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Capitulo 1

Introduccion.

Uno de los objetivos mas ansiados por la fisica tedrica es el desarrollo de una teoria que
permita entender y unificar las cuatro interacciones fundamentales observadas en el universo:
la gravitacional, la nuclear fuerte, la nuclear débil y la electromagnética.

En este sentido, el Modelo Estandar ha sido histéricamente la teoria que ha marcado el
camino a seguir. Su formulacién ha permitido explicar el contenido de materia del Universo
y sus interacciones, incluyendo la interaccién electromagnética, la nuclear fuerte y la nuclear
débil, y sus predicciones se han comprobado en los experimentos de altas energias con gran
precision. A pesar de esto, este modelo presenta también una serie de problemas que hacen
pensar que podria no ser la teoria definitiva. Entre ellos se encuentran que no predice un
candidato para la materia oscura del Universo, el problema de las jerarquias y la incapacidad
de unificar las cuatro interacciones fundamentales; solo unifica dos de ellas, la débil y la
electromagnética. Centrandonos en el 1iltimo de estos problemas, se han planteado nuevas
teorias que partiendo de las bases sentadas por el Modelo Estdndar permitan lograr la
unificacién y solucionar los problemas subyacentes a este. Una de las més relevantes es SUSY
(del inglés ” Supersymetry”), que propone una solucién a estos problemas a través de la
inclusion de simetrias extras en el modelo. El objetivo principal de este trabajo fin de grado
es comprender y desarrollar estas teorias de unificacién de las interacciones.

El trabajo que se va a desarrollar se divide en tres capitulos. En el primero se incluye una
descripcién del Modelo Estandar, detallando las teorias utilizadas para el estudio de cada
interaccién y obteniendo los lagrangianos correspondientes. A partir de estos lagrangianos,
estudiamos las constantes de acoplo caracteristicas de cada interaccién, haciendo énfasis en la
evolucién de las mismas con la escala a través de las ecuaciones del grupo de renormalizacién.
El capitulo finaliza con la presentacién de los resultados obtenidos y la discusion acerca de
la unificacién de las interacciones. En el segundo capitulo se incluye una descripciéon de una
teoria de gran unificacién, SUSY, se discute la soluciéon que propone la misma a los problemas
presentados por el Modelo Estandar, y se presenta el lagrangiano de interaccion caracteristico
de esta teoria. El capitulo finaliza de forma similar al primero, con la presentacién de las
ecuaciones del grupo de renormalizacion para cada interaccion, el estudio de la evolucién de
las mismas con la escala, y la discusion acerca de la unificacién en este modelo. A continuacién,
se incluyen las conclusiones del trabajo. En los anexos se incluyen céalculos detallados y

explicaciones complementarias a los capitulos del trabajo.



Capitulo 2

Modelo Estandar.

El Modelo Estandar (SM - del inglés Standard Model) es una teoria cudntica de campos,
considerada actualmente la teoria més aceptada para la descripcién de la estructura y
comportamiento de la materia a nivel subatémico. Este modelo explica las interacciones
entre las particulas elementales constituyentes de la materia, a las que llamamos fermiones,
mediante el intercambio de otras particulas, los bosones. En el modelo estan incluidas tres
las cuatro interacciones fundamentales, nuclear fuerte, nuclear débil y electromagnética, con
el bonus de unificar las dos 1ltimas interacciones en la denominada teoria electrodébil. Dado
que se va a ahondar en estas interacciones, es conveniente introducir los fermiones y bosones

que componen las particulas presentes en el SM:

— Fermiones. Como se ha comentado, son las particulas constituyentes de la materia
ordinaria y se caracterizan por un espin semientero de valor 1/2. Se pueden dividir a
su vez en dos subgrupos, siendo estos leptones y quarks. Los leptones son el electrén,
el mudn y el tau, que tienen carga -1 y se diferencian en sus masas; y sus neutrinos
asociados, con masas despreciables (cero en el marco del SM). Por otro lado, los quarks
componen los hadrones y son un total de 6, up, down, charm, strange, top y bottom,
todos ellos presentan una propiedad conocida como carga de color, que se explicard mas
adelante. Respecto a estos ultimos, a cada uno de ellos se le asocia un sabor, de modo
que en el SM se habla de 6 sabores, uno para cada quark. Cabe recalcar que, segin
el postulado de simetrizacion, la funciéon de onda fisica correspondiente a un fermion

ha de ser antinsimétrica. A modo de ilustracion, para un sistema de dos fermiones, se

cumple ¥(1,2) = —1(2,1).

— Bosones. Particulas mediadoras o responsables de las interacciones. El1 SM agrupa un
total de 5 bosones, todos ellos poseen espin 1: el fotén, el gluén, el Z, el W+ y W—.
Destacar que tanto el fotén como el gluén, particulas neutras, poseen masa nula y los
W son cargados y tienen masa no nula. Cabe recalcar que ademés tenemos el bosén
de Higgs, particula que aparece al introducir el Mecanismo de Higgs para generar las
masas de las particulas en el SM. Por dltimo, al contrario que para los fermiones las

funciones de onda de los bosones han de ser simétricas bajo intercambio.

El modelo cuenta adema&s con un amplio respaldo experimental, pues se han encontrado

todas las particulas predichas por el mismo, se han comprobado experimentalmente



sus predicciones, y ha demostrado ser una gran herramienta para la prediccién del
comportamiento de nuestro mundo [1].

En lo matemaético, el modelo estd basado en los grupos de simetria SU(3) x SU(2) x U(1).
A lo largo del capitulo se van a obtener las expresiones predichas por este modelo, presentando
el Lagrangiano que describe las interacciones y prestando especial interés a las constantes de

acoplo correspondientes a las interacciones fuerte, débil y electromagnética.

2.1. QED en el SM. Lagrangiano. Grupo de renormalizacién.

La primera interaccién a desarrollar es la electromagnética, la cual viene descrita en el
SM por la electrodindmica cudntica (QED, del inglés Quantum Electrodynamics), y esta
caracterizada por el grupo de simetria U(1) (ver anexo A.1 para més detalles). En esta teoria
tenemos la interaccion entre fermiones a través del intercambio de fotones como particula
mediadora. Para obtener el lagrangiano correspondiente a la misma, se parte del Lagrangiano

del campo de Dirac [2]:

£ = P(r"8, — ), (2.1)

con v el campo del fermién, m su masa y v* las matrices de Dirac. Este lagrangiano ha de ser

invariante bajo transformaciones del grupo de simetria U(1), las cuales vienen dadas por [3]:

Y — Y = U0y = 9, (2.2)
Y — P =9 U(0) =de 9, (2.3)

donde # es un parametro caracteristico de la transformacién y @) es el generador del grupo de
simetria. No obstante, estas transformaciones corresponden con transformaciones globales,
pues el parametro 6 es una constante; no depende de las coordenadas espacio-temporales.
Bajo estas transformaciones el Lagrangiano de Dirac satisface la condiciéon de invariancia.
Sin embargo, al considerar transformaciones locales (aquellas en las que los valores de 6

dependen de las coordenadas), la simetria se rompe pues la derivada parcial conduce a:
B, = eiG(x)Qalﬂ/} " (aﬂeiG(x)Q)w, (2.4)
Ot = " M0,9 +iQ(9,8(2))e )y, (25)
y, por tanto, el lagrangiano toma la formas:
£ = £+ QU (0,0(2)). (2.6)

Para que el Lagrangiano de Dirac mantenga la invariancia es preciso sustituir la derivada

parcial por una derivada covariante, que se define como [4]:

Oy — D,=0,+ieQA,. (2.7)



El término A, introducido hace referencia al campo del fotén, campo con espin 1 que
transforma como:

Au(z) — Al () = Ay(x) - é@uﬁ(@. (2.8)

Al realizar este cambio es posible reescribir finalmente el Lagrangiano de Dirac como:
L =(in"d, — m)p — eQuyHpA,. (2.9)

No obstante, el lagrangiano anterior ain no estd completo, pues carece del término
correspondiente al campo libre del fotén. Este término viene dado en funcién del tensor
del campo electromagnético (F*) en la forma —iF“”FW. Tras la inclusién de este, el

Lagrangiano final para la QED es:
_ 1. _
L =iy’ —m)y — ZFM F —eQuyrpA,. (2.10)

Este lagrangiano tiene varias cosas a comentar. En primer lugar, es posible escribirlo
gracias a la formulacion covariante de las ecuaciones de Maxwell, pues permiten obtener la
expresiéon de tensor electromagnético F*¥ y el término de interaccién. En segundo lugar,
este lagrangiano se ha construido de modo que muestre invariancia bajo transformaciones de
fase locales (ver anexo A.2 para la demostracién). La interpretacion fisica de esta simetria
es que, dado que las transformaciones de fase descritas por el grupo U(1l) representan
desplazamientos y rotaciones en los campos, es decir, se pueden asociar a la eleccion de
distintos sistemas de referencia, no pueden afectar a las interacciones, de lo contrario se
observarfan comportamientos diferentes en funcién del sistema elegido.

En cuanto a los términos del lagrangiano, el primero de ellos corresponde con el término
libre para los fermiones; incluyendo un término cinético y uno de masa, el segundo el término
libre para los fotones y el tercero, y mas relevante para el objetivo que se persigue, establece

la interaccién entre fermiones y fotones, siendo el lagrangiano de interacién definido como:

Lint = eQU'p A, = j'A,. (2.11)

A s —ieQyH
0

Figura 2.1: Diagrama de Feynman de la interaccién de dos campos fermionicos y el campo
del fotoén.

Este lagrangiano corresponde al minimo acoplo posible con invariancia gauge. En la

figura 2.1 se presenta el diagrama de Feynman correspondiente. En cada uno de los vértices de



interaccion se encuentran dos lineas fermiénicas y una linea correspondiente al fotén, siendo
la constante de acoplo —ie@y*. La interaccién electromagnética descrita por este lagrangiano
viene determinada fundamentalmente por la constante de acoplo electromagnética e, que en

unidades naturales esté relacionada con la constante de estructura fina agys = cuyo valor

€
471-2 )
a bajas energias esta dado por ﬁ La pequenez de este valor del acoplo electromagnético nos
hace posible realizar una expansiéon perturbativa en potencias del pardmetro agys y describir
asi{ los procesos fisicos asociados. La contribuciéon de orden mas bajo en esta expansion
corresponderia con la amplitud de dispersién (scattering).

