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A.1. Grupo de simetŕıa U(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.2. Invariancia del lagrangiano de QED bajo transformacions del grupo U(1). . . 26

A.3. Dependencia de las constantes bi. . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.4. Obtención de las ecuaciones del grupo de renormalización. . . . . . . . . . . . 28
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Caṕıtulo 1

Introducción.

Uno de los objetivos mas ansiados por la f́ısica teórica es el desarrollo de una teoŕıa que

permita entender y unificar las cuatro interacciones fundamentales observadas en el universo:

la gravitacional, la nuclear fuerte, la nuclear débil y la electromagnética.

En este sentido, el Modelo Estándar ha sido históricamente la teoŕıa que ha marcado el

camino a seguir. Su formulación ha permitido explicar el contenido de materia del Universo

y sus interacciones, incluyendo la interacción electromagnética, la nuclear fuerte y la nuclear

débil, y sus predicciones se han comprobado en los experimentos de altas enerǵıas con gran

precisión. A pesar de esto, este modelo presenta también una serie de problemas que hacen

pensar que podŕıa no ser la teoŕıa definitiva. Entre ellos se encuentran que no predice un

candidato para la materia oscura del Universo, el problema de las jerarqúıas y la incapacidad

de unificar las cuatro interacciones fundamentales; solo unifica dos de ellas, la débil y la

electromagnética. Centrándonos en el último de estos problemas, se han planteado nuevas

teoŕıas que partiendo de las bases sentadas por el Modelo Estándar permitan lograr la

unificación y solucionar los problemas subyacentes a este. Una de las más relevantes es SUSY

(del inglés ”Supersymetry”), que propone una solución a estos problemas a través de la

inclusión de simetŕıas extras en el modelo. El objetivo principal de este trabajo fin de grado

es comprender y desarrollar estas teoŕıas de unificación de las interacciones.

El trabajo que se va a desarrollar se divide en tres caṕıtulos. En el primero se incluye una

descripción del Modelo Estándar, detallando las teoŕıas utilizadas para el estudio de cada

interacción y obteniendo los lagrangianos correspondientes. A partir de estos lagrangianos,

estudiamos las constantes de acoplo caracteŕısticas de cada interacción, haciendo énfasis en la

evolución de las mismas con la escala a través de las ecuaciones del grupo de renormalización.

El caṕıtulo finaliza con la presentación de los resultados obtenidos y la discusión acerca de

la unificación de las interacciones. En el segundo caṕıtulo se incluye una descripción de una

teoŕıa de gran unificación, SUSY, se discute la solución que propone la misma a los problemas

presentados por el Modelo Estándar, y se presenta el lagrangiano de interacción caracteŕıstico

de esta teoŕıa. El caṕıtulo finaliza de forma similar al primero, con la presentación de las

ecuaciones del grupo de renormalización para cada interacción, el estudio de la evolución de

las mismas con la escala, y la discusión acerca de la unificación en este modelo. A continuación,

se incluyen las conclusiones del trabajo. En los anexos se incluyen cálculos detallados y

explicaciones complementarias a los caṕıtulos del trabajo.

1



Caṕıtulo 2

Modelo Estándar.

El Modelo Estándar (SM - del inglés Standard Model) es una teoŕıa cuántica de campos,

considerada actualmente la teoŕıa más aceptada para la descripción de la estructura y

comportamiento de la materia a nivel subatómico. Este modelo explica las interacciones

entre las part́ıculas elementales constituyentes de la materia, a las que llamamos fermiones,

mediante el intercambio de otras part́ıculas, los bosones. En el modelo están inclúıdas tres

las cuatro interacciones fundamentales, nuclear fuerte, nuclear débil y electromagnética, con

el bonus de unificar las dos últimas interacciones en la denominada teoŕıa electrodébil. Dado

que se va a ahondar en estas interacciones, es conveniente introducir los fermiones y bosones

que componen las part́ıculas presentes en el SM:

− Fermiones. Como se ha comentado, son las part́ıculas constituyentes de la materia

ordinaria y se caracterizan por un esṕın semientero de valor 1/2. Se pueden dividir a

su vez en dos subgrupos, siendo estos leptones y quarks. Los leptones son el electrón,

el muón y el tau, que tienen carga -1 y se diferencian en sus masas; y sus neutrinos

asociados, con masas despreciables (cero en el marco del SM). Por otro lado, los quarks

componen los hadrones y son un total de 6, up, down, charm, strange, top y bottom,

todos ellos presentan una propiedad conocida como carga de color, que se explicará más

adelante. Respecto a estos últimos, a cada uno de ellos se le asocia un sabor, de modo

que en el SM se habla de 6 sabores, uno para cada quark. Cabe recalcar que, según

el postulado de simetrización, la función de onda f́ısica correspondiente a un fermión

ha de ser antinsimétrica. A modo de ilustración, para un sistema de dos fermiones, se

cumple ψ(1, 2) = −ψ(2, 1).

− Bosones. Part́ıculas mediadoras o responsables de las interacciones. El SM agrupa un

total de 5 bosones, todos ellos poseen esṕın 1: el fotón, el gluón, el Z, el W+ y W−.

Destacar que tanto el fotón como el gluón, part́ıculas neutras, poseen masa nula y los

W± son cargados y tienen masa no nula. Cabe recalcar que además tenemos el bosón

de Higgs, part́ıcula que aparece al introducir el Mecanismo de Higgs para generar las

masas de las part́ıculas en el SM. Por último, al contrario que para los fermiones las

funciones de onda de los bosones han de ser simétricas bajo intercambio.

El modelo cuenta además con un amplio respaldo experimental, pues se han encontrado

todas las part́ıculas predichas por el mismo, se han comprobado experimentalmente
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sus predicciones, y ha demostrado ser una gran herramienta para la predicción del

comportamiento de nuestro mundo [1].

En lo matemático, el modelo está basado en los grupos de simetŕıa SU(3)×SU(2)×U(1).

A lo largo del caṕıtulo se van a obtener las expresiones predichas por este modelo, presentando

el Lagrangiano que describe las interacciones y prestando especial interés a las constantes de

acoplo correspondientes a las interacciones fuerte, débil y electromagnética.

2.1. QED en el SM. Lagrangiano. Grupo de renormalización.

La primera interacción a desarrollar es la electromagnética, la cual viene descrita en el

SM por la electrodinámica cuántica (QED, del inglés Quantum Electrodynamics), y está

caracterizada por el grupo de simetŕıa U(1) (ver anexo A.1 para más detalles). En esta teoŕıa

tenemos la interacción entre fermiones a través del intercambio de fotones como part́ıcula

mediadora. Para obtener el lagrangiano correspondiente a la misma, se parte del Lagrangiano

del campo de Dirac [2]:

L = ψ(iγµ∂µ −m)ψ, (2.1)

con ψ el campo del fermión, m su masa y γµ las matrices de Dirac. Este lagrangiano ha de ser

invariante bajo transformaciones del grupo de simetŕıa U(1), las cuales vienen dadas por [3]:

ψ −→ ψ′ = U(θ)ψ = eiθQψ, (2.2)

ψ −→ ψ′ = ψ U∗(θ) = ψ e−iθQ, (2.3)

donde θ es un parámetro caracteŕıstico de la transformación y Q es el generador del grupo de

simetŕıa. No obstante, estas transformaciones corresponden con transformaciones globales,

pues el parámetro θ es una constante; no depende de las coordenadas espacio-temporales.

Bajo estas transformaciones el Lagrangiano de Dirac satisface la condición de invariancia.

Sin embargo, al considerar transformaciones locales (aquellas en las que los valores de θ

dependen de las coordenadas), la simetŕıa se rompe pues la derivada parcial conduce a:

∂µψ
′ = eiθ(x)Q∂µψ + (∂µe

iθ(x)Q)ψ, (2.4)

∂µψ
′ = eiθ(x)Q∂µψ + iQ(∂µθ(x))e

iθ(x)Q)ψ , (2.5)

y, por tanto, el lagrangiano toma la forma:

L′ = L+Qψγµ(∂µθ(x))ψ. (2.6)

Para que el Lagrangiano de Dirac mantenga la invariancia es preciso sustituir la derivada

parcial por una derivada covariante, que se define como [4]:

∂µ −→ Dµ ≡ ∂µ + i eQAµ. (2.7)
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El término Aµ introducido hace referencia al campo del fotón, campo con esṕın 1 que

transforma como:

Aµ(x) −→ A′
µ(x) = Aµ(x)−

1

e
∂µθ(x). (2.8)

Al realizar este cambio es posible reescribir finalmente el Lagrangiano de Dirac como:

L = ψ(iγµ∂µ −m)ψ − eQψγµψAµ. (2.9)

No obstante, el lagrangiano anterior aún no está completo, pues carece del término

correspondiente al campo libre del fotón. Este término viene dado en función del tensor

del campo electromagnético (Fµν) en la forma −1
4F

µνFµν . Tras la inclusión de este, el

Lagrangiano final para la QED es:

L = ψ(iγµ∂µ −m)ψ − 1

4
FµνFµν − eQψγµψAµ. (2.10)

Este lagrangiano tiene varias cosas a comentar. En primer lugar, es posible escribirlo

gracias a la formulación covariante de las ecuaciones de Maxwell, pues permiten obtener la

expresión de tensor electromagnético Fµν y el término de interacción. En segundo lugar,

este lagrangiano se ha construido de modo que muestre invariancia bajo transformaciones de

fase locales (ver anexo A.2 para la demostración). La interpretación f́ısica de esta simetŕıa

es que, dado que las transformaciones de fase descritas por el grupo U(1) representan

desplazamientos y rotaciones en los campos, es decir, se pueden asociar a la elección de

distintos sistemas de referencia, no pueden afectar a las interacciones, de lo contrario se

observaŕıan comportamientos diferentes en función del sistema elegido.

En cuanto a los términos del lagrangiano, el primero de ellos corresponde con el término

libre para los fermiones; incluyendo un término cinético y uno de masa, el segundo el término

libre para los fotones y el tercero, y más relevante para el objetivo que se persigue, establece

la interacción entre fermiones y fotones, siendo el lagrangiano de interación definido como:

Lint = eQψγµψAµ = jµAµ. (2.11)

Aµ

ψ

ψ

: −ieQγµ

Figura 2.1: Diagrama de Feynman de la interacción de dos campos fermiónicos y el campo

del fotón.

Este lagrangiano corresponde al mı́nimo acoplo posible con invariancia gauge. En la

figura 2.1 se presenta el diagrama de Feynman correspondiente. En cada uno de los vértices de

4



interacción se encuentran dos ĺıneas fermiónicas y una ĺınea correspondiente al fotón, siendo

la constante de acoplo −ieQγµ. La interacción electromagnética descrita por este lagrangiano

viene determinada fundamentalmente por la constante de acoplo electromagnética e, que en

unidades naturales está relacionada con la constante de estructura fina αEM = e2

4π2 , cuyo valor

a bajas enerǵıas está dado por 1
137 . La pequeñez de este valor del acoplo electromagnético nos

hace posible realizar una expansión perturbativa en potencias del parámetro αEM y describir

aśı los procesos f́ısicos asociados. La contribución de orden más bajo en esta expansión

correspondeŕıa con la amplitud de dispersión (scattering).

