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Capítulo 1

Introducción.
El Modelo Estándar (SM - del inglés ”Standard Model”) es una teoría cuántica de

campos que consigue explicar, a través de una serie de simetrías, tres de las interacciones

fundamentales de la naturaleza, la interacción fuerte, el electromagnetismo y la interacción

débil, unificando estas dos últimas en una sola, la interacción electrodébil.

Este modelo ha sido confirmado experimentalmente con gran precisión en los experimentos

de altas energías, siendo la última de sus evidencias el descubrimiento de la partícula de Higgs.

Sin embargo, existen algunas medidas experimentales recientes que muestran desviaciones

respecto a las predicciones del SM, como son los procesos que involucran el intercambio de

sabor de los quarks c y b, B̄0 → D(∗) − l−ν̄l y B̄−
c → J/ψl−ν̄l, entre otros.

Nuestro objetivo en este trabajo es el estudio de dichos procesos, para los cuáles vamos

a ver el desarrollo de la teoría del SM. En el Capítulo 2, veremos cómo se llega a la

Electrodinámica Cuántica (QED - del inglés ”Quantum Electrodynamics”) partiendo desde el

electromagnetismo clásico, pasando por cuantizar el campo electromagnético libre y viendo

el desarrollo de la ecuación de Dirac. Después, en el Capítulo 3 veremos el SM, comprobando

primeramente cómo podemos encontrar la QED simplemente imponiendo invariancia gauge.

A continuación nos detendremos en el estudio de la teoría electrodébil, acabando el capítulo

con una breve introducción a la Cromodinámica Cuántica (QCD - del inglés ”Quantum

Cromodynamics”). En el Capítulo 4, emplearemos todo lo aprendido para estudiar un proceso

regido por la QED, así como varios de los procesos de la teoría electrodébil en los que

encontramos discrepancias con las predicciones del SM, lo que constituye el resultado principal

de este Trabajo de Fin de Grado. Finalmente, en el Capítulo 5 se exponen las conclusiones

obtenidas. Como material suplementario, en los Anexos A y B se detallan los desarrollos

matemáticos necesarios para estudiar el electromagnetismo y el SM respectivamente, en el

Anexo C se encuentran los cálculos analíticos empleados en los procesos físicos estudiados,

en el Anexo D se resumen las reglas de Feynman que intervienen en los diagramas que hemos

estudiado, y en el Anexo E incluimos los valores numéricos que introducimos en los programas

para obtener nuestros resultados.
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Capítulo 2

Interacción electromagnética.
En este capítulo presentamos la electrodinámica; la formulación dinámica del campo

electromagnético, que incluye una de las interacciones fundamentales entre partículas; la

interacción electromagnética. Partiremos del campo electromagnético libre, obtendremos

las ecuaciones de Maxwell en forma covariante e introduciremos la invariancia gauge. A

continuación discutiremos el proceso de cuantización, terminando con la introducción del

Lagrangiano de la electrodinámica para fermiones y presentando la teoría de la QED.

2.1. Campo electromagnético clásico. Ecuaciones de Maxwell.
Forma covariante. Invariancia gauge.

Para introducirnos al formalismo de la teoría covariante, que implica invariancia Lorentz

de las ecuaciones, vamos a partir de las ecuaciones de Maxwell para el campo electromagnético

clásico, las cuales podemos agrupar en ecuaciones homogéneas y no homogéneas,

~∇ ~B = 0, ~∇× ~E +
1

c

∂ ~B

∂t
= ~0, (2.1)

~∇ ~E = ρ, ~∇× ~B − 1

c

∂ ~E

∂t
=

1

c
~j , (2.2)

donde ~B es el campo magnético, ~E el campo eléctrico, c la velocidad de la luz, ~∇ se define

como ~∇ ≡
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
y ρ es la densidad de carga eléctrica (fuente escalar del campo ~E),

mientras que ~j es la densidad de corriente eléctrica (fuente vectorial del campo ~B). En total, 8

ecuaciones que involucran las componentes del campo eléctrico y magnético. Podemos ahora

introducir el campo escalar ϕ y el potencial vector ~A,

~B = ~∇× ~A, ~E = −~∇ϕ− 1

c

∂ ~A

∂t
. (2.3)

Estas cantidades las podemos agrupar en un vector de cuatro componentes (cuadrivector)

que denominaremos potencial, Aµ ≡ (ϕ, ~A). Sin embargo, no están determinadas de manera

única. Si tomamos una función al menos dos veces derivable arbitraria, f(~x, t), tenemos,

ϕ→ ϕ′ = ϕ+
1

c

∂f

∂t
, ~A→ ~A′ = ~A− ~∇f , (2.4)

o empleando la notación covariante,

Aµ → A′µ = Aµ + ∂µf , (2.5)

2



donde ∂µ ≡
(
1
c
∂
∂t ,−~∇

)
.