Claramente, un vértice de interaccion aislado no representa un proceso fisico. Si se toma
como ejemplo uno de los diagramas de interaccion para electrén y positrén, y se denota
como p y p’ a los momentos de las lineas fermidnicas y k£ al momento asociado al fotén, en
los vértices se ha de cumplir que p’ = +p + k, lo cual implica que p? = p? + k? £+ 2pk. Si
asumimos entonces que el polo se encuentra en la masa fisica (lo cual se denomina on-shell),

tendriamos que:

Por tanto, obtenemos un momento del fotén nulo, concluyendo que el proceso no existe. Para
considerar un proceso fisico real necesitamos considerar que el vértice de la interaccién este
incluido en un diagrama mé&s grande con varios vértices, considerando particulas virtuales
que no deben cumplir la relaciéon anterior, es decir, el polo no se encuentra en la masa fisica
0, como es conocido, estdn off-shell. Este es el caso que se da en un proceso de scattering,
como hemos mecionado antes.

Ejemplos de este tipo de diagramas, con dos vértices de interaccién, se presentan en la

figura 2.2.

Figura 2.2: Diagramas de feynman con més de un vértice.

Como se ha explicado, necesitamos entonces realizar calculos considerando una expansion
perturbativa, lo cual nos lleva a calcular la matriz S o matriz de dispersién, definida en forma
de integral funcional con una fuente externa. Cuando realizamos estos célculos perturbativos
aparecen integrales que pueden ser divergentes, como es el caso del cédlculo de diagramas
con lazos como los que se muestran en la figura 2.2. Para dar sentido a tales expresiones
se introduce el denominado procedimiento de renormalizacién que permite reabsorber las
divergencias que aparecen. Con este procedimiento sustraemos las divergencias de manera
que equivaldria al cambio o redefinicion de los parametros que aperecen en el lagrangiano

inicial.



Es en este contexto donde se introducen las ecuaciones del grupo de renormalizacion, que
permiten afrontar el tratamiento de las divergencias que aperecen en teoria de perturbaciones
para muy altas energias (divergencias ultravioletas) en QED o para muy bajas energias
(divergencias infrarrojas). De hecho, el origen de estos problemas de divergencias radica
en la gran diferencia entre las escalas de energia utilizadas: las masas de las particulas y el
momento transferido que aparece en las integrales. Los métodos del grupo de renormalizacién
estdn basados en un principio de invariancia que afirma que los observables fisicos son
independientes de la escala de renormalizacién, lo cual es fundamental cuando estamos
realizando los céalculos tedricos. Las ecuaciones que se obtienen como consecuencia de la
invariancia bajo renormalizacién se denominan ecuaciones del grupo de renormalizacién (RGE
- del inglés Renormalization Group Equations”).

Existen diferentes métodos de renormalizacién, que no trataremos en este trabajo. Nos
restringimos a presentar las expresiones de las ecuaciones del grupo de renormalizaciém
como sigue. Si consideramos uno de los diagramas a un lazo (one-loop) mostrados en
la figura 2.2, tendriamos asociadas integrales divergentes y tales diveregencias se pueden
reabsorber suponiendo una evolucién logaritmica de las constantes con la escala Q. Esta
idea de la evolucién logaritmica, impone que los acoplos g; con i = 1,2,3; donde cada g
corresponderia a una interaccién !, han de cumplir [5]:

d B bi 3
dos Q" Y ™

; (2.13)

siendo las b; constantes que dependen del grupo de simetria gauge. En el caso general de
SU(N), vienen dadas segin lo expuesto en el anexo A.3:

11 1 1

siendo N la dimensién del grupo, ny el nimero de familias de fermiones, y n, el nimero de
escalares complejos que se acoplan a los bosones de gauge.

Cuando resolvemos (2.13), obtenemos la evolucién de las constantes de acoplamiento con
la escala de energia. Detalles de la resolucién de las mismas se recogen en el anexo A.4. La

dependencia de las constantes de acoplo g; estda dada por:

20y 9; (1)
9(Q) =17 (/572 105(9) (2.15)

Expresando la igualdad anterior en funcién de las constantes «; = 91‘2 /47, podemos escribir:

L _ 1 by
@ e T2 G (2.16)

donde los valores de a; hacen referencia a las constantes de acoplamiento de cada interaccién,

los términos b; son constantes que dependen del modelo en que se esté trabajando; pues se

Las divergencias no solo aperecen en QED, sino también en otras interacciones fundamentales incluidas
en el SM.



obtienen de los grupos de simetria, u es la escala de energia que posteriormente fijaremos a
un valor concreto segin el modelo o el proceso bajo estudio y () es la variable independiente
con la que corre la constante de acoplo asociada a la escala de energia elegida. En este trabajo
fijaremos posteriormente la escala de energia a la masa del bosén Z en el SM. Las constantes
b; que aparecen en la expresion anterior se estudiaran mas adelante.

Particularizando la expresién anterior para el caso que se trata (QED) la ecuacién toma

la forma:

L k0
amnt (@ ~ a2 ) (2.17)

El precio a pagar por haber efectuado estas correcciones, que corresponden a realizar

perturbaciones, es que la constante caracteristica de la interaccion que se ha obtenido ya

no toma un valor fijo, sino que varia con la escala de energia.

2.2. Interaccién electrodébil. Relacion entre constantes y
observables.

Antes de introducir la interaccion electrodébil, es importante contextualizar brevemente
la interaccion nuclear débil. Esta interaccion entre fermiones estd mediada por los bosones
Z y W+, que resultan ser bosones masivos. Debido a este cardcter masivo de las particulas
mediadoras, la interaccién resulta ser de muy corto alcance. Posee dos niimeros cuanticos
adicionales con sus propias reglas de conservacién, el isoespin débil y la hipercarga débil [2].
Esta interacciéon débil, aparece fundamentalmente en las desintegraciones beta, y presenta
ciertas similitudes con respecto a la interaccion electromagnética.

La interaccion electrodébil hace referencia pues a la interaccién unificada del
electromagnetismo y la fuerza nuclear débil. Siguiendo la unificacién electrodébil, lo que
se consigue es la expresiéon de un lagrangiano en el que aparecen de forma conjunta las
expresiones correspondientes a ambas interacciones, tal que podemos relacionar las constantes
de acoplo caracteristicas de las mismas, logrando que estas coincidan para un cierto valor de
la energia.

Cabe senalar que para dotar de masa a los bosones Z y W se hace necesario ademas
implementar la ruptura espontanea de la simetria a través del mecanismo de Higgs. De esta
forma, los bosones Z y W+ adquieren masa, dejando al fotén con masa nula [6]. El grupo de
simetria asociado a la interaccién electrodébil es SU(2)r x U(1)y [7], donde los subindices
hacen referencia a la quiralidad y la hipercarga, respectivamente. En lo siguiente se construye
el lagrangiano de la interaccién electrodébil, incluyendo el potencial de Higgs y mencionando

la ruptura de simetria asociada.



2.2.1. Unificacién de los acoplos gauge.

Para desarrollar el lagrangiano, se comienza considerando un doblete de isospin tipico del

grupo SU(2)r, x U(1)y [7]:
(o) _ 1 [ tide
v= <¢°> V2 (¢3+¢¢4> ' (2.18)

Este doblete ha de cumplir varias condiciones, ha de tener isospin débil 1/2, y la carga
eléctrica del doblete ha de tener hipercarga Y=41. Con este doblete, se propone el potencial

que rompera espontaneamente la simetria:
V(g) = 1?(¢10) + MoT9)”. (2.19)
Con esto, es posible escribir un lagrangiano para el campo escalar:

ﬁscalar = (DMQS)T(D;L(Z)) - V(¢) ) (220)

siendo D" la derivada covariante que necesitamos introducir para respetar la invariancia

asociada al grupo SU(2)r, x U(1)y, que viene dada por:
. 1 N yd . /1
D,=6,+ 95T W, +ig §YBM. (2.21)

En esta expresién aparecen los campos W, y By, que dardn lugar a los bosones de gauge
fisicos como se verd mas adelante. Dicho esto, el siguiente paso es la eleccién de un vacio, que

tomamos ¢1 = P2 = P4 =0y 3 = v.

$o = \}5 (U i h) : (2.22)

Se tiene pues un vacio neutro, ya que su isospin es I = % y I3 = —%, y dado que se ha
tomado hipercarga Y=+1 usando la férmula de Gell-Mann—Nishijima, Q = T3+ %, se llega a
que = 0. Con esta eleccién de vacio, se produce la ruptura de simetrias de SU(2)r, xU(1)y,
pero mantiene U(1)g)s invariante, dejando al fotén sin masa. Los detalles de esta ruptura de
la simetria se muestran en el anexo A.5.

Con estos ingredientes podemos desarrollar el lagrangiano dado en (2.20). Para ello, se
desarrollan las expresiones de D, ¢ y (DMd))T, lo cual se recoge en el anexo A.6. Finalmente,

obtenemos la siguiente expresién:
S STy 2 / 2
£scalar - 8U [g (Wl + WQ) + (_gW?) +g YqﬁoB,LL) ] - V(¢) (223)

Es importante mencionar que dado que lo que se persigue en este trabajo es obtener
el valor de las constantes de acoplo, y estudiar posteriormente su evolucién con la escala

de energia, no es necesario desarrollar la expresién del término del potencial, V(¢), en



el lagrangiano. Del desarrollo del potencial obtenemos la masa del bosén de Higgs y la
autointeracciones, que no son objetivo de estudio para nosotros.

Por otro lado, notemos que la expresion (2.23) estd escrita en términos de los campos W
y B, y necesitamos reescribir el lagrangiano en funcién de los campos fisicos, W+, Z y fotén.
El caculo detallado para obtener este lagrangiano estéd recogido en el anexo A.7. Se obtiene

por tanto la siguiente expresion:
1
Licatar = gV°[g* (W) + (W) + (9" + ¢*) 2 + 0+ A]). (2.24)

Este resultado nos muestra las constantes de acoplamiento que aparecen en las
interacciones: los bosones W¥ se caracterizan por una constante de acoplo g y en el término
del bosén Z aparecen las constantes g y g’. Estas dos constantes son pardmetros libres de la
teoria. No obstante, es posible establecer relaciones entre ellas que nos conduciran a tener la
unificacién en la teoria electrodébil.