Claramente, un vértice de interacción aislado no representa un proceso f́ısico. Si se toma

como ejemplo uno de los diagramas de interacción para electrón y positrón, y se denota

como p y p′ a los momentos de las ĺıneas fermiónicas y k al momento asociado al fotón, en

los vértices se ha de cumplir que p′ = ±p ± k, lo cual implica que p′2 = p2 + k2 ± 2pk. Si

asumimos entonces que el polo se encuentra en la masa f́ısica (lo cual se denomina on-shell),

tendŕıamos que:

p2 = p′2 = m2
e, k2 = 0 <=> p · k = 0. (2.12)

Por tanto, obtenemos un momento del fotón nulo, concluyendo que el proceso no existe. Para

considerar un proceso f́ısico real necesitamos considerar que el vértice de la interacción este

incluido en un diagrama más grande con varios vértices, considerando part́ıculas virtuales

que no deben cumplir la relación anterior, es decir, el polo no se encuentra en la masa f́ısica

o, como es conocido, están off-shell. Este es el caso que se da en un proceso de scattering,

como hemos mecionado antes.

Ejemplos de este tipo de diagramas, con dos vértices de interacción, se presentan en la

figura 2.2.

Figura 2.2: Diagramas de feynman con más de un vértice.

Como se ha explicado, necesitamos entonces realizar cálculos considerando una expansión

perturbativa, lo cual nos lleva a calcular la matriz S o matriz de dispersión, definida en forma

de integral funcional con una fuente externa. Cuando realizamos estos cálculos perturbativos

aparecen integrales que pueden ser divergentes, como es el caso del cálculo de diagramas

con lazos como los que se muestran en la figura 2.2. Para dar sentido a tales expresiones

se introduce el denominado procedimiento de renormalización que permite reabsorber las

divergencias que aparecen. Con este procedimiento sustraemos las divergencias de manera

que equivaldŕıa al cambio o redefinición de los parámetros que aperecen en el lagrangiano

inicial.
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Es en este contexto donde se introducen las ecuaciones del grupo de renormalización, que

permiten afrontar el tratamiento de las divergencias que aperecen en teoŕıa de perturbaciones

para muy altas enerǵıas (divergencias ultravioletas) en QED o para muy bajas enerǵıas

(divergencias infrarrojas). De hecho, el origen de estos problemas de divergencias radica

en la gran diferencia entre las escalas de enerǵıa utilizadas: las masas de las part́ıculas y el

momento transferido que aparece en las integrales. Los métodos del grupo de renormalización

están basados en un principio de invariancia que afirma que los observables f́ısicos son

independientes de la escala de renormalización, lo cual es fundamental cuando estamos

realizando los cálculos teóricos. Las ecuaciones que se obtienen como consecuencia de la

invariancia bajo renormalización se denominan ecuaciones del grupo de renormalización (RGE

- del inglés Renormalization Group Equations”).

Existen diferentes métodos de renormalización, que no trataremos en este trabajo. Nos

restringimos a presentar las expresiones de las ecuaciones del grupo de renormalizacióm

como sigue. Si consideramos uno de los diagramas a un lazo (one-loop) mostrados en

la figura 2.2, tendŕıamos asociadas integrales divergentes y tales diveregencias se pueden

reabsorber suponiendo una evolución logaŕıtmica de las constantes con la escala Q. Esta

idea de la evolución logaŕıtmica, impone que los acoplos gi con i = 1, 2, 3; donde cada g

correspondeŕıa a una interacción 1, han de cumplir [5]:

d

d logQ
gi(Q) = − bi

(4π)2
g3i , (2.13)

siendo las bi constantes que dependen del grupo de simetŕıa gauge. En el caso general de

SU(N), vienen dadas según lo expuesto en el anexo A.3:

bi = (
11

3
N − 1

3
nf −

1

6
ns), (2.14)

siendo N la dimensión del grupo, nf el número de familias de fermiones, y ns el número de

escalares complejos que se acoplan a los bosones de gauge.

Cuando resolvemos (2.13), obtenemos la evolución de las constantes de acoplamiento con

la escala de enerǵıa. Detalles de la resolución de las mismas se recogen en el anexo A.4. La

dependencia de las constantes de acoplo gi está dada por:

g2i (Q) =
g2i (µ)

1 + (bi/8π2) log(
Q
µ )
. (2.15)

Expresando la igualdad anterior en función de las constantes αi = g2i /4π, podemos escribir:

1

αi(Q)
=

1

αi(µ)
+
bi
2π

ln(
Q

µ
), (2.16)

donde los valores de αi hacen referencia a las constantes de acoplamiento de cada interacción,

los términos bj son constantes que dependen del modelo en que se esté trabajando; pues se

1Las divergencias no solo aperecen en QED, sino también en otras interacciones fundamentales incluidas

en el SM.
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obtienen de los grupos de simetŕıa, µ es la escala de enerǵıa que posteriormente fijaremos a

un valor concreto según el modelo o el proceso bajo estudio y Q es la variable independiente

con la que corre la constante de acoplo asociada a la escala de enerǵıa elegida. En este trabajo

fijaremos posteriormente la escala de enerǵıa a la masa del bosón Z en el SM. Las constantes

bi que aparecen en la expresión anterior se estudiarán mas adelante.

Particularizando la expresión anterior para el caso que se trata (QED) la ecuación toma

la forma:
1

αEM (Q)
=

1

αj(µ)
+
b1
2π
ln(

Q

µ
). (2.17)

El precio a pagar por haber efectuado estas correcciones, que corresponden a realizar

perturbaciones, es que la constante caracteŕıstica de la interacción que se ha obtenido ya

no toma un valor fijo, sino que vaŕıa con la escala de enerǵıa.

2.2. Interacción electrodébil. Relación entre constantes y

observables.

Antes de introducir la interacción electrodébil, es importante contextualizar brevemente

la interacción nuclear débil. Esta interacción entre fermiones está mediada por los bosones

Z y W±, que resultan ser bosones masivos. Debido a este carácter masivo de las part́ıculas

mediadoras, la interacción resulta ser de muy corto alcance. Posee dos números cuánticos

adicionales con sus propias reglas de conservación, el isoesṕın débil y la hipercarga débil [2].

Esta interacción débil, aparece fundamentalmente en las desintegraciones beta, y presenta

ciertas similitudes con respecto a la interacción electromagnética.

La interacción electrodébil hace referencia pues a la interacción unificada del

electromagnetismo y la fuerza nuclear débil. Siguiendo la unificación electrodébil, lo que

se consigue es la expresión de un lagrangiano en el que aparecen de forma conjunta las

expresiones correspondientes a ambas interacciones, tal que podemos relacionar las constantes

de acoplo caracteŕısticas de las mismas, logrando que estas coincidan para un cierto valor de

la enerǵıa.

Cabe señalar que para dotar de masa a los bosones Z y W± se hace necesario además

implementar la ruptura espontánea de la simetŕıa a través del mecanismo de Higgs. De esta

forma, los bosones Z y W± adquieren masa, dejando al fotón con masa nula [6]. El grupo de

simetŕıa asociado a la interacción electrodébil es SU(2)L × U(1)Y [7], donde los sub́ındices

hacen referencia a la quiralidad y la hipercarga, respectivamente. En lo siguiente se construye

el lagrangiano de la interacción electrodébil, incluyendo el potencial de Higgs y mencionando

la ruptura de simetŕıa asociada.
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2.2.1. Unificación de los acoplos gauge.

Para desarrollar el lagrangiano, se comienza considerando un doblete de isosṕın t́ıpico del

grupo SU(2)L × U(1)Y [7]:

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
. (2.18)

Este doblete ha de cumplir varias condiciones, ha de tener isosṕın débil 1/2, y la carga

eléctrica del doblete ha de tener hipercarga Y=+1. Con este doblete, se propone el potencial

que romperá espontáneamente la simetŕıa:

V (ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2. (2.19)

Con esto, es posible escribir un lagrangiano para el campo escalar:

Lscalar = (Dµϕ)†(Dµϕ)− V (ϕ) , (2.20)

siendo Dµ la derivada covariante que necesitamos introducir para respetar la invariancia

asociada al grupo SU(2)L × U(1)Y , que viene dada por:

Dµ = δµ + ig
1

2
τ⃗ · W⃗µ + ig′

1

2
Y Bµ. (2.21)

En esta expresión aparecen los campos W⃗µ y Bµ, que darán lugar a los bosones de gauge

f́ısicos como se verá mas adelante. Dicho esto, el siguiente paso es la elección de un vaćıo, que

tomamos ϕ1 = ϕ2 = ϕ4 = 0 y ϕ3 = v.

ϕ0 =
1√
2

(
0

v + h

)
. (2.22)

Se tiene pues un vaćıo neutro, ya que su isosṕın es I = 1
2 y I3 = −1

2 , y dado que se ha

tomado hipercarga Y=+1 usando la fórmula de Gell-Mann–Nishijima, Q = T3+
Y
2 , se llega a

que Q = 0. Con esta elección de vaćıo, se produce la ruptura de simetŕıas de SU(2)L×U(1)Y ,

pero mantiene U(1)EM invariante, dejando al fotón sin masa. Los detalles de esta ruptura de

la simetŕıa se muestran en el anexo A.5.

Con estos ingredientes podemos desarrollar el lagrangiano dado en (2.20). Para ello, se

desarrollan las expresiones de Dµϕ y (Dµϕ)
†, lo cual se recoge en el anexo A.6. Finalmente,

obtenemos la siguiente expresión:

Lscalar =
1

8
v2[g2(W 2

1 +W 2
2 ) + (−gW3 + g′Yϕ0Bµ)

2]− V (ϕ). (2.23)

Es importante mencionar que dado que lo que se persigue en este trabajo es obtener

el valor de las constantes de acoplo, y estudiar posteriormente su evolución con la escala

de enerǵıa, no es necesario desarrollar la expresión del término del potencial, V (ϕ), en
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el lagrangiano. Del desarrollo del potencial obtenemos la masa del bosón de Higgs y la

autointeracciones, que no son objetivo de estudio para nosotros.

Por otro lado, notemos que la expresión (2.23) está escrita en términos de los campos W⃗

y B, y necesitamos reescribir el lagrangiano en función de los campos f́ısicos, W±, Z y fotón.

El cáculo detallado para obtener este lagrangiano está recogido en el anexo A.7. Se obtiene

por tanto la siguiente expresión:

Lscalar =
1

8
v2[g2(W+)2 + g2(W−)2 + (g2 + g′2)Z2

µ + 0 ·A2
µ]. (2.24)

Este resultado nos muestra las constantes de acoplamiento que aparecen en las

interacciones: los bosones W± se caracterizan por una constante de acoplo g y en el término

del bosón Z aparecen las constantes g y g’. Estas dos constantes son parámetros libres de la

teoŕıa. No obstante, es posible establecer relaciones entre ellas que nos conducirán a tener la

unificación en la teoŕıa electrodébil.

