ i ] ) + \
(B[ 2 ] / B mod L)∗ s i n ( omega∗ t [ i ] ) \

∗exp(−Gaus∗ t [ i ]∗∗2−Lambda x∗ t [ i ] ) )
Mxz = ( (B [ 0 ]@B[ 2 ] / B mod L∗∗2)∗(1− cos ( omega∗ t [ i ] ) ) \

∗exp(−Gaus∗ t [ i ]∗∗2−Lambda x∗ t [ i ] ) − \
(B[ 1 ] / B mod L)∗ s i n ( omega∗ t [ i ] ) \

∗exp(−Gaus∗ t [ i ]∗∗2−Lambda x∗ t [ i ] ) )
S = 0 .7
Sxt d [ eta ] [ i ] += \

a 0 ∗ f l o a t (S∗(Mxx∗ cos ( phi mu )∗ s i n ( theta mu ) ) +
Mxy∗ s i n ( phi mu )∗ s i n ( theta mu ) + Mxz∗ cos ( theta mu ) )

for i in range (Var [ 'L ' ] ) :
S m [ 0 ] [ i ] = ( Sxt m [ 0 ] [ i ]+Sxt m [ 1 ] [ i ]+

Sxt m [ 2 ] [ i ]+Sxt m [ 3 ] [ i ] ) / ( 4∗360 )
for i in range ( l en (Time ) ) : # dim = Time of data

S d [ 0 ] [ i ] = ( Sxt d [ 0 ] [ i ]+Sxt d [ 1 ] [ i ]+
Sxt d [ 2 ] [ i ]+Sxt d [ 3 ] [ i ] ) / ( 4∗360 ) − 0 .11

Fast Fourier Transform:

Step = xdata [ 1 ] − xdata [ 0 ]
L2 = len (Time)
Bf d = np . z e ro s (L2//2)
Y d = np . abs (np . f f t . f f t ( S d [ 0 ] ) )
F d = 2 ∗ (Y d [ 1 : L2//2+1])
Ampdata = np . abs (np . f f t . f f t ( ydata ) )
F data = 2 ∗ (Ampdata [ 1 : L2//2+1])
for i in range (1 , L2//2+1):

Bf d [ i −1] = i ∗ 2 ∗ np . p i / (851 .616 ∗ l en (Time) ∗ Step )
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