Por una parte, podemos interpretar que cuando pasamos de los campos no fisicos a los
campos fisicos lo que estamos haciendo es rotar el plano original de los bosones vectoriales
W3 y B, produciendo como resultado los bosones A, y Z, 2. Con esta idea en mente,
introducimos ahora el concepto del angulo de Weinberg, que nos caracteriza la mezcla entre
los campos de W3 y B, para dar Z y el fotén y permite relacionar el valor de las constantes
g v g’ por medio de la expresion:

/

9
g%+ (9')?

g

NIk (2.25)

sen Ay = , cosby =

Por otra, teniendo en cuenta el desarrollo de la derivada covariante y el lagrangiano

obtenido para el caso de QED, se concluye que:

/
L (2.26)

/912 + 92 B

Por tanto, es posible obtener una relacién entre las constantes de acoplamiento

carateristicas de las interacciones electromagnética y débil a través del ngulo de Weinberg,
que viene dada por:

e = gsin(Oyw) = gcos(Ow ). (2.27)

Este resultado es pues fundamental, y una vez obtenido, y dado que en lo que se esta
interesado es en teorias de gran unificacién, se escribe el valor de la constante que caracteriza
la interaccién electromagnética como:

e g%sin®(Ow)
_ e . 2.98
GEM = 47 ( )

2F1 desarrollo de la expresién de la derivada covariante en funcién de los campos fisicos se incluye en el
anexo A.8



Tenemos pues dos interacciones unificadas, la interaccién electromagnética y la débil.
Nétese que las constante g y ¢’ estdn relacionadas por las expresiones anteriores.

Con este resultado, del mismo modo que ocurria para el caso de QED, podemos
introducir las ecuaciones del grupo de renormalizacién cuando realizamos célculos en teoria
de perturbaciones y queremos reabsorber las divergencias que nos aparecen. En este caso las
constantes de acoplamiento son g y ¢’, y a partir de estas, retomando las expresiones del
apartado anterior, es posible calcular los valores de a;(Q).

Tomando como escala de energia Q = My y sabiendo que la masa del bosén Z es de
91.188 GeV, se tiene que apy (Mz) = 1/127,940,9 y que sin?(fy) = 0,2314 40,003 [1]. Por

tanto, obtenemos:
2 _ 47TaEM(Mz)

= 0,42 2.2
SeTLQ(eW) 07 77 ( 9)

(¢)? = W = 0,127. (2.30)

De esta forma, podriamos ahora determinar la evolucién de las constantes de los acoplos
electromagnético; que se denota a partir de ahora como «a; (a1 = agps) y débil (az) con la
escala de energia, utilizando la expresién genérica (2.16). Para ello necesitamos determinar

los valores de las constantes b; que se introdujeron anteriormente 2, que serfan:

4 1
by =——=nsy— — =—-41 2.31
1 3nf 1OnH 5Ly ( )
22 4 1
bo = — — —ny— —-ny = 3,167 2.32
2 3 3nf 6nh ) ) ( )

donde n; es el nimero de familias de fermiones, que para el caso del SM es 3, y ny el nimero
de multipletes de Higgs, 1 para el SM. Sustituyendo finalmente estos valores calculados en
las ecuaciones del grupo de renormalizacién se obtienen las dependencias de las constantes

de acoplo con la energia para las interacciones débil y electromagnética en el SM:

(01)~1(Q) = 58,98 — 0,65 In(~2) = 61,92 — 1,5 log(Q), (2.33)
(a2)~1(Q) = 29,60 + 0,5 In( ]3 ) = 27,325 + 0,5 1og(Q). (2.34)

z

Nos faltaria por realizar este estudio para el caso de la cromodindmica cuantica (QCD-del

inglés ”Quantum Chromodynamics”), que se incluye en la seccién siguiente.

2.3. QCD en el SM.

La dltima interacciéon incluida en el SM es la nuclear fuerte, presente en los nucleos
atémicos y responsable de la estabilidad de los mismos. Por caracterizarla brevemente, se

trata de una interaccién de muy corto alcance, del orden de 10~1°m. Esta interaccién se trata

3Detalles estdn dados en el anexo A.4.
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con el formalismo de la cromodindmica cudntica y estd basado en el grupo de simetria SU(3)
(detallado en el anexo A.9). Fisicamente, se entiende la interaccién fuerte como el intercambio
de carga de color entre quarks (fermiones), mediada por gluones. Estas ideas se introducen
por Gell-Mann y Fritzsch como resultado de la violacién del principio de exclusién de Pauli y
de la obtenién de funciones de onda que no cumplian la simetria esperada, como se muestra
en el anexo A.10 para el caso del Q7.

Nuestro objetivo es obtener un lagrangiano, del que se extraer el término de interaccién
que caracteriza al vértice. Para ello se comienza estableciendo el lagrangiano para un unico

sabor, el cual se puede obtener como [8]:
Lo =q(in" 0 —m)q (2.35)

siendo ¢ el campo asociado a los quarks,

Este lagrangiano presenta simetria bajo transformaciones en SU(3) (ver anexo A.11). No
obstante, para el desarrollo del lagrangiano se han de considerar transformaciones locales.
Esto implica que si se tenfa una matriz U que representaba una rotaciéon global, para el

desarrollo de una teoria gauge local, se expresa esa matriz de transformacién como:

U = ¢'9=0al®)To (2.37)

siendo T, los generadores del grupo de simetria y a,(x) los pardmetros de la transformacion,
que dependen de las coordenadas. La expresion de una transformacién local de los campos
ha de ser:

q—Uq= (1 + igsaa(x)Ta>q (238)
7—qUT =q(1 — igsoaTy). (2.39)

Lo que se busca pues es obtener un lagrangiano caracteristico que exprese la interaccion
entre quarks que presente invariancia frente a este tipo de transformaciones de gauge locales.
La condicién de invariancia gauge implica que se ha de cumplir que (demostrado en el
anexo A.12):

G}, = G} + O — gsaw fane Gy, (2.40)

siendo Gy, una combinacién de los 8 generadores del grupo SU(3), fapc €l tensor de Levi-Civita
v gs la constante que caracteriza la interaccion fuerte mediada por gluones. Dado que se ha
denotado a gs; como la constante del acoplo, y se ha tomado una transformacion arbitraria con
una coleccion de los generadores cualquiera, el hecho de que esta aparezca en la transformacion

gauge implica que esta ha de ser independiente del sabor. Es decir, todas las interacciones
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fuertes se van a caracterizar por el mismo valor de la constante g,. Otra consecuencia
importante a extraer de la expresién anterior es que se observa como el campo del gluén
se mezcla entre colores diferentes, luego el gluén ha de tener carga de color. Visto esto, el

lagrangiano que se obtiene para esta interaccion con invariancia gauge viene dado por:
L=q(in"0u —m)q+ 9:7Ta Gyy" q- (2.41)

No obstante, el lagrangiano atin no esta completo, pues falta el término cinético del gluén,
la particula mediadora. Se busca pues un término similar al obtenido para el caso del QED

con el tensor electromagnético, este viene dado por *:

Gy = 0uGl — 0,G5 + gs fare GGy (2.42)

Luego el Lagrangiano completo toma la forma:

1
LG Gl (2.43)

Locp = q(iv" 0y —m)q + gs 7 TaGy"q —

Este Lagrangiano presenta invariancia gauge bajo el grupo SU(3), garantizando que
las interacciones que describe son las mismas en cualquier sistema de referencia inercial.
En cuanto a sus términos, el primero de ellos constituye el término libre para los quarks;
incluyendo término cinético y término de masas, y el tercero para los gluones. Al igual que
en QED el término mas relevante para lo que se pretende estudiar en este trabajo es el
segundo, que establece como son las interacciones entre quarks por el intercambio de gluones.

De aqui que se escriba el lagrangiano de interaccion que describe el minimo acoplo posible

que garantiza invariancia gauge como:

Lint = 95q1aGyY"q. (2.44)

A partir de este lagrangiano es sencillo identificar el valor de la constante de acoplo con
gs- Esta se determina experimentalmente, y permite obtener el valor de a3(M,) de acuerdo

con lo siguiente:

a3 (Q=M.) =g;' =847 40,22, (2.45)

No obstante, con el objetivo de absorber las divergencias que aparecen en un calculo
perturbativo (tal y como se ha explicado en los casos anteriores) es necesario introducir las

ecuaciones del grupo de renormalizacién, dadas en (2.16). Calculamos entonces el valor de bs:

4
by=11-gns =1, (2.46)

y sustituyendo en (2.16) nos queda:

7
ozl =847+ %zn(ﬁ

z

) = 3,44 + 2,57 1og(Q). (2.47)

4C4lculos incluidos en el anexo A.13.
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2.4. Constantes de acoplo y unificacion.

En las secciones anteriores hemos presentado las interacciones presentes en el SM,
mostrando la unificacién de las interacciones débil y electromagnética, y presentando la
interaccion fuerte. Asi mismo, hemos obtenido las constantes de acoplo para cada una
de estas y como evolucionan con la energia del sistema. En concreto, se ha comprobado
que la dependencia de las mismas con la energia estd condicionada por el valor de los
parametros b;. Estos parametros dependen del modelo que se escoja. Para el caso del SM

(ver ecuaciones (2.31), (2.32) y (2.46)) sus valores son:

by 0 4/3 1/10 —41/10
by | = |22/3| —np|4/3| —nu| 1/6 | =] 19/6 |. (2.48)
bs 11 4/3 0 7

Con esta eleccién de parametros, y las ecuaciones del grupo de renormalizacién obtenidas

para cada interaccién, que se recogen a continuacién en una notaciéon compacta,

ot 61,9 -1,5
ay' | =273+ [ 05 [log(Q), (2.49)
ag! 3,4 2,6

podemos estudiar la evolucién de estas constantes con la escala de energia y verificar si existe

o no la unificacién en el caso del SM. Los resultados se muestran en la figura 2.3.

SM
70 T

o 02:1 —
50 o |
g 40 r - h |
el | ]
20 - |
10 _

0 ! ! ! ! ! ! ! ! !
0 2 4 6 8 0 12 14 16 18 20

log Q

Figura 2.3: Evolucién de ai_l con el logaritmo de la energia.