Por una parte, podemos interpretar que cuando pasamos de los campos no f́ısicos a los

campos f́ısicos lo que estamos haciendo es rotar el plano original de los bosones vectoriales

W3 y Bµ, produciendo como resultado los bosones Aµ y Zµ
2. Con esta idea en mente,

introducimos ahora el concepto del ángulo de Weinberg, que nos caracteriza la mezcla entre

los campos de W3 y Bµ para dar Z y el fotón y permite relacionar el valor de las constantes

g y g’ por medio de la expresión:

sen θW =
g′√

g2 + (g′)2
, cos θW =

g√
g2 + (g′)2

. (2.25)

Por otra, teniendo en cuenta el desarrollo de la derivada covariante y el lagrangiano

obtenido para el caso de QED, se concluye que:

gg′√
g′2 + g2

= e . (2.26)

Por tanto, es posible obtener una relación entre las constantes de acoplamiento

carateŕısticas de las interacciones electromagnética y débil a través del ńgulo de Weinberg,

que viene dada por:

e = gsin(θW ) = gcos(θW ). (2.27)

Este resultado es pues fundamental, y una vez obtenido, y dado que en lo que se está

interesado es en teoŕıas de gran unificación, se escribe el valor de la constante que caracteriza

la interacción electromagnética como:

αEM =
e2

4π
=
g2sin2(θW )

4π
. (2.28)

2El desarrollo de la expresión de la derivada covariante en función de los campos f́ısicos se incluye en el

anexo A.8
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Tenemos pues dos interacciones unificadas, la interacción electromagnética y la débil.

Nótese que las constante g y g′ están relacionadas por las expresiones anteriores.

Con este resultado, del mismo modo que ocurŕıa para el caso de QED, podemos

introducir las ecuaciones del grupo de renormalización cuando realizamos cálculos en teoŕıa

de perturbaciones y queremos reabsorber las divergencias que nos aparecen. En este caso las

constantes de acoplamiento son g y g′, y a partir de eśtas, retomando las expresiones del

apartado anterior, es posible calcular los valores de αj(Q).

Tomando como escala de enerǵıa Q = MZ y sabiendo que la masa del bosón Z es de

91.188 GeV, se tiene que αEM (MZ) = 1/127,9±0,9 y que sin2(θW ) = 0,2314±0,003 [1]. Por

tanto, obtenemos:

g2 =
4παEM (MZ)

sen2(θW )
= 0,427, (2.29)

(g′)2 =
4παEM (MZ)

cos2(θW )
= 0,127. (2.30)

De esta forma, podŕıamos ahora determinar la evolución de las constantes de los acoplos

electromagnético; que se denota a partir de ahora como α1 (α1 ≡ αEM ) y débil (α2) con la

escala de enerǵıa, utilizando la expresión genérica (2.16). Para ello necesitamos determinar

los valores de las constantes bi que se introdujeron anteriormente 3, que seŕıan:

b1 = −4

3
nf −

1

10
nH = −4,1, (2.31)

b2 =
22

3
− 4

3
nf −

1

6
nh = 3,167, (2.32)

donde nf es el número de familias de fermiones, que para el caso del SM es 3, y nH el número

de multipletes de Higgs, 1 para el SM. Sustituyendo finalmente estos valores calculados en

las ecuaciones del grupo de renormalización se obtienen las dependencias de las constantes

de acoplo con la enerǵıa para las interacciones débil y electromagnética en el SM:

(α1)
−1(Q) = 58,98− 0,65 ln(

Q

Mz
) = 61,92− 1,5 log(Q), (2.33)

(α2)
−1(Q) = 29,60 + 0,5 ln(

Q

Mz
) = 27,325 + 0,5 log(Q). (2.34)

Nos faltaŕıa por realizar este estudio para el caso de la cromodinámica cuántica (QCD-del

inglés ”Quantum Chromodynamics”), que se incluye en la sección siguiente.

2.3. QCD en el SM.

La última interacción incluida en el SM es la nuclear fuerte, presente en los núcleos

atómicos y responsable de la estabilidad de los mismos. Por caracterizarla brevemente, se

trata de una interacción de muy corto alcance, del orden de 10−15m. Esta interacción se trata

3Detalles están dados en el anexo A.4.
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con el formalismo de la cromodinámica cuántica y está basado en el grupo de simetŕıa SU(3)

(detallado en el anexo A.9). F́ısicamente, se entiende la interacción fuerte como el intercambio

de carga de color entre quarks (fermiones), mediada por gluones. Estas ideas se introducen

por Gell-Mann y Fritzsch como resultado de la violación del principio de exclusión de Pauli y

de la obtenión de funciones de onda que no cumpĺıan la simetŕıa esperada, como se muestra

en el anexo A.10 para el caso del Ω−.

Nuestro objetivo es obtener un lagrangiano, del que se extraer el término de interacción

que caracteriza al vértice. Para ello se comienza estableciendo el lagrangiano para un único

sabor, el cual se puede obtener como [8]:

L0 = q(iγµ∂µ −m)q (2.35)

siendo q el campo asociado a los quarks,

q ≡

q1q2
q3

 . (2.36)

Este lagrangiano presenta simetŕıa bajo transformaciones en SU(3) (ver anexo A.11). No

obstante, para el desarrollo del lagrangiano se han de considerar transformaciones locales.

Esto implica que si se teńıa una matriz U que representaba una rotación global, para el

desarrollo de una teoŕıa gauge local, se expresa esa matriz de transformación como:

U = eigsαa(x)Ta , (2.37)

siendo Ta los generadores del grupo de simetŕıa y αa(x) los parámetros de la transformación,

que dependen de las coordenadas. La expresión de una transformación local de los campos

ha de ser:

q → Uq = (1 + igsαa(x)Ta)q (2.38)

q → qU † = q(1− igsαaTa). (2.39)

Lo que se busca pues es obtener un lagrangiano caracteŕıstico que exprese la interacción

entre quarks que presente invariancia frente a este tipo de transformaciones de gauge locales.

La condición de invariancia gauge implica que se ha de cumplir que (demostrado en el

anexo A.12):

Gaµ → Gaµ + ∂µαa − gsαbfabcG
a
µ , (2.40)

siendo Gaµ una combinación de los 8 generadores del grupo SU(3), fabc el tensor de Levi-Civita

y gs la constante que caracteriza la interacción fuerte mediada por gluones. Dado que se ha

denotado a gs como la constante del acoplo, y se ha tomado una transformacion arbitraria con

una colección de los generadores cualquiera, el hecho de que esta aparezca en la transformación

gauge implica que esta ha de ser independiente del sabor. Es decir, todas las interacciones
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fuertes se van a caracterizar por el mismo valor de la constante gs. Otra consecuencia

importante a extraer de la expresión anterior es que se observa como el campo del gluón

se mezcla entre colores diferentes, luego el gluón ha de tener carga de color. Visto esto, el

lagrangiano que se obtiene para esta interacción con invariancia gauge viene dado por:

L = q(iγµ∂µ −m)q + gs q TaG
a
µγ

a q. (2.41)

No obstante, el lagrangiano aún no está completo, pues falta el término cinético del gluón,

la part́ıcula mediadora. Se busca pues un término similar al obtenido para el caso del QED

con el tensor electromagnético, este viene dado por 4:

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ + gsfabcG

b
µG

c
ν . (2.42)

Luego el Lagrangiano completo toma la forma:

LQCD = q(iγµ∂µ −m)q + gs q TaG
a
µγ

aq − 1

4
GaµνG

µν
a . (2.43)

Este Lagrangiano presenta invariancia gauge bajo el grupo SU(3), garantizando que

las interacciones que describe son las mismas en cualquier sistema de referencia inercial.

En cuanto a sus términos, el primero de ellos constituye el término libre para los quarks;

incluyendo término cinético y término de masas, y el tercero para los gluones. Al igual que

en QED el término más relevante para lo que se pretende estudiar en este trabajo es el

segundo, que establece como son las interacciones entre quarks por el intercambio de gluones.

De aqúı que se escriba el lagrangiano de interacción que describe el mı́nimo acoplo posible

que garantiza invariancia gauge como:

Lint = gsqTaG
a
µγ

aq. (2.44)

A partir de este lagrangiano es sencillo identificar el valor de la constante de acoplo con

gs. Esta se determina experimentalmente, y permite obtener el valor de α3(Mz) de acuerdo

con lo siguiente:

α−1
3 (Q =Mz) = g−1

s = 8,47± 0,22. (2.45)

No obstante, con el objetivo de absorber las divergencias que aparecen en un cálculo

perturbativo (tal y como se ha explicado en los casos anteriores) es necesario introducir las

ecuaciones del grupo de renormalización, dadas en (2.16). Calculamos entonces el valor de b3:

b3 = 11− 4

3
nf = 7 , (2.46)

y sustituyendo en (2.16) nos queda:

α−1
3 = 8,47 +

7

2π
ln(

Q

Mz
) = 3,44 + 2,57 log(Q). (2.47)

4Cálculos incluidos en el anexo A.13.
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2.4. Constantes de acoplo y unificación.

En las secciones anteriores hemos presentado las interacciones presentes en el SM,

mostrando la unificación de las interacciones débil y electromagnética, y presentando la

interacción fuerte. Aśı mismo, hemos obtenido las constantes de acoplo para cada una

de estas y cómo evolucionan con la enerǵıa del sistema. En concreto, se ha comprobado

que la dependencia de las mismas con la enerǵıa está condicionada por el valor de los

parámetros bi. Estos parámetros dependen del modelo que se escoja. Para el caso del SM

(ver ecuaciones (2.31), (2.32) y (2.46)) sus valores son:b1b2
b3

 =

 0

22/3

11

− nf

4/3

4/3

4/3

− nH

1/10

1/6

0

 =

−41/10

19/6

7

 . (2.48)

Con esta elección de parámetros, y las ecuaciones del grupo de renormalización obtenidas

para cada interacción, que se recogen a continuación en una notación compacta,α
−1
1

α−1
2

α−1
3

 =

61,9

27,3

3,4

+

−1,5

0,5

2,6

 log(Q) , (2.49)

podemos estudiar la evolución de estas constantes con la escala de enerǵıa y verificar si existe

o no la unificación en el caso del SM. Los resultados se muestran en la figura 2.3.

Figura 2.3: Evolución de α−1
i con el logaritmo de la enerǵıa.

Se habla de unificación de los acoplos gauge a una cierta escala de enerǵıa si existe algún

valor de esta para el cual las tres constantes de acoplo converjan en un mismo punto. Como

se observa, para el caso del SM, esto no ocurre para ninguna escala de enerǵıa, luego la

unificación de todas las interacciones no es posible en este modelo. Claramente, este era

el resultado esperado desde la discusión que hemos presentado a lo largo de los caṕıtulos

anteriores. Tal y como hemos discutido previamente, en el SM tenemos la unificación de solo
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dos interacciones, la electromagnética y la débil, y este resultado se ve plasmado en esta

figura.

En el SM desarrollamos dos teoŕıas diferentes para explicar las tres interacciones, la teoŕıa

electrodébil como teoŕıa unificada y la cromodinámica cuántica. Cada una de las interacciones

está caracterizada por un grupo de simetŕıa. Es por esto por lo que la alternativa que se

propone a continuación, parte de la idea de estar fundamentada en un único grupo de simetŕıa,

cuya ruptura de simetŕıa permita obtener el SM.

Este problema de la unificación no es el único que ha conllevado a que el SM se descarte

en la actualidad como la teoŕıa del todo definitiva, pues este presenta varios problemas

adicionales. El primero de ellos es el conocido como el problema de la jerarqúıa, fundamentado

en la diferencia de escalas de enerǵıa presentes en el universo. El segundo problema a destacar

es el llamado problema C-P (carga y paridad). C hace referencia a la conjugación de la carga y

P al cambio en las direcciones de todas las coordenadas espaciales. Teóricamente, al combinar

estas dos simetŕıas se espera encontrar que las antipart́ıculas se comportan como part́ıculas

y se refleje el espacio. Esta simetŕıa no se conserva en los experimentos realizados [1]. Si se

entendiera el porqué seŕıa posible exlicar la asimetŕıa entre materia y antimateria observada

en nuestro universo. Relacionado con esto, otras dos incógnitas que deja abiertas el SM son

acerca de qué part́ıcula es la responsable de la existencia de la materia oscura y la enerǵıa

oscura, pues el SM no propone ningún candidato a materia oscura. Por último, el SM tampoco

incluye ninguna explicación de la interacción gravitatoria, que no está incluida en el modelo.
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Caṕıtulo 3

Modelos de Gran Unificación.

Evidenciada la incapacidad de lograr la unificación a través del SM, se plantean varias

alternativas para solucionar los problemas que exhibe. Es posible categorizarlas en dos

grupos [9]:

− Teoŕıas basadas en QFT (del inglés ”Quantum Field Theory”). Este grupo de teoŕıas

se puede dividir en dos subgrupos, pues hay dos formas principales de buscar solución

a los problemas presentes en el SM. El eje común de ambos es que parten del álgebra

y conceptos establecidos por la QFT. El primero de ellos agrupa aquellas teoŕıas que

buscan la solución a los citados problemas mediante la inclusión de nuevas part́ıculas

e interacciones, proponiendo candidatos a materia oscura e incluso incluyendo en su

desarrollo la interacción gravitatoria (esto último sin mucho éxito). El segundo de estos

subgrupos, corresponde con aquellas que proponen la inclusión de nuevas simetŕıas. Los

máximos exponentes en este grupo son las llamadas teoŕıas GUTs (del inglés ”Grand

Unified Theory”) y las basadas en supersimetŕıa, SUSY (del inglés ”Supersymmetry”).

− Teoŕıas beyond QFT. Proponen un acercamiento diferente, buscando alternativas a las

propuestas por QFT. El máximo exponente es la teoŕıa de cuerdas, y están motivadas

principalmente por la incapacidad de las teoŕıas del primer grupo para llevar a cabo

una correcta cuantización de la gravedad.

Se centra la atención en el primer grupo de teoŕıas BSM (del inglés ”Beyond the Standard

Model”). Se ha comentado que una de las soluciones que se propone en este grupo, es la

inclusión de nuevas simetŕıas. Esta inclusión de nuevas simetŕıas, constituye la base de la

teoŕıa de SUSY GUT (del inglés ”Supersymmetric Grand Unified Theories”) que se pretende

desarrollar en este trabajo. Existen diferentes formas en que se puede llevar a cabo este

proceso de adición de simetŕıas [9], aunque nos centraremos solo en una de ellas, la inclusión de

supersimetŕıa. Esta consiste en la adición de una nueva simetŕıa externa o espacio-temporal.

La mayor virtud de esta teoŕıa, es que permite solucionar el problema de la jerarqúıa. Además

de esto, si se combina con las ideas propuestas por las teoŕıas de GUTs, consigue lograr la

unificación de las tres constantes de acoplo a la escala GUT mencionada anteriormente, y

ofrece candidatos a materia oscura. Nos centramos en lo siguiente es esta propuesta, teoŕıas

SUSY. En concreto, trataremos el caso de la extensión supersimétrica minimal del SM,

denominada MSSM (del inglés ”Minimal Supersimetric Standard Model”).
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3.1. SUSY.

Esta fue desarrollada a lo largo de la década de 1970, y encuentra como referentes a

varios f́ısicos teóricos como Julius Wess y Burno Zumino, y como se ha comentado, permite

solucionar un buen número de los problemas presentados por el SM. La idea de SUSY surge

a partir del estudio de las interacciones fuertes, que conllevaron el descubrimiento de los

hadrones y su organización en multipletes de SU(3)f [9]. A raiz de esto, y sumado a la idea

de ampliar el grupo de simetŕıa se plantea la creación de multipletes que incluyan part́ıculas

de diferentes espines. Estos multipletes, serán los caracteŕısticos del grupo de simetŕıa, y

reciben también el nombre de supercampos. Las part́ıculas recogidas en estos multipletes no

estaŕıan pues limitadas a las recogidas en el SM, sino que se abre la posibilidad a la existencia

de un mayor número de estas. SUSY está basada en una simetŕıa que relaciona bosones y

fermiones.

Explicada la idea, la cuestión es ahora como llevarla a cabo de forma que no entre en

contradicción con el conocido como No-go Theorem propuesto por Mandula en 1967. Este

teorema establece que, cuando se trata con teoŕıas cuánticas de campos, las únicas simetŕıas

posibles son las de Lie clásicas (anexo B.1), correspondientes a traslaciones y rotaciones

(transformaciones de Poincaré), aśı como aquellas que forman un álgebra de Lie semisimple.

Esto implica que no es posible establecer simetŕıas internas entre part́ıculas fermiónicas y

bosónicas, luego no es posible obtener un grupo conjunto que incluya las transformaciones

de Poincaré x interna, cuyo grupo representante propuesto es SU(5). De ser posible, se

obtendŕıan acoplos nulos, es decir, no existiŕıan interacciones.

El teorema de No-go parece pues excluir totalmente la idea de SUSY, no obstante,

este teorema está basado en el axioma de los generadores bosónicos. Este considera que

los conmutadores de los generadores de simetŕıa bosónicos han de ser funciones lineales de

los generadores, su estructura debe ser por tanto cerrada bajo conmutación (el conmutador

de dos elementos del grupo ha de pertenecer al grupo) [10]. El teorema incluye únicamente

generadores bosónicos, pero no habla sobre generadores fermiónicos. Estos generadores seŕıan

los análogos a los bosónicos pero para fermiones, es decir, generaŕıan las simetŕıas para estos.

Estos generadores fermiónicos han de conectar los multipletes del SM, expandiendo el

álgebra de Poincaré de forma no trivial. Se van a denotar como Q, y la condición anterior

implica que la actuación de los mismos sobre campos bosónicos y fermiónicos ha de cumplir

[9]:

Q|bosón⟩ ∝ |fermión⟩ Q|fermión⟩ ∝ |bosón⟩. (3.1)

La introducción de estos generadores Q, precisa de una generalización del álgebra de Lie.

En esta generalización se cumple que si Oa es un operador, entonces:

OaOb − (−1)νaνbObOa = iCcabOc. (3.2)
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Siendo νa = 0 si Oa es un generador bosónico y νa = 1 si es un generador fermiónico.

En el caso de SUSY, los generadores bosónicos son los generadores de Poincaré Pµ y Mµν

(tensor métrico) y los generadores fermiónicos QAα , Q
A
α . A puede tomar valores entre 1 y N,

en este caso se va a desarrollar lo que se conoce como SUSY simple (MSSM), que posee N=1,

valores superiores de A corresponden a teoŕıas de SUSY extendidas. Esta definición de los

generadores conlleva una serie de relaciones de conmutación que se pueden demostrar, pero

en las cuales no se va a hacer énfasis pues se escapan del objetivo del trabajo. Del desarrollo

de este álgebra es posible extraer algunas conclusiones interesantes sobre como se llevan a

cabo las traslaciones de fermiones, ya que bajo este nuevo álgebra descrita, la aplicación

consecutiva de generaciones fermiónicos sobre un campo bosónico da lugar a una traslación:

Qα|F ⟩ = |B⟩ Qβ|B⟩ = |F ⟩ ⇒ QQ|B⟩ → |B′⟩. (3.3)

Tratada la idea subyacente detrás de SUSY, es hora de estudiar los multipletes que pone

en juego este acercamiento. Dado que el modelo supersimétrico está basado en el grupo de

transformaciones de Poincaré mas internas, y que ha de contener las part́ıculas e interacciones

observadas en el SM, se le puede asociar un grupo de simetŕıa:

SU(3)C × SU(2)L × U(1)Y ×N. (3.4)

Y en el caso que se trata, MSSM, se tiene N=1. Ahora se han de organizar las part́ıculas

en los correspondientes supermultipletes de este grupo de simetŕıa. Estos supermultipletes se

pueden dividir en dos tipos:

− Supermultipletes quirales: Contienen un fermión left-handed (anexo B.3, para más

detalles sobre quiralidad, y el motivo de la elección de los fermiones y escalares que

forman estos supermultipletes) y un escalar complejo

− Supermultipletes gauge: Contienen a los bosones de esṕın 1 recogidos en el SM y a sus

fermiones asociados de esṕın 1/2

Un supermultiplete se puede representar por tanto, tomando como pµ el momento, como:

|pµ,±λ⟩, |pµ,±(λ− 1

2
⟩ (3.5)

Estos estados representan al bosón y fermión y a sus conjugados en carga y paridad. Se

presentan en primer lugar las part́ıculas que ocupan los supermultipletes quirales. Estos son

los fermiones de esṕın 1/2 del SM y sus escalares supersimétricos asociados, más el Higgs y

el Higgsino [11]
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Nombres esṕın 0 esṕın 1/2

squarks y quarks (3 familias)

Q ũL d̃L uL dL

U ũ∗R ucL
D d̃∗R dcR

sleptones y leptones
L ν̃L l̃

−
L ν l−L

R l̃+R l+R

Higgs, higgsino
H2 H+

2 H0
2 H̃+

2 H̃0
2

H1 H0
1 H

−
1 H̃0

1 H̃
−
1

Tabla 3.1: Tabla de supermultipletes quirales. Se presentan con una tilde, las part́ıculas

supersimétricas, y sin ella las presentes en el SM. Las part́ıculas con esṕın 0 corresponden a

escalares complejos, mientras que las de esṕın semientero a las componentes de los espinores

de Weyl left-handed.

En la tabla se encuentran los fermiones del SM, leptones y quarks, y sus fermiones escalares

o sfermiones asociados, los squarks y sleptones. Se presenta también la quiralidad de las

part́ıculas, asociando R a right handed y L a left handed. Se comprueba como quarks y

fermiones son left handed, mientras que entre las part́ıculas añadidas en SUSY, se encuentran

tanto right handed como left handed. Por otro lado, en SUSY, si se quiere dar masa tanto a

los quarks como squarks, el Higgs necesita dos dobletes [11].