Se habla de unificacién de los acoplos gauge a una cierta escala de energfa si existe algin
valor de esta para el cual las tres constantes de acoplo converjan en un mismo punto. Como
se observa, para el caso del SM, esto no ocurre para ninguna escala de energia, luego la
unificaciéon de todas las interacciones no es posible en este modelo. Claramente, este era
el resultado esperado desde la discusion que hemos presentado a lo largo de los capitulos

anteriores. Tal y como hemos discutido previamente, en el SM tenemos la unificaciéon de solo
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dos interacciones, la electromagnética y la débil, y este resultado se ve plasmado en esta
figura.

En el SM desarrollamos dos teorias diferentes para explicar las tres interacciones, la teoria
electrodébil como teoria unificada y la cromodindmica cuantica. Cada una de las interacciones
estd caracterizada por un grupo de simetria. Es por esto por lo que la alternativa que se
propone a continuacién, parte de la idea de estar fundamentada en un inico grupo de simetria,
cuya ruptura de simetria permita obtener el SM.

Este problema de la unificacién no es el inico que ha conllevado a que el SM se descarte
en la actualidad como la teoria del todo definitiva, pues este presenta varios problemas
adicionales. El primero de ellos es el conocido como el problema de la jerarquia, fundamentado
en la diferencia de escalas de energia presentes en el universo. El segundo problema a destacar
es el llamado problema C-P (carga y paridad). C hace referencia a la conjugacion de la carga y
P al cambio en las direcciones de todas las coordenadas espaciales. Tedricamente, al combinar
estas dos simetrias se espera encontrar que las antiparticulas se comportan como particulas
y se refleje el espacio. Esta simetria no se conserva en los experimentos realizados [1]. Si se
entendiera el porqué serfa posible exlicar la asimetria entre materia y antimateria observada
en nuestro universo. Relacionado con esto, otras dos incégnitas que deja abiertas el SM son
acerca de qué particula es la responsable de la existencia de la materia oscura y la energia
oscura, pues el SM no propone ningtn candidato a materia oscura. Por tltimo, el SM tampoco

incluye ninguna explicacién de la interacciéon gravitatoria, que no estd incluida en el modelo.
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Capitulo 3

Modelos de Gran Unificacion.

Evidenciada la incapacidad de lograr la unificacién a través del SM, se plantean varias
alternativas para solucionar los problemas que exhibe. Es posible categorizarlas en dos

grupos [9]:

— Teorias basadas en QFT (del inglés ”Quantum Field Theory”). Este grupo de teorias
se puede dividir en dos subgrupos, pues hay dos formas principales de buscar solucién
a los problemas presentes en el SM. El eje comin de ambos es que parten del algebra
y conceptos establecidos por la QFT. El primero de ellos agrupa aquellas teorias que
buscan la solucién a los citados problemas mediante la inclusion de nuevas particulas
e interacciones, proponiendo candidatos a materia oscura e incluso incluyendo en su
desarrollo la interaccién gravitatoria (esto ultimo sin mucho éxito). El segundo de estos
subgrupos, corresponde con aquellas que proponen la inclusién de nuevas simetrias. Los
maximos exponentes en este grupo son las llamadas teorias GUTs (del inglés ” Grand

Unified Theory”) y las basadas en supersimetria, SUSY (del inglés ”Supersymmetry”).

— Teorias beyond QFT. Proponen un acercamiento diferente, buscando alternativas a las
propuestas por QFT. El maximo exponente es la teoria de cuerdas, y estan motivadas
principalmente por la incapacidad de las teorias del primer grupo para llevar a cabo

una correcta cuantizaciéon de la gravedad.

Se centra la atencién en el primer grupo de teorias BSM (del inglés ”Beyond the Standard
Model”). Se ha comentado que una de las soluciones que se propone en este grupo, es la
inclusiéon de nuevas simetrias. Esta inclusién de nuevas simetrias, constituye la base de la
teoria de SUSY GUT (del inglés ”Supersymmetric Grand Unified Theories”) que se pretende
desarrollar en este trabajo. Existen diferentes formas en que se puede llevar a cabo este
proceso de adicién de simetrias [9], aunque nos centraremos solo en una de ellas, la inclusién de
supersimetria. Esta consiste en la adicién de una nueva simetria externa o espacio-temporal.
La mayor virtud de esta teoria, es que permite solucionar el problema de la jerarquia. Ademas
de esto, si se combina con las ideas propuestas por las teorias de GUTs, consigue lograr la
unificacién de las tres constantes de acoplo a la escala GUT mencionada anteriormente, y
ofrece candidatos a materia oscura. Nos centramos en lo siguiente es esta propuesta, teorias
SUSY. En concreto, trataremos el caso de la extensién supersimétrica minimal del SM,

denominada MSSM (del inglés ”"Minimal Supersimetric Standard Model”).
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3.1. SUSY.

Esta fue desarrollada a lo largo de la década de 1970, y encuentra como referentes a
varios fisicos teéricos como Julius Wess y Burno Zumino, y como se ha comentado, permite
solucionar un buen nimero de los problemas presentados por el SM. La idea de SUSY surge
a partir del estudio de las interacciones fuertes, que conllevaron el descubrimiento de los
hadrones y su organizacién en multipletes de SU(3)s [9]. A raiz de esto, y sumado a la idea
de ampliar el grupo de simetria se plantea la creacién de multipletes que incluyan particulas
de diferentes espines. Estos multipletes, serdn los caracteristicos del grupo de simetria, y
reciben también el nombre de supercampos. Las particulas recogidas en estos multipletes no
estarfan pues limitadas a las recogidas en el SM, sino que se abre la posibilidad a la existencia
de un mayor numero de estas. SUSY estd basada en una simetria que relaciona bosones y
fermiones.

Explicada la idea, la cuestion es ahora como llevarla a cabo de forma que no entre en
contradiccién con el conocido como No-go Theorem propuesto por Mandula en 1967. Este
teorema establece que, cuando se trata con teorias cuanticas de campos, las tnicas simetrias
posibles son las de Lie clasicas (anexo B.1), correspondientes a traslaciones y rotaciones
(transformaciones de Poincaré), asi como aquellas que forman un dlgebra de Lie semisimple.
Esto implica que no es posible establecer simetrias internas entre particulas fermiénicas y
bosoénicas, luego no es posible obtener un grupo conjunto que incluya las transformaciones
de Poincaré x interna, cuyo grupo representante propuesto es SU(5). De ser posible, se
obtendrian acoplos nulos, es decir, no existirian interacciones.

El teorema de No-go parece pues excluir totalmente la idea de SUSY, no obstante,
este teorema estd basado en el axioma de los generadores bosénicos. Este considera que
los conmutadores de los generadores de simetria bosénicos han de ser funciones lineales de
los generadores, su estructura debe ser por tanto cerrada bajo conmutacion (el conmutador
de dos elementos del grupo ha de pertenecer al grupo) [10]. El teorema incluye inicamente
generadores bosénicos, pero no habla sobre generadores fermiénicos. Estos generadores serian
los andlogos a los bosénicos pero para fermiones, es decir, generarian las simetrias para estos.

Estos generadores fermiénicos han de conectar los multipletes del SM, expandiendo el
algebra de Poincaré de forma no trivial. Se van a denotar como Q, y la condiciéon anterior
implica que la actuacién de los mismos sobre campos bosonicos y fermiénicos ha de cumplir
[9]:

Q|bosén) o |fermién) Q|fermién) o< [bosén). (3.1)

La introduccién de estos generadores Q, precisa de una generalizacion del dlgebra de Lie.

En esta generalizacién se cumple que si O, es un operador, entonces:

04,0y — (—=1)"*" 0,0, = iC5,O... (3.2)
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Siendo v, = 0 si O, es un generador bosénico y v, = 1 si es un generador fermidnico.
En el caso de SUSY, los generadores bosonicos son los generadores de Poincaré P* y MY
(tensor métrico) y los generadores fermiénicos Q2, @2 A puede tomar valores entre 1 y N,
en este caso se va a desarrollar lo que se conoce como SUSY simple (MSSM), que posee N=1,
valores superiores de A corresponden a teorias de SUSY extendidas. Esta definicién de los
generadores conlleva una serie de relaciones de conmutacién que se pueden demostrar, pero
en las cuales no se va a hacer énfasis pues se escapan del objetivo del trabajo. Del desarrollo
de este algebra es posible extraer algunas conclusiones interesantes sobre como se llevan a
cabo las traslaciones de fermiones, ya que bajo este nuevo algebra descrita, la aplicacién

consecutiva de generaciones fermiénicos sobre un campo bosonico da lugar a una traslacién:
QalF) =|B) QgB)=|F) = QQ|B)—|B'). (3.3)

Tratada la idea subyacente detras de SUSY, es hora de estudiar los multipletes que pone
en juego este acercamiento. Dado que el modelo supersimétrico esta basado en el grupo de
transformaciones de Poincaré mas internas, y que ha de contener las particulas e interacciones

observadas en el SM, se le puede asociar un grupo de simetria:
SUB3)e x SU(2)p x U(1)y x N. (3.4)

Y en el caso que se trata, MSSM, se tiene N=1. Ahora se han de organizar las particulas
en los correspondientes supermultipletes de este grupo de simetria. Estos supermultipletes se

pueden dividir en dos tipos:

— Supermultipletes quirales: Contienen un fermion left-handed (anexo B.3, para més
detalles sobre quiralidad, y el motivo de la eleccion de los fermiones y escalares que

forman estos supermultipletes) y un escalar complejo

— Supermultipletes gauge: Contienen a los bosones de espin 1 recogidos en el SM y a sus

fermiones asociados de espin 1/2

Un supermultiplete se puede representar por tanto, tomando como p* el momento, como:

1

Estos estados representan al bosén y fermién y a sus conjugados en carga y paridad. Se
presentan en primer lugar las particulas que ocupan los supermultipletes quirales. Estos son
los fermiones de espin 1/2 del SM y sus escalares supersimétricos asociados, méas el Higgs y

el Higgsino [11]
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Nombres espin 0 | espin 1/2

Q | adg ur, dr,
squarks y quarks (3 familias) U U, uf
D Iy dp
L | iy vip
sleptones y leptones L +L +L
R [ 1} i

H2 | HS HY | Hy HY
H1 | HY H; | HY Hy

Higgs, higgsino

Tabla 3.1: Tabla de supermultipletes quirales. Se presentan con una tilde, las particulas
supersimétricas, y sin ella las presentes en el SM. Las particulas con espin 0 corresponden a
escalares complejos, mientras que las de espin semientero a las componentes de los espinores

de Weyl left-handed.