Vistos los supermultipletes quirales, se muestran los supermultipletes gauge [11]:

Nombres esṕın 1/2 esṕın 1

gluino, gluón g̃ g

winos, bosón W W̃± W̃ 0 W± W 0

bino, bosón B B̃0 B0

Tabla 3.2: Tabla de supermultipletes de gauge.

En SUSY, los bosones propios del SM, aparecen acompañados de fermiones de esṕın 1/2

que reciben el nombre de gauginos. El gluón tiene asociado el gluino; los bosones W± y W 0

tienen asociados los winos; y por último, el bosón B tiene asociado el bino. Algo a remarcar

aqúı, es que como se vió en la parte de la unificación EW el bosón B, no corresponde a un

campo f́ısico, sin embargo en SUSY es conveniente el uso de estos bosones gauge ya que los

autovalores que permiten obtener la masa de las part́ıculas (como se muestra a continuación

para el neutralino), aparecen como combinaciones de los mostrados en la tabla anterior.

Si se tiene en cuenta que cada part́ıcula del SM tiene asociada su compañera

supersimétrica (cada quark un squark, cada leptón su slepton, etc.) al tratar con SUSY

se duplica el espectro de part́ıculas del SM. Esto es clave para la resolución de dos de los

problemas que motivaron en parte la introducción de SUSY: La materia oscura y la solución

al problema de la jerarqúıa.

En cuanto a la materia oscura, se han propuesto una serie de part́ıculas como
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candidatos [12]:

− Neutralino. Se obtiene a través de una combinación lineal de los gauginos electrodébiles,

el fotino (B) y el gluino (W 0) y los Higgsinos neutros. En base de autoestados de gauge,

se puede representar como ϕ(B,W 0, H0
d , H

0
u). En base al Lagrangiano supersimétrico

que se obtendrá a continuación, se espera que esta part́ıcula no presente interacción

fuerte.

− Otros candidatos. Adicionalmente se han propuesto candidatos alternativos como el

sneutrino ν tanto el right-handed como left-handed. No obstante, estos presentan una

serie de problemas relacionados con los acoplos con el Higgs y otros bosones del SM.

De todos ellos, el neutralino es en el que hay depositadas mayores esperanzas como

candidato a materia oscura en SUSY. De todas formas, es importante recalcar el hecho de

que actualmente, no se tiene confirmarción experimental de la existencia de ninguno de estos

candidatos.

Dejando la materia oscura y centrando la atención ahora en el problema de la jerarqúıa,

veamos que soluciones aporta esta teoŕıa de SUSY. Para ello, se va a comenzar explicando

un poco más en profundidad el mencionado problema de la jerarqúıa.

Recapitulando lo visto, se mencionó que el problema de la jerarqúıa, hace referencia a la

gran diferencia observada entre la escala de enerǵıa correspondiente a la escala de Plank y

las interacciones que toman lugar en el SM. Como consecuencia, se observa que al realizar

teoŕıa de perturbaciones para obtener las correcciones a la masa del Higgs se obtienen valores

de la corrección muy superiores a la propia masa de este. Esto no ocurre para el caso de los

fermiones y los bosones de gauge ya que las correcciones de estos son proporcionales a sus

masas. La pregunta ahora es porque ocurre esto para el caso del Higgs y como SUSY es capaz

de solucionar este problema.

La divergencia en las correcciones al Higgs es consecuencia de que la corrección a su masa

tiene un término que corresponde con la escala de enerǵıa de nueva f́ısica, 10 TeV. Ya que si

se calcula empleando teoŕıas de perturbaciones (ver anexo B.2) se obtiene un valor de [13]:

δm2
H =

Λ2

32π2
[6λ+

1

4
(9g2 + 3g′2)− y2t ]. (3.6)

Luego teniendo en cuenta que la masa del Higgs es de 125GeV [1] se da entonces que

δm2
H ≫ m2

H . SUSY resuelve este problema de forma relativamente sencilla, ya que como en

SUSY se hace corresponder al boson de Higgs un fermión supersimétrico, el Higgsino, las

correcciones en la masa del Higgsino modifican también la masa del Higgs, puesto que el

mecanismo que propone SUSY para dar lugar a la masa es a través del multiplete formado

por estos. Esto provoca la cancelación del término que depende de la escala de enerǵıa de

nueva f́ısica, responsable de la divergencia, de modo que se soluciona el problema.
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En cuanto a las diferencias de enerǵıas, las nuevas part́ıculas presentes en SUSY, tienen

masas situadas entre las correspondientes al SM y las de la escala de Plank, asimismo pueden

dar lugar a nuevas interacciones cuyas enerǵıas se encuentren en este rango, solucionando

también este problema.

3.1.1. Lagrangiano Supersimétrico.

Se tiene por tanto una solución a dos de los grandes problemas del SM, no obstante

queda todav́ıa en el aire el problema de la unificación de los acoplos gauge. Para ello se va a

definir el Lagrangiano supersimétrico que agrupa las interacciones de SUSY, y que permitirá

obtener las constantes de acoplo y las correspondientes bi en las ecuaciones del grupo de

renormalización.

Se ha comenzar considerando las tres interacciones posibles recogidas en SUSY. La

primera de ellas es debida al superpotencial, y viene dada según [11]

W = ϵij [hlĤ
i
1L̂

jR̂+ hdĤ
i
1Q̂

jD̂ + hu
ˆ
Hj

2Q̂
iÛ − µĤ i

1
ˆ
Hj

2 ]. (3.7)

En este superpotencial, Ĥ i
1 hace referencia al supercampo del higgs y el higgsino; L̂j y R̂

a los supercampos asociados a los leptones y sleptones respectivamente; Q̂j , D̂ y Û hacen

referencia a los supercampos asociados a los quarks y squarks. Por otro lado, los términos hl,

hd y hu son los términos asociados a la interacción entre los fermiones, µ el parámetro de masa

del higgsino y ϵij el tensor totalmente antisimétrico. Este superpotencial toma partido en dos

grupos de interacciones. El primero de ellos corresponde con las interacciones de Yukawa, al

cual se le puede asociar un potencial VY ukawa obtenido a partir de la ecuación anterior al

sustituir dos de los supercampos fermiónicos por sus campos fermiónicos y el tercero por la

componente escalar de estos, y cuya expresión es:

VY ukawa =ϵij [hlH
i
1L

jR+ hdH
i
1Q

jD + huH
j
2Q

iU − µH i
1H

j
2 ]

+ ϵij [hlH̃
i
1L

jR̃+ hdH̃
i
1Q

jD̃ + huH̃
j
2Q

iŨ ]

+ ϵij [hlH̃
i
1L̃

jR+ hdH̃
i
1Q̃

jD + huH̃
j
2Q̃

iU ].

(3.8)

El segundo grupo de interacciones, bajo el nombre de VW se extraen de la derivada del

superpotencial con respecto a las componenetes escalares de los supercampos. Esto es:

VW =
∑
i

∣∣∣∣∂W (ϕi)

∂ϕi

∣∣∣∣2 . (3.9)

El segundo tipo de interacciones recogidas son las relacionadas con la simetŕıa gauge.

Estas pueden subdivirse en las siguientes:

− Las interacciones gauge presentes en el SM, dadas en función de las constantes g, g’ y

gs asociadas a los grupos U(1), SU(2) y SU(3) respectivamente.
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− Las interacciones del gaugino, dadas por:

VG̃ψψ̃ = i
√
2gaϕkκ̃a(T

a)klψ̃l + h.c. (3.10)

Siendo ϕ y ψ las componentes de spin 0 y 1/2 del supercampo, T a el generador de

simetŕıa, κa el campo del gaugino y ga su constante de acoplo.

− El término asociado a la derivada covariante (D-term), relacionado con la estructura de

la teoŕıa:

VD =
1

2

∑
gaϕ∗i (T

a)ijϕj . (3.11)

Siendo de nuevo ϕi la componente escalar de los supercampos.

Teniendo en cuenta la totalidad de estos términos, ya es posible establecer un lagrangiano

que solucione el problema de la jerarqúıa, y recoja las interacciones entre las nuevas part́ıculas.

No obstante, este lagrangiano presenta un problema, pues si se tiene en cuenta lo desarrollado

en las dos primeras expresiones (3.7) y (3.8) se observa que tanto el quark top como el squark

top interaccionan de la misma manera con el supercampo de Higgs. Como resultado, se espera

pues que las masas de estas dos part́ıculas sean idénticas. Y dado que no se tiene evidencia

experimental de ninguna de las part́ıculas supersimétricas, se concluye pues que, si SUSY

existe, su simetŕıa ha de estar rota. El Lagrangiano de SUSY ha de reproducir pues este

comportamiento, para lo cual se añade un término conocido como Soft-SUSY-breaking, que

viene dado según [11]:

V I
soft = ϵij [hlAlH

i
1L̃

jR̃+ hdAdH
i
1Q̃

jD̃ + huAuH
i
2Q̃Ũ ]. (3.12)

Con todo esto, es posible establecer el Lagrangiano completo para SUSY a través de la

siguiente expresión:

LMSSM = LKinetic + LGauge − VY ukawa − VW − VG̃ψψ̃ − VD − V I
Soft

−m2
1H

†
1H1 −m2H

†
2H2 −m2

12(H
†
1H

†
2 +H1H2)

− 1

2
mg̃ψ

a
g̃ψ

a
g̃ −

1

2
M2w̃iw̃i −

1

2
M1B̃

0B̃0

−M2
l̃L
L̃∗L̃−M2

l̃R
R̃∗R̃−M2

Q̃L
Q̃∗Q̃−M2

d̃R
D̃∗D̃ −M2

ũR
Ũ∗Ũ .

(3.13)

Los términos LKinetic y LGauge son conocidos, pues provienen del SM, el primero de

ellas representa la cinética de los campos fermiónicos y bosónicos, mientras que el segundo

establece las interacciones gauge. Estas tres interacciones son las que se han desarrollado en

el caṕıtulo anterior, y corresponden a la nuclear fuerte y la electrodébil. Por otro lado los

términos de VY ukawa, VW , VG̃ψψ̃, VD, y V
I
Soft son los que se han discutido en esta sección y

corresponden por tanto a las interacciones causadas por las nuevas part́ıculas. Por último, el

resto de términos representan las masas de las diferentes part́ıculas, tanto los bosones gauge,
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como los fermiones, quarks, sleptones y squarks como consecuencia de su interacción con el

multiplete de Higgs.

Se observa pues como cada interacción no está caracterizada por un único acoplo, sino que

aparecen varios. Esto produce que las constantes de acoplo de cada una de ellas se redefinan,

teniendo en cuenta que ahora estas vienen condicionadas por los supercampos de gauge.