En la tabla se encuentran los fermiones del SM, leptones y quarks, y sus fermiones escalares
o sfermiones asociados, los squarks y sleptones. Se presenta también la quiralidad de las
particulas, asociando R a right handed y L a left handed. Se comprueba como quarks y
fermiones son left handed, mientras que entre las particulas aniadidas en SUSY, se encuentran
tanto right handed como left handed. Por otro lado, en SUSY, si se quiere dar masa tanto a
los quarks como squarks, el Higgs necesita dos dobletes [11].

Vistos los supermultipletes quirales, se muestran los supermultipletes gauge [11]:

Nombres espin 1/2 | espin 1
gluino, gluén g g

winos, bosén W | W+ wo | w* wo
bino, bosén B B BY

Tabla 3.2: Tabla de supermultipletes de gauge.

En SUSY, los bosones propios del SM, aparecen acompanados de fermiones de espin 1/2
que reciben el nombre de gauginos. El gluén tiene asociado el gluino; los bosones W* y W9
tienen asociados los winos; y por dltimo, el bosén B tiene asociado el bino. Algo a remarcar
aqui, es que como se vi6 en la parte de la unificacién EW el bosén B, no corresponde a un
campo fisico, sin embargo en SUSY es conveniente el uso de estos bosones gauge ya que los
autovalores que permiten obtener la masa de las particulas (como se muestra a continuacién
para el neutralino), aparecen como combinaciones de los mostrados en la tabla anterior.

Si se tiene en cuenta que cada particula del SM tiene asociada su companera
supersimétrica (cada quark un squark, cada leptén su slepton, etc.) al tratar con SUSY
se duplica el espectro de particulas del SM. Esto es clave para la resolucién de dos de los
problemas que motivaron en parte la introduccién de SUSY: La materia oscura y la solucién
al problema de la jerarquia.

En cuanto a la materia oscura, se han propuesto una serie de particulas como
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candidatos [12]:

— Neutralino. Se obtiene a través de una combinacion lineal de los gauginos electrodébiles,
el fotino (B) y el gluino (W9) y los Higgsinos neutros. En base de autoestados de gauge,
se puede representar como ¢(B, wo, Fg, FS) En base al Lagrangiano supersimétrico
que se obtendra a continuacién, se espera que esta particula no presente interaccién

fuerte.

— Otros candidatos. Adicionalmente se han propuesto candidatos alternativos como el
sneutrino 7 tanto el right-handed como left-handed. No obstante, estos presentan una

serie de problemas relacionados con los acoplos con el Higgs y otros bosones del SM.

De todos ellos, el neutralino es en el que hay depositadas mayores esperanzas como
candidato a materia oscura en SUSY. De todas formas, es importante recalcar el hecho de
que actualmente, no se tiene confirmarcion experimental de la existencia de ninguno de estos
candidatos.

Dejando la materia oscura y centrando la atencién ahora en el problema de la jerarquia,
veamos que soluciones aporta esta teoria de SUSY. Para ello, se va a comenzar explicando
un poco mas en profundidad el mencionado problema de la jerarquia.

Recapitulando lo visto, se mencion6 que el problema de la jerarquia, hace referencia a la
gran diferencia observada entre la escala de energia correspondiente a la escala de Plank y
las interacciones que toman lugar en el SM. Como consecuencia, se observa que al realizar
teoria de perturbaciones para obtener las correcciones a la masa del Higgs se obtienen valores
de la correccién muy superiores a la propia masa de este. Esto no ocurre para el caso de los
fermiones y los bosones de gauge ya que las correcciones de estos son proporcionales a sus
masas. La pregunta ahora es porque ocurre esto para el caso del Higgs y como SUSY es capaz
de solucionar este problema.

La divergencia en las correcciones al Higgs es consecuencia de que la correccién a su masa
tiene un término que corresponde con la escala de energia de nueva fisica, 10 TeV. Ya que si

se calcula empleando teorias de perturbaciones (ver anexo B.2) se obtiene un valor de [13]:

omi; = 3[;2[& + i(ggf +3¢"%) — 7. (3.6)

Luego teniendo en cuenta que la masa del Higgs es de 125GeV [1] se da entonces que
6m%{ > m%{. SUSY resuelve este problema de forma relativamente sencilla, ya que como en
SUSY se hace corresponder al boson de Higgs un fermién supersimétrico, el Higgsino, las
correcciones en la masa del Higgsino modifican también la masa del Higgs, puesto que el
mecanismo que propone SUSY para dar lugar a la masa es a través del multiplete formado

por estos. Esto provoca la cancelacién del término que depende de la escala de energia de

nueva fisica, responsable de la divergencia, de modo que se soluciona el problema.
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En cuanto a las diferencias de energias, las nuevas particulas presentes en SUSY, tienen
masas situadas entre las correspondientes al SM y las de la escala de Plank, asimismo pueden
dar lugar a nuevas interacciones cuyas energias se encuentren en este rango, solucionando

también este problema.

3.1.1. Lagrangiano Supersimétrico.

Se tiene por tanto una solucién a dos de los grandes problemas del SM, no obstante
queda todavia en el aire el problema de la unificacién de los acoplos gauge. Para ello se va a
definir el Lagrangiano supersimétrico que agrupa las interacciones de SUSY, y que permitira
obtener las constantes de acoplo y las correspondientes b; en las ecuaciones del grupo de
renormalizacion.

Se ha comenzar considerando las tres interacciones posibles recogidas en SUSY. La

primera de ellas es debida al superpotencial, y viene dada segin [11]
W = e[ HILIR + hgHIQID + h HIQIU — pHiHJ). (3.7)

En este superpotencial, f:q hace referencia al supercampo del higgs y el higgsino; Li y R
a los supercampos asociados a los leptones y sleptones respectivamente; ij, D y U hacen
referencia a los supercampos asociados a los quarks y squarks. Por otro lado, los términos hy,
hq vy hy son los términos asociados a la interaccién entre los fermiones, u el pardmetro de masa
del higgsino y €;; el tensor totalmente antisimétrico. Este superpotencial toma partido en dos
grupos de interacciones. El primero de ellos corresponde con las interacciones de Yukawa, al
cual se le puede asociar un potencial Vyyrewe Obtenido a partir de la ecuacién anterior al
sustituir dos de los supercampos fermionicos por sus campos fermidénicos y el tercero por la

componente escalar de estos, y cuya expresion es:
Wakawa =i [ H{ L R + haH{Q' D + hy H}Q'U — piHiHj]
+ e[ HIL R+ hy HiQ' D + hy HQ'U| (3.8)
+ e[ HIL R+ hg HiQ' D + h HIQ'U.
El segundo grupo de interacciones, bajo el nombre de Vi se extraen de la derivada del

superpotencial con respecto a las componenetes escalares de los supercampos. Esto es:

(3.9)

El segundo tipo de interacciones recogidas son las relacionadas con la simetria gauge.

Estas pueden subdivirse en las siguientes:

— Las interacciones gauge presentes en el SM, dadas en funcién de las constantes g, g’ y

gs asociadas a los grupos U(1), SU(2) y SU(3) respectivamente.
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— Las interacciones del gaugino, dadas por:
VGW/; = i\/ﬁgagbk/{“(T“)kl@El + h.c. (3.10)

Siendo ¢ y 9 las componentes de spin 0 y 1/2 del supercampo, T% el generador de

simetria, k* el campo del gaugino y g, su constante de acoplo.

— El término asociado a la derivada covariante (D-term), relacionado con la estructura de

la teoria:

1

Vb =3 > g b (T)ij0;. (3.11)

Siendo de nuevo ¢; la componente escalar de los supercampos.

Teniendo en cuenta la totalidad de estos términos, ya es posible establecer un lagrangiano
que solucione el problema de la jerarquia, y recoja las interacciones entre las nuevas particulas.
No obstante, este lagrangiano presenta un problema, pues si se tiene en cuenta lo desarrollado
en las dos primeras expresiones (3.7) y (3.8) se observa que tanto el quark top como el squark
top interaccionan de la misma manera con el supercampo de Higgs. Como resultado, se espera
pues que las masas de estas dos particulas sean idénticas. Y dado que no se tiene evidencia
experimental de ninguna de las particulas supersimétricas, se concluye pues que, si SUSY
existe, su simetria ha de estar rota. El Lagrangiano de SUSY ha de reproducir pues este
comportamiento, para lo cual se afiade un término conocido como Soft-SUSY-breaking, que

viene dado segin [11]:

Vi rt = €M AH{ L) R+ hq AgH{ Q' D + hy Ay H3QUY. (3.12)

S

Con todo esto, es posible establecer el Lagrangiano completo para SUSY a través de la

siguiente expresion:

EMSSM = £Kinetic + EGauge - VYukawa - VW - VG}M; - VD - Vsl’oft
— m}H]Hy — moH}Hy — m3,(H| H} + H, H,)

1 | 1 <020 (3.13)
2 Fxf 2 PP 2 A A 2 kT 2 [T
— Ml~LL L— MZRR R— MQLQ Q- MJRD D — Mz UU.

Los términos Lkinetic ¥ LGauge s0n conocidos, pues provienen del SM, el primero de
ellas representa la cinética de los campos fermidnicos y bosénicos, mientras que el segundo
establece las interacciones gauge. Estas tres interacciones son las que se han desarrollado en
el capitulo anterior, y corresponden a la nuclear fuerte y la electrodébil. Por otro lado los
términos de Vyukawa, Vv, Vi Wi Vb, y Vsloft son los que se han discutido en esta seccién y
corresponden por tanto a las interacciones causadas por las nuevas particulas. Por 1ltimo, el

resto de términos representan las masas de las diferentes particulas, tanto los bosones gauge,
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como los fermiones, quarks, sleptones y squarks como consecuencia de su interaccién con el
multiplete de Higgs.

Se observa pues como cada interaccion no esté caracterizada por un tinico acoplo, sino que
aparecen varios. Esto produce que las constantes de acoplo de cada una de ellas se redefinan,
teniendo en cuenta que ahora estas vienen condicionadas por los supercampos de gauge.
No obstante, a pesar de estas redefiniciones, siguen existiendo las divergencias al igual que
ocurria para en el SM. Como consecuencia, es necesario incluir de nuevo las ecuaciones del
grupo de renormalizacion pero adaptadas para SUSY. Su expresion sigue siendo la misma
a la presentada anteriormente, pero cambian los valores de las constantes b;, que se pueden

escribir de acuerdo con la siguiente expresién:

by 0 2 3/10 —33/5
bo | =16 —ng|2|—ng 1/2 | = —1 . (3.14)
b3 9 2 0 3

Recordemos que para calcular sus valores se ha usado que en modelos de SUSY se
consideran dos dobletes de Higgs ng = 2 y tres familias de leptones ny = 3. Con esto,
si se escriben de nuevo las ecuaciones del grupo de renormalizacién, dadas explicitamente

en (2.16), se obtienen las siguientes tres dependencias:

ot 63,72 —2,42
at | =13032]+ ] 037 |log(Q). (3.15)
oz’ 6,32 1,10
susy
70 | T T
o
680 :“““k 0;4 4
50 T~ % 1
G 40r \ -
O T -
20 | —
10 + .
0 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
log Q

Figura 3.1: Evolucién de «; 1 con el logaritmo de la energfa.

Los resultados de la dependencia de las constantes de acoplo con la escala de energia
Q@ se presentan en la figura 3.1. A diferencia de lo observado para el caso del SM, aqui si

que observamos un punto de interseccion comun para las tres constantes de acoplo. Esta

22



interseccion tiene lugar a la llamada escala de la gran unificacién y se comprueba que
corresponde a 10'® GeV. SUSY por tanto resuelve el problema de la unificacién.

Este logro estd estrechamente relacionado con el grupo de simetria que se ha usado, el
algebra se desarrolla a través del producto de las transformaciones de Poincaré y las internas,
basandose en los generadores férmionicos.

A pesar del enorme éxito como teoria unificada, SUSY también tiene otros inconvenientes.
Uno de ellos es el hecho del gran nimero de pardametros arbitrarios en la teoria,
aproximadamente 120, la gran mayoria asociados al desconocimiento sobre como tiene lugar
la ruptura de la simetria. Estos parametros condicionan las masas de las diferentes particulas
supersimétricas, las interacciones entre las mismas, la ruptura de simetria del modelo, etc.

Sin embargo el mayor problema de esta teoria, es que hasta el momento no se tiene
confirmacion experimental de ninguna de las particulas predichas. Los motivos de esto pueden
ser variados. Por ejemplo, como se ha comentado, la teoria presenta un gran numero de
parametros arbitrarios que condicionan en buena medida los valores de las masas de las
nuevas particulas predichas por este modelo, de modo que es complicado descartar particulas,
ya que sus masas y acoplos no estan univocamente determinados. El hecho de que no se haya
encontrado experimentalmente ningin indicio de este modelo impone cotas sobre las masas
de las particulas SUSY y/o los pardmetros libres en el modelo [1]. No obstante, ain se sigue

investigando en el entorno de este modelo de la fisica més alld del SM.
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Capitulo 4

Conclusiones.

A lo largo de este trabajo se ha desarrollado el SM, con especial énfasis en sus
interacciones y los acoplos que preciden cada una de las interacciones incluidas; la interaccién
electromagnética, la nuclear débil y la nuclear fuerte. A partir de estos acoplos se han obtenido
las ecuaciones del grupo de renormalizacion y se ha mostrado la dependencia de las constantes
con la energia. Se ha comprobado como, exitosamente, el SM unifica las interacciones débil
y electromagnética. Sin embargo, hemos encontrado que las tres constantes de acoplamiento
que caracterizan sus interacciones no coinciden para ningtin valor de la energia y, por tanto
concluimos que, segin lo predicho por el modelo, no tenemos la unificaciéon de las tres
interacciones mencionadas.

Con el objetivo de tener una teoria unificada, se ha estudiado una de las teorias
alternativas, SUSY GUT, en contreto se ha escogido centrar la discusién en la variante
simplificada de SUSY, el MSSM. Se ha descrito la forma en la que esta teoria introduce
nuevas particulas asi como las soluciones a los problemas de la jerarquia y materia oscura que
presenta el SM. Para finalizar, se han caracterizado los acoplos, y a través de las ecuaciones del
grupo de renormalizacion se ha obtenido la unificacién de los acoplos a una escala de energia
de 10'® GeV. No obstante, a pesar del éxito como teorfa de unficacién de las interacciones
fundamentales, esta teoria presenta también sus inconvenientes que se han mencionado en
este trabajo.

Claramente, en el marco de la fisica de particulas existen aiin muchas preguntas abiertas,
y aunque el SM es sin duda un modelo muy exitoso y comprobado experimentalmente, no
podemos descartar la existencia de algin modelo de Nueva Fisica que nos podria ofrecer

respuestas a estas preguntas.
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Anexos A

Anexo A

Presentamos en este anexo algunos detalles que complementan lo presentado en el el

Capitulo 2.

A.1. Grupo de simetria U(1).

Se introducen aqui detalles sobre el grupo de simetria U(1).
El grupo de simetria U(1) representa las rotaciones de un eje complejo. Sus elementos son

por tanto nimeros complejos de médulo unidad que pueden ser representados por [3]:
U(f) = @9, (A1)

Estas transformaciones pueden ser de cardcter local o global, en funcién de si el pardmetro 6 es
funcién o no de las coordenas. Y es el generador de los elementos del grupo, que habitualmente
se escoge real. Cuando se habla de transformaciones de fase locales del grupo U(1) se hace

referencia a transformaciones como las siguientes:
Y — ¢ =U(0) v =y (A.2)

b T = PU(9) = e 9. (A.3)

Este tipo de transformaciones mantienen invariante el producto escalar.

A.2. Invariancia del lagrangiano de QED bajo

transformacions del grupo U(1).

Se incluye la demostracion de la invariancia del lagrangiano bajo transformaciones del
grupo U(1).
Se estd interesado en transformaciones locales. Bajo estas transformaciones, los campos

fermionicos y del fotén se modifican de acuerdo a las siguientes expresiones:

Ay~ A= A, — é@uﬁ(w), (A.4)
) — P = @y, (A.5)
P — P = Pe @0, (A.6)
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El lagrangiano que se obtiene tras esta transformacién es pues:

. 1 _
L= (iv"0, — m)y' — ZFWFW — eQwv“@Z)AL. (A.7)
Desarrollando la expresién anterior, y omitiendo la dependencia del pardametro 6 con las

coordenadas (6(z) = 0):
_ . 1 _ . ; 1
L= e 9 >int ), — m)e@yp — ZFWFW — eQupe ey (A, — 20”9). (A.8)

Descomponiendo el paréntesis del primer miembro en dos sumandos:

7 ,—10Q ; i A Lo =i i 1
L = e 09iy1d,(e9)) — mapep — L — Qe 09 ey A, — ~0u0). (A9)

Donde se han cancelado las exponenciales en el término de la masa. Hecho esto, desarrollando
la derivada del producto aﬂ(ei‘”w) y reorganizando los términos, se obtiene:

. . _ 1 . .
L' =pe Q"9 pe’ — mipp — TFM Fy — eQipe™ "y ey A,
| | o (A.10)
+ Qﬁe_me‘%b(iQerauﬂ) + eQwe_’er“ezeQ@Z)f@HQ.

e

Es sencillo notar, como al conmutar las exponenciales con el resto de términos del lagrangiano,
puesto que el generador QQ es un nimero complejo de moédulo 1, la primera linea coincide con
el lagrangiano original. Ademds, multiplicando y reordenando los términos de la segunda

linea, se llega:
L =L — Qe 9199, 0 + Qe 919y ,0 = L. (A.11)

Luego efectivamente, se comprueba la invariancia bajo este tipo de transformaciones. Esta

se da también para transformaciones globales.

A.3. Dependencia de las constantes b;.

Se obtiene la dependencia de las constantes b;, y su relacién con el grupo de simetria que
se trata.

Se busca obtener los valores de las constantes b; que se presentan en el trabajo. Estos
términos son resultado de las contribuciones de los bosones de gauge del grupo de simetria
en que se esté trabajando, de las representaciones de los fermiones de Weyl, y de las
contribuciones de escalares complejos. Vayamos término a término, el primero de ellos viene
dado segun:

by = %cz(ci), (A.12)

siendo Cs el operador de casimir cuadratico del grupo de gauge G;. Este operador de Casimir
se puede poner en funcién de los generadores de la representaciéon adjunta del grupo de la

siguiente manera:

ICy(Gy) =) T2 (A.13)
A
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De este modo, se cumple que para el grupo de simetria SU(N) viene dado segun:
b; = —C3(G;) = —N. (A.14)

Para el caso particular de U(1) se tiene Cy = 0.
La contribucion de cada representacién de los fermiones de Weyl se puede computar como:

2
b=~ 3Tk, (A.15)

con Tg el indice de Dyhkin de la representacion a la que pertenecen los fermiones, esto es:
T, (T&TY) = TR, (A.16)

Este indice toma el valor Tr = % para la representacién fundamental de SU(N), y T = Y?
para U(1)y siendo Y la hipercarga. Dado que se introduciran estas mismas ecuaciones cuando
se trata con SUSY, es importante mencionar que en este caso Tr = N. Por tltimo lugar, las
contribuciones de los escalares complejos vienen dados asimismo en funcion de los indices de
Dyhkin como:

b = —%TR. (A.17)

Por tanto, la suma de las tres contribuciones lleva a la expresién:

Teniendo en cuenta lo mencionado sobre el operador de casimir del primer término, que el
segundo hay que multiplicarlo por el niimero de particulas del modelo que se considere, y lo

mismo para el tercero con el nimero de escalares, se obtienen las ecuaciones presentadas.

A.4. Obtencion de las ecuaciones del grupo de

renormalizacion.