No obstante, a pesar de estas redefiniciones, siguen existiendo las divergencias al igual que

ocurŕıa para en el SM. Como consecuencia, es necesario incluir de nuevo las ecuaciones del

grupo de renormalización pero adaptadas para SUSY. Su expresión sigue siendo la misma

a la presentada anteriormente, pero cambian los valores de las constantes bi, que se pueden

escribir de acuerdo con la siguiente expresión:b1b2
b3

 =

0

6

9

− nf

2

2

2

− nH

3/10

1/2

0

 =

−33/5

−1

3

 . (3.14)

Recordemos que para calcular sus valores se ha usado que en modelos de SUSY se

consideran dos dobletes de Higgs nH = 2 y tres familias de leptones nf = 3. Con esto,

si se escriben de nuevo las ecuaciones del grupo de renormalización, dadas expĺıcitamente

en (2.16), se obtienen las siguientes tres dependencias:α
−1
1

α−1
2

α−1
3

 =

63,72

30,32

6,32

+

−2,42

0,37

1,10

 log(Q). (3.15)

Figura 3.1: Evolución de α−1
i con el logaritmo de la enerǵıa.

Los resultados de la dependencia de las constantes de acoplo con la escala de energia

Q se presentan en la figura 3.1. A diferencia de lo observado para el caso del SM, aqúı si

que observamos un punto de intersección común para las tres constantes de acoplo. Esta

22



intersección tiene lugar a la llamada escala de la gran unificación y se comprueba que

corresponde a 1016 GeV. SUSY por tanto resuelve el problema de la unificación.

Este logro está estrechamente relacionado con el grupo de simetŕıa que se ha usado, el

álgebra se desarrolla a través del producto de las transformaciones de Poincaré y las internas,

basándose en los generadores férmionicos.

A pesar del enorme éxito como teoŕıa unificada, SUSY también tiene otros inconvenientes.

Uno de ellos es el hecho del gran número de parámetros arbitrarios en la teoŕıa,

aproximadamente 120, la gran mayoŕıa asociados al desconocimiento sobre como tiene lugar

la ruptura de la simetŕıa. Estos parámetros condicionan las masas de las diferentes part́ıculas

supersimétricas, las interacciones entre las mismas, la ruptura de simetŕıa del modelo, etc.

Sin embargo el mayor problema de esta teoŕıa, es que hasta el momento no se tiene

confirmación experimental de ninguna de las part́ıculas predichas. Los motivos de esto pueden

ser variados. Por ejemplo, como se ha comentado, la teoŕıa presenta un gran número de

parámetros arbitrarios que condicionan en buena medida los valores de las masas de las

nuevas part́ıculas predichas por este modelo, de modo que es complicado descartar part́ıculas,

ya que sus masas y acoplos no están uńıvocamente determinados. El hecho de que no se haya

encontrado experimentalmente ningún indicio de este modelo impone cotas sobre las masas

de las part́ıculas SUSY y/o los parámetros libres en el modelo [1]. No obstante, aún se sigue

investigando en el entorno de este modelo de la f́ısica más allá del SM.
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Caṕıtulo 4

Conclusiones.

A lo largo de este trabajo se ha desarrollado el SM, con especial énfasis en sus

interacciones y los acoplos que preciden cada una de las interacciones incluidas; la interacción

electromagnética, la nuclear débil y la nuclear fuerte. A partir de estos acoplos se han obtenido

las ecuaciones del grupo de renormalización y se ha mostrado la dependencia de las constantes

con la enerǵıa. Se ha comprobado como, exitosamente, el SM unifica las interacciones débil

y electromagnética. Sin embargo, hemos encontrado que las tres constantes de acoplamiento

que caracterizan sus interacciones no coinciden para ningún valor de la enerǵıa y, por tanto

concluimos que, según lo predicho por el modelo, no tenemos la unificación de las tres

interacciones mencionadas.

Con el objetivo de tener una teoŕıa unificada, se ha estudiado una de las teoŕıas

alternativas, SUSY GUT, en contreto se ha escogido centrar la discusión en la variante

simplificada de SUSY, el MSSM. Se ha descrito la forma en la que esta teoŕıa introduce

nuevas part́ıculas aśı como las soluciones a los problemas de la jerarqúıa y materia oscura que

presenta el SM. Para finalizar, se han caracterizado los acoplos, y a través de las ecuaciones del

grupo de renormalización se ha obtenido la unificación de los acoplos a una escala de enerǵıa

de 1016 GeV. No obstante, a pesar del éxito como teoŕıa de unficación de las interacciones

fundamentales, esta teoŕıa presenta también sus inconvenientes que se han mencionado en

este trabajo.

Claramente, en el marco de la f́ısica de part́ıculas existen aún muchas preguntas abiertas,

y aunque el SM es sin duda un modelo muy exitoso y comprobado experimentalmente, no

podemos descartar la existencia de algún modelo de Nueva F́ısica que nos podŕıa ofrecer

respuestas a estas preguntas.
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Anexos A

Anexo A

Presentamos en este anexo algunos detalles que complementan lo presentado en el el

Caṕıtulo 2.

A.1. Grupo de simetŕıa U(1).

Se introducen aqúı detalles sobre el grupo de simetŕıa U(1).

El grupo de simetŕıa U(1) representa las rotaciones de un eje complejo. Sus elementos son

por tanto números complejos de módulo unidad que pueden ser representados por [3]:

U(θ) = eiθ(x)Q. (A.1)

Estas transformaciones pueden ser de carácter local o global, en función de si el parámetro θ es

función o no de las coordenas. Y es el generador de los elementos del grupo, que habitualmente

se escoge real. Cuando se habla de transformaciones de fase locales del grupo U(1) se hace

referencia a transformaciones como las siguientes:

ψ −→ ψ′ = U(θ)ψ = eiθQψ; (A.2)

ψ −→ ψ′ = ψ U∗(θ) = ψe−iθQ. (A.3)

Este tipo de transformaciones mantienen invariante el producto escalar.

A.2. Invariancia del lagrangiano de QED bajo

transformacions del grupo U(1).

Se incluye la demostración de la invariancia del lagrangiano bajo transformaciones del

grupo U(1).

Se está interesado en transformaciones locales. Bajo estas transformaciones, los campos

fermiónicos y del fotón se modifican de acuerdo a las siguientes expresiones:

Aµ −→ A′
µ = Aµ −

1

e
∂µθ(x), (A.4)

ψ −→ ψ′ = eiθ(x)Qψ, (A.5)

ψ −→ ψ′ = ψe−iθ(x)Q. (A.6)
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El lagrangiano que se obtiene tras esta transformación es pues:

L′ = ψ
′
(iγµ∂µ −m)ψ′ − 1

4
FµνFµν − eQψγµψA′

µ. (A.7)

Desarrollando la expresión anterior, y omitiendo la dependencia del parámetro θ con las

coordenadas (θ(x) ≡ θ):

L′ = ψe−iθQ(iγµ∂µ −m)eiθQψ − 1

4
FµνFµν − eQψe−iθQγµeiθQψ(Aµ −

1

e
∂µθ). (A.8)

Descomponiendo el paréntesis del primer miembro en dos sumandos:

L′ = ψe−iθQiγµ∂µ(e
iθQψ)−mψψ − 1

4
FµνFµν − eQψe−iθQγµeiθQψ(Aµ −

1

e
∂µθ). (A.9)

Donde se han cancelado las exponenciales en el término de la masa. Hecho esto, desarrollando

la derivada del producto ∂µ(e
iθY ψ) y reorganizando los términos, se obtiene:

L′ =ψe−iθQiγµ∂µψe
iθQ −mψψ − 1

4
FµνFµν − eQψe−iθQγµeiθQψAµ

+ ψe−iθQiγµψ(iQeiθQ∂µθ) + eQψe−iθQγµeiθQψ
1

e
∂µθ.

(A.10)

Es sencillo notar, como al conmutar las exponenciales con el resto de términos del lagrangiano,

puesto que el generador Q es un número complejo de módulo 1, la primera ĺınea coincide con

el lagrangiano original. Además, multiplicando y reordenando los términos de la segunda

ĺınea, se llega:

L′ = L −Qψe−iθQγµeiθQψ∂µθ +Qψe−iθQγµeiθQψ∂µθ = L. (A.11)

Luego efectivamente, se comprueba la invariancia bajo este tipo de transformaciones. Esta

se da también para transformaciones globales.

A.3. Dependencia de las constantes bi.

Se obtiene la dependencia de las constantes bi, y su relación con el grupo de simetŕıa que

se trata.

Se busca obtener los valores de las constantes bi que se presentan en el trabajo. Estos

términos son resultado de las contribuciones de los bosones de gauge del grupo de simetŕıa

en que se esté trabajando, de las representaciones de los fermiones de Weyl, y de las

contribuciones de escalares complejos. Vayamos término a término, el primero de ellos viene

dado según:

bi =
11

3
C2(Gi), (A.12)

siendo C2 el operador de casimir cuadrático del grupo de gauge Gi. Este operador de Casimir

se puede poner en función de los generadores de la representación adjunta del grupo de la

siguiente manera:

IC2(Gi) =
∑
A

T 2
a . (A.13)
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De este modo, se cumple que para el grupo de simetŕıa SU(N) viene dado según:

bi =
11

3
C2(Gi) =

11

3
N. (A.14)

Para el caso particular de U(1) se tiene C2 = 0.

La contribución de cada representación de los fermiones de Weyl se puede computar como:

bi = −2

3
TR, (A.15)

con TR el ı́ndice de Dyhkin de la representación a la que pertenecen los fermiones, esto es:

Tr(T
a
RT

b
R) = TR∂

ab, (A.16)

Este ı́ndice toma el valor TR = 1
2 para la representación fundamental de SU(N), y TR = Y 2

para U(1)Y siendo Y la hipercarga. Dado que se introducirán estas mismas ecuaciones cuando

se trata con SUSY, es importante mencionar que en este caso TR = N . Por último lugar, las

contribuciones de los escalares complejos vienen dados asimismo en función de los ı́ndices de

Dyhkin como:

bi = −1

3
TR. (A.17)

Por tanto, la suma de las tres contribuciones lleva a la expresión:

bi =
11

3
C2(Gi)−

2

3
TRnf −

1

3
TR. (A.18)

Teniendo en cuenta lo mencionado sobre el operador de casimir del primer término, que el

segundo hay que multiplicarlo por el número de part́ıculas del modelo que se considere, y lo

mismo para el tercero con el número de escalares, se obtienen las ecuaciones presentadas.

A.4. Obtención de las ecuaciones del grupo de

renormalización.

Se desarrolla la expresión 2.13, para obtener la dependencias de gi(Q). Para ello se parte

de la ecuación:
d

d logQ
gi(Q) = − bi

(4π)2
g3i (A.19)

Para resolver la ecuación, se lleva a cabo el cambio de variable t = logQ y teniendo en cuenta

que αi =
g2i
4π se puede escribir:

dαi
dt

=
d
g2i
4π

dt
=

2gi
4π

dgi
dt

=
2gi
4π

(− bi
(4π)2

g3i ). (A.20)

Luego es sencillo notar que:

− bi
(2π)

α2
i =

dαi
dt

(A.21)
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Para resolverla, se usa el hecho de que cuando se trata con 1-loop los coeficientes bi son

independietes de α. Teniendo en cuenta este hecho y despejando términos de la expresión

anterior, se llega a:

− 1

α2
i

dαi
dt

=
b

2π
, (A.22)

1

αi(Q)
− 1

α(µ)
=

bi
2π

(t(Q)− t(µ)). (A.23)

Deshaciendo el cambio de variable t = logQ, se obtienen las ecuaciones del grupo de

renormalización:
1

αi(Q)
=

1

αi(µ)
+

b

2π
ln
Q

µ
. (A.24)

Es sencillo notar como si se recuerda la relación αi =
g2i
4π , la ecuación anterior es equivalente

a:

g2i (Q) =
g2i (µ)

1 + (bi/8π2) log(
Q
µ )
. (A.25)

Como se queŕıa obtener

A.5. Comprobación de la ruptura de simetŕıa asociada a los

bosones gauge.