Se desarrolla la expresién 2.13, para obtener la dependencias de g;(Q). Para ello se parte

de la ecuacion:
dlog ng(Q) - (47T)2 9;
Para resolver la ecuacién, se lleva a cabo el cambio de variable ¢ = log ) y teniendo en cuenta

g2
que a; = &

(A.19)

se puede escribir:

2
doy  dfE 2gi dgi _ 2y bi 3

= == = (- 2). A.20
dt dt 4 dt 471'( (471')291) ( )
Luego es sencillo notar que:
b,’ 2 dai
— = A.21
2m)“ " at (A.21)
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Para resolverla, se usa el hecho de que cuando se trata con I-loop los coeficientes b; son
independietes de «. Teniendo en cuenta este hecho y despejando términos de la expresién

anterior, se llega a:
1 dOéi b

-—— = — A.22
o2 dt 2m’ ( )
1 1 b;
———=—(Q) -t : A.23
@ i = 2@~ tw) (4.23)
Deshaciendo el cambio de variable ¢ = log(), se obtienen las ecuaciones del grupo de
renormalizacién:
1 1 b, Q
= +—In—= A.24
@ a2 (424

Es sencillo notar como si se recuerda la relacién o; = la ecuacion anterior es equivalente

47r’

a:

2 _ 91'2(#)
5:(Q) = + (b;/872) log(%). (A.25)

Como se queria obtener

A.5. Comprobacién de la ruptura de simetria asociada a los

bosones gauge.

Correspondiendo con el apartado 2 del Capitulo 2, se presenta la demostracién de que la
eleccién de vacio, rompe la simetria bajo transformaciones de SU(2), x U(1)y.

Para comprobar la ruptura de la simetria, calculamos la accién de los generadores de los
grupos de simetria SU(2) y U(1). Denotando como 7; con i=1,2,3 a los propios de SU(2) y

recordando que estos vienen dados por las matrices de Pauli:

0 1\ 1 0 v+ h
T1¢0=<1 0>\f<v+h> ( )7&0 (A.26)
0 —\ 1 v+ h
w0 3)A L) -3 ()

£0.
1 0 1
T3¢0 = (0 _1> 7z (v N h> h> # 0. (A.28)

Se comprueba por tanto la ruptura de simetria de SU(2). Para U(1) se tiene lo siguiente:

Yo = %¢< >#0 (A.29)

Donde este resultado se justifica por el hecho de que para las transformaciones de U(1)

o +

(A.27)

el pardmetro Yy, corresponde con un ntiimero complejo de médulo 1.
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Este resultado implica por tanto que los bosones Wy, Wy, W3 y B considerados adquieren
masa a través de este mecanismo de Higgs. El hecho de que el fotén permanezca sin masa a
pesar de este hecho es debido a que se obtiene como una combinacion de los campos B y Wi,

esta combinacién mantiene la simetria, pues:

Qeo = (Tg +Y)po = (é g) \} (v 3 h> =0. (A.30)

A.6. Desarrollo de las derivadas covariantes en el modelo EW.

Se expone aqui el desarrollo del término (D*¢)T(D,a).

La expresion de este término, considerando el vacio, viene dada por:

D, =
a \/§ v+ h

Dado que para llevar a cabo la unificacién electrodébil, solo es necesario tener en cuenta

! [0, +zgl W, +ig’ YB]( 0 ) (A.31)

los términos que produzcan las masas de los bosones gauge, y estos son proporcionales a v?.

Es posible desarrollar la derivada centrando la atencién exclusivamente en esos términos:

D,¢ = T[zg +7- W +ig’ YB ) (S), (A.32)
K 0 Wi 0 —ilWs Ws 0 Yo By 0
D’@_a[g(<w1 0 ) - (iWQ 0 >+ ( 0 —W3>)+g < 0 YyB ) <v>
(A.33)
v g(Wy — iWs)
Pug = f(gmﬁgm@> (434

A partir de aqui, es posible obtener el valor de (D*$)! conjugando la expresién anterior:

t_ _il g(W1 +iWs)
(D" ¢) 7 (—gW3 N g’Y¢OB# . (A.35)

Luego el término (D*¢)T(D,,¢) viene finalmente dado por:

(D)1 (Dy8) = oI (WE + W3) + (~gWi + 9'Vo B)’) (A.36)

A.7. Lagrangiano EW en funcién de los bosones fisicos.

Se presenta el desarrollo necesario para reescribir la parte escalar del lagrangiano en
funcién de los bosones W* y B,,, correspondiente al paratdo 2 del Capitulo 2.
Cuando se discute la interaccién de las corrientes cargadas en SU(2) se obtienen relaciones

entre entre los bosones fisicos y Wy, Wy [7]. Esto permite establecer las siguientes relaciones:

;ﬁnw++LWW (A.37)

30

1
§(T1W1 + TQWQ) =



Teniendo en cuenta ahora la expresiéon de la derivada covariante:
wo o\t L o 90 2 / 2 A
(D) (Dud) = gvolg™ (Wi + W3) + (—gWs + g4, B)’] (A.38)

Es posible escribir:

2 2
PWE+W2) = @AW+ Wt (A.39)

Se tiene ya pues uno de los términos en funcién de los bosones fisicos W*. En cuanto a

los valores de W3 y B,, antendiendo al segundo de los términos, es posible expresarlo como:

2 /
g —3ag Y¢0 W3 W3
(—gWs + 'Yy, Bu)* = (W3, B,,) = (W3, B,)Aws 5
¢0 14 1 _gg/Y¢0 g/2 BH 12 1 BH
(A.40)

Si se recuerda el hecho de que se ha tomado el valor de la hipercarga Yy, = 1, la matriz

anterior se puede diagonalizar encontrando los valores A que cumplen:

2 A e
‘AW&Bu - /\13’ = g_gg/ 9129_9)\ = )‘(/\ - 9/2 - 92) =0 (A'41)
Se obtienen por tanto los autovalores A\ = 0 y A = ¢> + ¢’>. Los autovectores
correspondientes, normalizados son:

A0 () oL (W) = A (A.42)

/a2 + g2 \ g /g% + g2 B o
P I S B I N (A.43)

/2 + g2 \—¢' /4% + g # B

Y comparando con los términos de la derivada covariante:

(—gWs+¢'Ys,Bu)* = (6" + ¢°)Z; +0- A, (A.44)

Se tiene ya pues la derivada covariante expresada en funcién de los campos, por lo que

puede ser insertada en el lagrangiano, obteniéndolo en funcién de los bosones fisicos.

A.8. Desarrollo de la derivada covariante, parte de W[Z’ y B,.

Desarrollo de la derivada covariante centrada en WS y B, para obtener las relaciones

entre acoplos.
La derivada covariante en teoria electroweak, viene dada segun:
. /Y - Zrir . /Y .
D, =0, +ig EBM +igZW, = 0, + ig §Bu +ig(mi W1 + 7o Wa + 13W3) (A.45)

Si se centra la atencion en los términos relativos a WS y Bu:
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Y
D, = 6# + iglgBu + igT3W3 (A.46)

Teniendo en cuenta los resultados del anexo anterior donde se establecen las realciones

entre los bosones W;, B, y los bosones fisicos se obtiene que:

99'Wi = 9By = 9' 2,/ g* + g* (A.47)
gg/WE + g/QB/J —_ gA#\/W (A48)

Por lo tanto, restando las dos ecuaciones anteriores:

(92 + QIQ)BM = V9?2 +9?(gA, — 9'Z,) (A.49)

Luego se obtiene:
1

Vg

Por otro lado, si en lugar de restar las dos ecuaciones se adicionan se llega procediendo

B, = (A.50)

idénticamente a que:

i T
H /g2 + g/2

Por tanto es posible escribir la derivada covariante como:

(9 Ap+92,) (A.51)

/

Y . . g Y g73
D,=9 "B W3 =0 —2—(gA, — ¢ Z —=(JA Z
W u+Zg2 pn +1gm3W3 1 g2+gl22(g w9 ,u)+ g2+g/2(g pwtg ,u)
(A.52)
Reagrupando términos se llega directamente al valor buscado:
/
‘ 99 Y, 2 nY
D,=0,+iA,——Ts+ )+ iZy—F——=(9"T3 — 9" =) (A.53)
/gIQ + 92 2 g/2 + 92 2

Como se pretendia comprobar.

A.9. Grupo de simetria SU(3).

Detalles adicionales sobre el grupo de simetria SU(3).

El grupo de simetria SU(3), empleado en el desarrollo de la QCD estd compuesto por el
conjunto de matrices especiales (det(U) = 1) y unitarias (U = U), sobre el cuerpo complejo

C3. Admiten por lo tanto el desarrollo:

U = e siendo H hermitica (A.54)

Dado que el grupo estd compuesto por matrices especiales, la traza de la matriz H ha de

ser nula. Esto confiere a este grupo de simetria un total de 8 grados de libertad, de modo
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que es posible expresar estas matrices H como una combinacion lineal de los 8 generadores

del grupo SU(3), denotados como T,. Esto es:

8
H=) o, =aT, (A.55)
a=0
Siendo estos generadores:
010 0 —i 0 1 0 0
AM=1[]1 00|, X=1]i 0 0|, X=]0 -1 0,
000 0 0 O 0 0 O
0 01 0 0 —i 0 00 00 O
AM=1]0 0 0|, X=]00 0|, =100 1|, XA=]0 0 —if,
1 00 i 0 O 010 i 0
1 0 0
Ag = ! 01 0
8= —
V3 0 0 -2

A.10. Solucién a los problemas observados al tratar con

quarks.

Violacion del postulado de simetrizacién y solucién introduciendo la carga de color.

Se va a ejemplificar la necesidad de introducir la carga de color para evitar contradecir

principios fundamentales al tratar o descomponer particulas en quarks. El Q7 se trata de

una particula de spin %, cuya ultima componente viene dada segin S, = % Se espera una
funcién de onda antisimétrica, por ser un fermion. Haciendo uso de que es posible escribir las
funciones de onda como producto de la parte de spin, por la parte espacial, y por la parte de

sabor, se tiene:

0" = ¢espacial ¢spin G sabor (A56)

La parte de spin es una funcién simétrica, pues como S, = %, los tres quarks de spin 1/2
han de estar orientados hacia arriba. La parte espacial es también simétrica pues para este
hadrén se tiene que 1=0. Por tdltimo, la funcién de onda de sabor, al tratarse de tres quarks,
también es simétrica. Se obtiene pues una funcién de onda simétrica que va en contra de
lo esperado para una particula compuesta por tres fermiones. Ademaés de esto, la expresion

anterior viola el principio de exclusién de Pauli, pues itia 3 quarks en el mismo estado.
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La solucién esta, como se ha anticipado en la introduccién de la carga de color. Esto
provoca que ahora un quark ya no sea unico sino que pueda tener tres valores de esta carga
de color ig, iR, p. Con esto se soluciona el problema del principio de exclusién. Junto a esta
solucién propuesta, como se ha comentado en el trabajo por Gell-Mann y Fritzsch, se alade
un antisimetrizador egrgp obteniendo finalmente una funcién de onda antisimétrica. De aqui

la importancia del color.