Correspondiendo con el apartado 2 del Caṕıtulo 2, se presenta la demostración de que la

elección de vaćıo, rompe la simetŕıa bajo transformaciones de SU(2)L × U(1)Y .

Para comprobar la ruptura de la simetŕıa, calculamos la acción de los generadores de los

grupos de simetŕıa SU(2) y U(1). Denotando como τi con i=1,2,3 a los propios de SU(2) y

recordando que estos vienen dados por las matrices de Pauli:

τ1ϕ0 =

(
0 1

1 0

)
1√
2

(
0

v + h

)
=

1√
2

(
v + h

0

)
̸= 0. (A.26)

τ2ϕ0 =

(
0 −i
i 0

)
1√
2

(
0

v + h

)
=

−i√
2

(
v + h

0

)
̸= 0. (A.27)

τ3ϕ0 =

(
1 0

0 −1

)
1√
2

(
0

v + h

)
=

−1√
2

(
0

v + h

)
̸= 0. (A.28)

Se comprueba por tanto la ruptura de simetŕıa de SU(2). Para U(1) se tiene lo siguiente:

Y ϕ0 = Yϕ0
1√
2

(
0

v + h

)
̸= 0. (A.29)

Donde este resultado se justifica por el hecho de que para las transformaciones de U(1)

el parámetro Yϕ0 corresponde con un número complejo de módulo 1.
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Este resultado implica por tanto que los bosones W1, W2, W3 y B considerados adquieren

masa a través de este mecanismo de Higgs. El hecho de que el fotón permanezca sin masa a

pesar de este hecho es debido a que se obtiene como una combinación de los campos B y W3,

esta combinación mantiene la simetŕıa, pues:

Qϕ0 =
1

2
(τ3 + Y )ϕ0 =

(
1 0

0 0

)
1√
2

(
0

v + h

)
= 0. (A.30)

A.6. Desarrollo de las derivadas covariantes en el modelo EW.

Se expone aqúı el desarrollo del término (Dµϕ)†(Dµϕ).

La expresión de este término, considerando el vaćıo, viene dada por:

Dµ =
1√
2
[δµ + ig

1

2
τ⃗ · W⃗µ + ig′

1

2
Y Bµ]

(
0

v + h

)
. (A.31)

Dado que para llevar a cabo la unificación electrodébil, solo es necesario tener en cuenta

los términos que produzcan las masas de los bosones gauge, y estos son proporcionales a v2.

Es posible desarrollar la derivada centrando la atención exclusivamente en esos términos:

Dµϕ =
1√
2
[ig

1

2
+ τ⃗ · W⃗µ + ig′

1

2
Y Bµ]

(
0

v

)
, (A.32)

Dµϕ =
i

8
[g(

(
0 W1

W1 0

)
+

(
0 −iW2

iW2 0

)
+

(
W3 0

0 −W3

)
) + g′

(
Yϕ0Bµ 0

0 Yϕ0Bµ

)
]

(
0

v

)
,

(A.33)

Dµϕ =
iv√
8

(
g(W1 − iW2)

−gW3 + g′Yϕ0Bµ

)
. (A.34)

A partir de aqúı, es posible obtener el valor de (Dµϕ)† conjugando la expresión anterior:

(Dµϕ)† = − iv√
8

(
g(W1 + iW2)

−gW3 + g′Yϕ0Bµ

)
. (A.35)

Luego el término (Dµϕ)†(Dµϕ) viene finalmente dado por:

(Dµϕ)†(Dµϕ) =
1

8
v2[g2(W 2

1 +W 2
2 ) + (−gW3 + g′Yϕ0Bµ)

2]. (A.36)

A.7. Lagrangiano EW en función de los bosones f́ısicos.

Se presenta el desarrollo necesario para reescribir la parte escalar del lagrangiano en

función de los bosones W± y Bµ, correspondiente al paratdo 2 del Caṕıtulo 2.

Cuando se discute la interacción de las corrientes cargadas en SU(2) se obtienen relaciones

entre entre los bosones f́ısicos y W1, W2 [7]. Esto permite establecer las siguientes relaciones:

1

2
(τ1W1 + τ2W2) =

1√
2
(τ+W

+ + τ−W
−) (A.37)
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Teniendo en cuenta ahora la expresión de la derivada covariante:

(Dµϕ)†(Dµϕ) =
1

8
v2[g2(W 2

1 +W 2
2 ) + (−gW3 + g′Yϕ0Bµ)

2] (A.38)

Es posible escribir:

g2(W 2
1 +W 2

2 ) = g2(W+2
+W+2

) (A.39)

Se tiene ya pues uno de los términos en función de los bosones f́ısicos W±. En cuanto a

los valores de W3 y Bµ antendiendo al segundo de los términos, es posible expresarlo como:

(−gW3 + g′Yϕ0Bµ)
2 = (W3, Bµ)

(
g2 −gg′Yϕ0

−gg′Yϕ0 g′2

)(
W3

Bµ

)
= (W3, Bµ)AW3,Bµ

(
W3

Bµ

)
(A.40)

Si se recuerda el hecho de que se ha tomado el valor de la hipercarga Yϕ0 = 1, la matriz

anterior se puede diagonalizar encontrando los valores λ que cumplen:

|AW3,Bµ − λI3| =

∣∣∣∣∣g2 − λ −gg′

−gg′ g′2 − λ

∣∣∣∣∣ = λ(λ− g′2 − g2) = 0 (A.41)

Se obtienen por tanto los autovalores λ = 0 y λ = g2 + g′2. Los autovectores

correspondientes, normalizados son:

λ = 0 −→ 1√
g2 + g′2

(
g′

g

)
=

1√
g2 + g′2

(g′W3 + gWµ) = Aµ (A.42)

λ = g2 + g′2 −→ 1√
g2 + g′2

(
g

−g′

)
=

1√
g2 + g′2

(gW3 − g′Wµ) = Zµ (A.43)

Y comparando con los términos de la derivada covariante:

(−gW3 + g′Yϕ0Bµ)
2 = (g2 + g′2)Z2

µ + 0 ·A2
µ (A.44)

Se tiene ya pues la derivada covariante expresada en función de los campos, por lo que

puede ser insertada en el lagrangiano, obteniéndolo en función de los bosones f́ısicos.

A.8. Desarrollo de la derivada covariante, parte de W 3
µ y Bµ.

Desarrollo de la derivada covariante centrada en W 3
µ y Bµ para obtener las relaciones

entre acoplos.

La derivada covariante en teoŕıa electroweak, viene dada según:

Dµ = ∂µ + ig′
Y

2
Bµ + igZ⃗W⃗µ = ∂µ + ig′

Y

2
Bµ + ig(τ1W1 + τ2W2 + τ3W3) (A.45)

Si se centra la atención en los términos relativos a W 3
µ y Bµ:
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Dµ = ∂µ + ig′
Y

2
Bµ + igτ3W3 (A.46)

Teniendo en cuenta los resultados del anexo anterior donde se establecen las realciones

entre los bosones Wi, Bµ y los bosones f́ısicos se obtiene que:

gg′W 3
µ − g′2Bµ = g′Zµ

√
g2 + g′2 (A.47)

gg′W 3
µ + g′2Bµ = gAµ

√
g2 + g′2 (A.48)

Por lo tanto, restando las dos ecuaciones anteriores:

(g2 + g′2)Bµ =
√
g2 + g′2(gAµ − g′Zµ) (A.49)

Luego se obtiene:

Bµ =
1√

g2 + g′2
(gAµ − g′Zµ) (A.50)

Por otro lado, si en lugar de restar las dos ecuaciones se adicionan se llega procediendo

idénticamente a que:

W 3
µ =

1√
g2 + g′2

(g′Aµ + gZµ) (A.51)

Por tanto es posible escribir la derivada covariante como:

Dµ = ∂µ + ig′
Y

2
Bµ + igτ3W3 = ∂µ + i

g′√
g2 + g′2

Y

2
(gAµ − g′Zµ) +

gτ3√
g2 + g′2

(g′Aµ + gZµ)

(A.52)

Reagrupando términos se llega directamente al valor buscado:

Dµ = ∂µ + iAµ
gg′√
g′2 + g2

(T3 +
Y

2
) + iZµ

1√
g′2 + g2

(g2T3 − g′2
Y

2
) (A.53)

Como se pretend́ıa comprobar.

A.9. Grupo de simetŕıa SU(3).

Detalles adicionales sobre el grupo de simetŕıa SU(3).

El grupo de simetŕıa SU(3), empleado en el desarrollo de la QCD está compuesto por el

conjunto de matrices especiales (det(U) = 1) y unitarias (U † = U), sobre el cuerpo complejo

C3. Admiten por lo tanto el desarrollo:

U = eiH siendo H hermı́tica (A.54)

Dado que el grupo está compuesto por matrices especiales, la traza de la matriz H ha de

ser nula. Esto confiere a este grupo de simetŕıa un total de 8 grados de libertad, de modo
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que es posible expresar estas matrices H como una combinación lineal de los 8 generadores

del grupo SU(3), denotados como Ta. Esto es:

H =
8∑

a=0

αaTa = αaTa (A.55)

Siendo estos generadores:

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 ,

λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 .

A.10. Solución a los problemas observados al tratar con

quarks.

Violación del postulado de simetrización y solución introduciendo la carga de color.

Se va a ejemplificar la necesidad de introducir la carga de color para evitar contradecir

principios fundamentales al tratar o descomponer part́ıculas en quarks. El Ω− se trata de

una part́ıcula de sṕın 3
2 , cuya última componente viene dada según Sz = 3

2 . Se espera una

función de onda antisimétrica, por ser un fermión. Haciendo uso de que es posible escribir las

funciones de onda como producto de la parte de spin, por la parte espacial, y por la parte de

sabor, se tiene:

Ω− = ϕespacialϕspinϕsabor (A.56)

La parte de spin es una función simétrica, pues como Sz =
3
2 , los tres quarks de spin 1/2

han de estar orientados hacia arriba. La parte espacial es también simétrica pues para este

hadrón se tiene que l=0. Por último, la función de onda de sabor, al tratarse de tres quarks,

también es simétrica. Se obtiene pues una función de onda simétrica que va en contra de

lo esperado para una part́ıcula compuesta por tres fermiones. Además de esto, la expresión

anterior viola el principio de exclusión de Pauli, pues itúa 3 quarks en el mismo estado.
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La solución esta, como se ha anticipado en la introducción de la carga de color. Esto

provoca que ahora un quark ya no sea único sino que pueda tener tres valores de esta carga

de color iG, iR, iB. Con esto se soluciona el problema del principio de exclusión. Junto a esta

solución propuesta, como se ha comentado en el trabajo por Gell-Mann y Fritzsch, se alade

un antisimetrizador ϵRGB obteniendo finalmente una función de onda antisimétrica. De aqúı

la importancia del color.

A.11. Simetŕıa global del lagrangiano de L′.

Comprobación de la invariancia del lagrangiano bajo transformaciones del grupo SU(3).

Para una transformación entre dos sabores q y q’ dada por la matriz U perteneciente a

SU(3) se tiene que:

q → q′ = Uqq → q′ = qU † = qU−1 (A.57)

Por tanto:

L′
′ = qU−1(iγµ∂µ −m)Uq = q(iγµ∂µ −m)q = L′ (A.58)

Luego se comprueba la existencia de simetŕıa global.

A.12. Transformación del término Ga
µ para garantizar

invariancia.

Demostración de que la invariancia gauge requiere la introducción del término Gaµ y que

tranforme como: Gaµ −→ G′a
µ = Gaµ + δGcµ = Gaµ + ∂µαc − gsαbfabcG

a
µ

Se considera pues una transformación local entre sabores de la forma:

q = Uq = eigsαaTaq ≈ (1 + igsαaTa)q (A.59)

El objetivo es encontrar la condición que se ha de cumplir para que se mantenga la invariancia.

Si se calcula el efecto de estas transformaciones sobre el término de la derivada, se obtiene:

∂µq
′ = ∂µ(q + igsαaTaq) = ∂µq + igsαaTa∂µq + igs(∂µαa)Taq (A.60)

Donde se ha usado la derivada del producto para obtener los dos últimos términos, pues

tanto q como αa dependen de las coordenadas. Agrupando la expresión anterior, se llega a:

∂µq
′ = (1 + igsαaTa)∂µq + igs(∂µαa)Taq (A.61)

Es sencillo notar como aparece un término extra, que elimina toda posibilidad de

invariancia del lagrangiano. Para solucionar esto, se sustituye la derivada parcial ordinaria

por una derivada covariante. Esta tiene como expresión:
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Dµ = ∂µ − igsTaG
a
µ (A.62)

Es aqúı donde aparece por primera vez el término Gaµ. Es sencillo ver la correspondencia

entre este y la derivada parcial del término αa. Visto esto, se va a obtener ahora el término

correspondiente a la actuación de la derivada covariante sobre el nuevo sabor, esto es:

Dµq
′ = [∂µ − igsTaG

a
µ + δGaµ](1 + igsTaαa)q = (A.63)

= (1+ igsTaαa)∂µq+ igs∂µαaTaq− igsTaG
a
µ(1+ igsαbTb)q− igsTaδG

a
µ(1+ igsαaTa)q (A.64)

Agrupando la expresión anterior, y despreciando los términos cuyo orden es de αaG
a
µ, se

obtiene que:

Dµq
′ = (1 + igsTaαa)(∂µ − igsTaG

a
µ)q + (1 + igsTaαa)(iTbG

b
µ)q − igTa(1 + igsαbTb)G

a
µq

− igTaδG
a
µq + igTaq∂µαa

(A.65)

Simplificando la expresión anterior, se llega a:

Dµq
′ = (1 + igsTaαa)Dµq − g2sαb[Tb, Ta]G

a
µq − igsTaδG

a
µq + igsTaq∂µαa (A.66)

Y utilizando las relaciones de conmutación de los generadores de SU(3), se llega finalmente

a que:

Dµq
′ = (1 + igsTaαa)Dµq − g2sαb[Tb, Ta]G

a
µq − igsTaδG

a
µq + igsTaq∂µαa (A.67)

Luego como para que se tenga simetŕıa se ha de cumplir que Dµq
′ = (1 + igsαaTa)Dµq,

los últimos tres términos anteriores han de igualarse a 0. Usando el hecho de que,

en representación fundamental los generadores de SU(3) cumplen que tr(TaTb) = 1
2δab,

multiplicando la ecuación anterior por un tercer generador Td y tomando la traza, se llega

finalmente a que:

0 = −g2sαbfabcTr(TdTc)Gaµ + gsTr(TdTa)∂µαa − gsTr(TdTa)δG
a
µ (A.68)

0 = −g2sαbfbadGaµ + gs∂µαd − gsδG
a
µ (A.69)

Renombrando ı́ndices y haciendo uso de que se cumple que fbca = fabc se obtiene

finalmente:

δGcµ = ∂µαc − gsαbfabcG
a
µ (A.70)

Luego es sencillo notar, que la invariancia bajo las mencionadas transformaciones de sabor

implica que:
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Gaµ −→ G′a
µ = Gaµ + δGcµ = Gaµ + ∂µαc − gsαbfabcG

a
µ (A.71)

Como se pretend́ıa demostrar.

A.13. Término cinético del gluón.

Obtención del término cinético del gluón para completar el lagrangiano.

La derivada covariante, viene dada en SU(3) por:

Dµ = ∂µ − igsTaG
a
µ (A.72)

Si se considera ahora el conmutador de dos de estas derivadas:

[Dµ, Dν ]ψ = [∂µ − igsTaG
a
µ, ∂ν − igsTaG

a
ν ]ψ (A.73)

= −igs[∂µ, TbGbν ] + [TaG
a
µ, ∂ν ]ψ − g2s [Ta, Tb]G

a
µG

b
νψ (A.74)

= −igsTb∂µGbν − Ta∂νG
a
µψ − g2s ifabcTcG

a
µG

b
νψ (A.75)

= −igsTa∂µGaν − Ta∂νG
a
µ + gsfbcaTaG

b
µG

c
νψ (A.76)

= −igsTaGaµνψ (A.77)

Donde, tras ciclar los ı́ndices, se ha definido:

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ + gsfabcG

b
µG

c
ν (A.78)

A partir de aqúı se identifica el término cinético del gluón con −1
4G

a
µνG

µν
a , siendo este

invariante gauge.

Si se desarrolla, es posible observar las interacciones entre los campos del gluón, luego

desarrollando:

− 1

4
GaµνG

µν
a =

= −1

4
(∂µG

a
ν − ∂νG

a
µ)(∂µG

ν
a − ∂νGµa)−

gs
2
(∂µG

a
ν − ∂νG

a
ν)fabcG

µ
bG

ν
c −

g2s
4
(fabcfadcG

b
µG

c
νG

µ
dG

ν
e)

(A.79)

A diferencia de lo visto en QED, en este caso se observan un mayor número de interacciones

entre los campos del gluón.

36



Anexos B

Anexo B

B.1. Algebra de Lie.

Más detalles sobre los grupos de Lie, presentes cuando se trata con supersimetŕıa.

Para tratar el álgebra de Lie, se comienza definiendo lo que se conoce como grupo. Se

entiende pues como grupo a un conjunto de elementos, no necesariamente numerable, con

una ley de composición interna que satisface las propiedades asociativa, existencia de un

elemento neutro (que se denota e) y existencia de un elemento inverso.

Se dice pues que un grupo es de lie, si sus elementos, que se van a denotar como

gi dependen de forma cont́ınua y diferenciable de un conjunto de parámteros reales θa

(a = 1, .....N) siendo N la dimensión del grupo.

A un grupo de Lie es posible asignarle una representación, denotada como R, que asigna

a cada elemento del grupo un operador lineal, denotado como DR(g). Este ha de cumplir que:

DR(e) = I (B.1)

DR(gi · gj) = DR(gi) ·DR(gj) (B.2)

Es posible entonces definir los mencionados generadores del grupo de Lie, en una

representación R como:

T aR = i
∂DR

∂θa

∣∣∣∣
θ=0

(B.3)

Una transformacion arbitraria del grupo de Lie queda pues expresada como:

DR = e−iθaT
a
R (B.4)

Son este tipo de traslaciones las permitidas según el teorema de no-go

B.2. Correcciones a la masa del Higgs.

Obtención de forma cualitativa de la primera corrección a la masa del Higgs.
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Para obtener la primera corrección a la masa del Higgs, se parte del término de masa del

campo de Higgs, el cual viene dado según [5]:

∆L = −µ2ϕ†ϕ. (B.5)

Sin entrar en detalles, este término respeta todas las simetŕıas impuestas en el SM, sin

importar el valor de µ. Como se comenta en el trabajo, µ corresponde con una escala de

enerǵıa arbitraria, que es posible fijar, teniendo en cuenta el objetivo que se persigue como

µ2 = 0. En este supuesto, el término de masa viene dado exclusivamente por correcciones

radiativas. Estas correcciones se pueden visualizar en el siguiente diagrama de Feynman:

Figura B.1: Diagrama más simple capaz de generar el término de masa del Higgs.

Un proceso representado por un diagrama como el anterior, aporta una contribución a la

masa del Higgs dada por [5]:

−im2 = −iλ
∫

d4k

(2π)4
i

k2
, (B.6)

donde se ha tomado µ2 = m2. Formalmente, este término es similar al mostrado en la

expresión (2.14), y al igual que este, la integral es divergente. Este carácter divergente se

recoge el el parámetro Λ, que permite expresar la igualdad anterior como:

−im2 = −i λ

16π2
Λ2 (B.7)

Esta corrección es postiva y divergente y produce el llamado problema de la jerarqúıa que

se menciona. Λ se toma a la escala de enerǵıa de nueva f́ısica, cortando la divergencia, estas

modificaciones llevan a la expresión mostrada en la parte en que se trata el problema de la

jerarqúıa y su solución en SUSY.

B.3. Quiralidad.

Explicación de la quiralidad y su importancia en modelos de supersimetŕıa.

La quiralidad se define a través de los operadores de proyección quirales:

PL ≡ 1

2
(1− γ5), PR ≡ 1

2
(1 + γ5). (B.8)

El primero corresponde a orientacion left-handed y el segundo a right-handed. Estos

operadores de quiralidad han de cumplir:

P 2
L = PL, P 2

R = PR PLPR = PRPL = 0, PL + PR = I. (B.9)
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A partir de aqúı, se definen las componentes left handed y right handed, presentes en las

tablas como:

ψL = PLψ, ψR = PRψ. (B.10)

A estas representaciones se les conoce como espinores de Weyl. Las ecuaciones de onda de los

fermiones tienen soluciones con diferentes helicidades, correspondientes a modos left handed

y right handed. Este valor de la helicidad determina como interactúan estos fermiones. Por

poner un ejemplo, la interacción débil, solo se da sobre fermiones left-handed, mientras que

la electromagnética sobre right-handed.

Es por esto por lo que en la tabla donde se presentan las part́ıculas de supersimetŕıa se ha

hecho énfasis en la quiralidad de las mismas, pues al haber un mayor número de part́ıculas

e interacciones, la elección de las componentes quirales es clave para que se reproduzca lo

observado.
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