A.11. Simetria global del lagrangiano de L,.

Comprobacion de la invariancia del lagrangiano bajo transformaciones del grupo SU(3).

Para una transformacion entre dos sabores q y q’ dada por la matriz U perteneciente a
SU(3) se tiene que:
q—qd=Uqq—q¢=qU =qu™" (A.57)

Por tanto:

L= ﬁU_l(i’Y“au —m)Uq = q(iy"8, — m)q = L, (A.58)

Luego se comprueba la existencia de simetria global.

A.12. Transformaciéon del término Gj para garantizar

invariancia.

Demostracion de que la invariancia gauge requiere la introduccion del término GJ; y que
. a la __ a Cc __ a a
tranforme como: Gy, — G}ff = G}, + 0Gj, = G}, + Opae — gsaw fare G,
Se considera pues una transformacion local entre sabores de la forma:

q="Uq=e"9%Tg~ (14 igsa,Ty)q (A.59)

El objetivo es encontrar la condicién que se ha de cumplir para que se mantenga la invariancia.

Si se calcula el efecto de estas transformaciones sobre el término de la derivada, se obtiene:

a,uq/ = 8u(q + igsaaTaQ) = a,uq + igsaaTaauq + igs(auaa)Taq (A'60)

Donde se ha usado la derivada del producto para obtener los dos ultimos términos, pues

tanto q como «, dependen de las coordenadas. Agrupando la expresién anterior, se llega a:
a“q’ = (1 +1i9sqT0)0uq + i9s(Opa)Tag (A.61)

Es sencillo notar como aparece un término extra, que elimina toda posibilidad de
invariancia del lagrangiano. Para solucionar esto, se sustituye la derivada parcial ordinaria

por una derivada covariante. Esta tiene como expresion:
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Dy = 0, — g TuG (A.62)

Es aqui donde aparece por primera vez el término Gj,. Es sencillo ver la correspondencia
entre este y la derivada parcial del término «,. Visto esto, se va a obtener ahora el término

correspondiente a la actuacion de la derivada covariante sobre el nuevo sabor, esto es:
Duq’ = [0, — igsTaGZ + 5GZ](1 +igsTag)q = (A.63)
= (1419sTa0a)0uq +igs0ucaTaq — igsTaGZ(l +igsapTp)q — igSTaéGZ(l +igsaqT,)q (A.64)

Agrupando la expresion anterior, y despreciando los términos cuyo orden es de a,Gy, se

obtiene que:

Duq' = (14 igsTuva) (O — igsTaG%)q + (1 + igsTucwa) (TyGY)q — igTa(1 + igsanTy) Gl

— igTaéGZq +igT,q0,0q
(A.65)
Simplificando la expresién anterior, se llega a:
D,uq, = (1 + igsTaaa)D,uq - anb[Tb, Ta]GZq - igsTaéGZq + igsTaqauaa (A'66)

Y utilizando las relaciones de conmutacién de los generadores de SU(3), se llega finalmente

a que:
D,qd = (1 +igsTaaq)Dyug — ggab[Tb, Ta]GZq — igSTaéGZq +19sT0q0u 00 (A.67)

Luego como para que se tenga simetria se ha de cumplir que D,¢" = (1 + igsaaTa)Dpg,
los 1ltimos tres términos anteriores han de igualarse a 0. Usando el hecho de que,
en representacién fundamental los generadores de SU(3) cumplen que tr(T,T;) = 30a,
multiplicando la ecuacién anterior por un tercer generador T, y tomando la traza, se llega

finalmente a que:

0= _g?abfabcTr(Tch)GZ + QSTT(TdTa)a,uaa - QSTT(TdTa)(SGZ (A'68)

0 = —g204 f4adGY + gsOp0ra — 956G (A.69)

Renombrando indices y haciendo uso de que se cumple que frea = fape S€ Obtiene
finalmente:

6GZ = 8uac - gsabfachZ (A.70)

Luego es sencillo notar, que la invariancia bajo las mencionadas transformaciones de sabor

implica que:
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Gl — GO = G% + 0GS, = G2 + 9e — gsup fupe G (A.71)

Como se pretendia demostrar.

A.13. Término cinético del gluén.

Obtencién del término cinético del gluén para completar el lagrangiano.
La derivada covariante, viene dada en SU(3) por:

Dy = 8, — igsTuGY (A.72)

Si se considera ahora el conmutador de dos de estas derivadas:

[D,LLa Du}w = [au - igsTaGfp 0y — igsTaGg]w (A73)

= —igs[ 0, ThGY) + [TuGL, )¢ — g2 [T, TH G Gl (A.74)
= —igs Th0u G, — Ta0y G — g2i farc T.GoGo) (A.75)
= —igsTu0uGY — Ta0yG% + gs frcaTaGH GV (A.76)

= —igsTu G}, (A.77)

Donde, tras ciclar los indices, se ha definido:

Ghy = 0uGY — 0,G% + gs fane GG, (A.78)

A partir de aqui se identifica el término cinético del gluén con —%GzyGﬁy, siendo este

invariante gauge.

Si se desarrolla, es posible observar las interacciones entre los campos del gluén, luego

desarrollando:

1
— GG =

1 a a v v 9s a a v gg c v

= —1(8MGV - 0,G})(0,Gy — 9"GY) — E(auG,, — 8,GY) fabe Gy GY — Z(fabcfachZGngGe)
(A.79)
A diferencia de lo visto en QED, en este caso se observan un mayor ntimero de interacciones

entre los campos del gludn.
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Anexos B

Anexo B

B.1. Algebra de Lie.

Mis detalles sobre los grupos de Lie, presentes cuando se trata con supersimetria.

Para tratar el algebra de Lie, se comienza definiendo lo que se conoce como grupo. Se
entiende pues como grupo a un conjunto de elementos, no necesariamente numerable, con
una ley de composicién interna que satisface las propiedades asociativa, existencia de un

elemento neutro (que se denota e) y existencia de un elemento inverso.

Se dice pues que un grupo es de lie, si sus elementos, que se van a denotar como
g; dependen de forma continua y diferenciable de un conjunto de paramteros reales 6,

(a=1,.....N) siendo N la dimensién del grupo.
A un grupo de Lie es posible asignarle una representacion, denotada como R, que asigna
a cada elemento del grupo un operador lineal, denotado como Dg(g). Este ha de cumplir que:
Dpg(e) =1 (B.1)

Dr(gi - 95) = Dr(gi) - Dr(g;) (B.2)

Es posible entonces definir los mencionados generadores del grupo de Lie, en una

representacién R como:

0Dpg
Th =i—— (B.3)
004 |p—p
Una transformacion arbitraria del grupo de Lie queda pues expresada como:
Dp = e WaTk (B.4)

Son este tipo de traslaciones las permitidas segtn el teorema de no-go

B.2. Correcciones a la masa del Higgs.

Obtencién de forma cualitativa de la primera correccién a la masa del Higgs.
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Para obtener la primera correccion a la masa del Higgs, se parte del término de masa del

campo de Higgs, el cual viene dado segin [5]:
AL = —12pto. (B.5)

Sin entrar en detalles, este término respeta todas las simetrias impuestas en el SM, sin

importar el valor de p. Como se comenta en el trabajo, p corresponde con una escala de

energia arbitraria, que es posible fijar, teniendo en cuenta el objetivo que se persigue como
2 _ Lo . . .

u” = 0. En este supuesto, el término de masa viene dado exclusivamente por correcciones

radiativas. Estas correcciones se pueden visualizar en el siguiente diagrama de Feynman:

Q

Figura B.1: Diagrama mas simple capaz de generar el término de masa del Higgs.

Un proceso representado por un diagrama como el anterior, aporta una contribucion a la
masa del Higgs dada por [5]:
o A\ / d*k i (B.6)
—im® = —i —— .
(2m)* k2’
donde se ha tomado p? = m?. Formalmente, este término es similar al mostrado en la
expresion (2.14), y al igual que este, la integral es divergente. Este cardcter divergente se

recoge el el pardmetro A, que permite expresar la igualdad anterior como:

A

.9 . 2

— = — A
m 1167r2

(B.7)

Esta correccién es postiva y divergente y produce el llamado problema de la jerarquia que
se menciona. A se toma a la escala de energia de nueva fisica, cortando la divergencia, estas
modificaciones llevan a la expresién mostrada en la parte en que se trata el problema de la

jerarquia y su solucién en SUSY.

B.3. Quiralidad.

Explicacién de la quiralidad y su importancia en modelos de supersimetria.

La quiralidad se define a través de los operadores de proyeccién quirales:

1 1
P = 5(1—’}/5), Pr = 5(14—’}’5) (B8)

El primero corresponde a orientacion left-handed y el segundo a right-handed. Estos

operadores de quiralidad han de cumplir:

P} =Py, Pi=Pr PLPp=PrP,=0, P,+Pr=1. (B.9)
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A partir de aqui, se definen las componentes left handed y right handed, presentes en las

tablas como:
YL = Pry, Yr=Ppy. (B.10)

A estas representaciones se les conoce como espinores de Weyl. Las ecuaciones de onda de los
fermiones tienen soluciones con diferentes helicidades, correspondientes a modos left handed
y right handed. Este valor de la helicidad determina como interactian estos fermiones. Por
poner un ejemplo, la interaccion débil, solo se da sobre fermiones left-handed, mientras que

la electromagnética sobre right-handed.

Es por esto por lo que en la tabla donde se presentan las particulas de supersimetria se ha
hecho énfasis en la quiralidad de las mismas, pues al haber un mayor nimero de particulas
e interacciones, la eleccién de las componentes quirales es clave para que se reproduzca lo

observado.
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