Estas transformaciones mantienen invariantes los campos ~B y ~E y se conocen

como transformación de gauge de segunda especie. Las mismas corresponden con una

transformación global que actúa sobre todos los puntos del espacio que estamos empleando,

y que se puede ver que coincide con U(1).

Así pues, podemos reescribir las ecuaciones de Maxwell en función de ϕ y ~A. Las ecuaciones

homogéneas (2.1) se cumplen directamente, mientras que las ecuaciones no homogéneas (2.2)

pasan a reescribirse como,

�ϕ− 1

c

∂

∂t

(
1

c

∂ϕ

∂t
+ ~∇ ~A

)
= ρ , � ~A+ ~∇

(
1

c

∂ϕ

∂t
+ ~∇ ~A

)
=

1

c
~j , (2.6)

donde � ≡ 1
c2

∂2

∂t2
− ∇2 es el operador de D’Alambert. Notar que estas ecuaciones no son

invariantes Lorentz (debido al segundo término de éstas), por lo que introducir Aµ no nos ha

llevado a una teoría covariante. Así pues, vamos a definir un nuevo tensor que nos permitirá

escribir las ecuaciones de Maxwell en forma covariante. Lo denominaremos Tensor de Campo

Electromagnético y viene dado por,

Fµν ≡ ∂µAν − ∂ν∂µ =
∂Aν
∂xµ

− ∂Aµ
∂xν

, (2.7)

donde xµ = (ct,−~x). Tomando unidades naturales, es decir ~ = c = 1, podemos reescribir las

ecuaciones de Maxwell homogéneas (2.1) como,

∂λFµν + ∂µFνλ + ∂νFλµ = 0 , (2.8)

y las ecuaciones no homogéneas (2.2) como,

∂νF
µν = jµ , (2.9)

donde jµ ≡ (ρ,~j) es el cuadrivector densidad de carga-corriente. Es inmediato ver que el

tensor de campo electromagnético es invariante bajo las transformaciones gauge (2.5) ya que,

F ′µν = ∂µA′ν − ∂νA′µ = ∂µAν + ∂µ∂νf − ∂νAµ − ∂ν∂µf = ∂µAν − ∂νAµ , (2.10)

y por tanto las ecuaciones del campo electromagnético (EM) en forma covariante (2.8)-(2.9)

son también invariantes bajo transformaciones gauge. De esta forma hemos conseguido escribir

de manera covariante las ecuaciones de Maxwell.

Si quisiéramos utilizar una formulación Lagrangiana, partiríamos de la densidad

Lagrangiana definida como,

LEM = −1

4
FµνF

µν − jµAµ , (2.11)

donde el primer término describe la dinámica del campo electromagnético libre y el segundo

corresponde con la corriente de interacción entre el campo Aµ y el operador de campo asociado
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a las fuentes externas. A partir de esta densidad Lagrangiana, obtenemos las ecuaciones (2.9)

utilizando las ecuaciones de Euler-Lagrange.

Finalmente, necesitaríamos cuantizar la teoría del campo electromagnético. Antes de

intentar cuantizar, vamos a estudiar los grados de libertad del sistema. Desde el principio,

tenemos un total de 8 ecuaciones para 6 parámetros, las componentes de los campos ~E y ~B, de

manera que nos quedan dos grados de libertad independientes. Esto implica que en el potencial

Aµ, que pasaremos a denominar campo del fotón, tenemos 4 componentes de las cuales dos

de ellas son independientes. Por otro lado, conocemos que el fotón tiene dos estados físicos

distintos, sus dos estados de polarización. La discordancia entre el número de componentes

del campo del fotón y el número de estados físicos se denomina Invariancia gauge, que viene

dada por la simetría gauge de la teoría de Maxwell. Una forma de solucionarlo es imponer

condiciones adicionales sobre el campo Aµ que restringen el número de sus componentes

independientes. Llamaremos a este proceso fijar el gauge. Hay diferentes condiciones que

podemos imponer, por ejemplo: i). ∂µAµ = 0, denominado gauge de Lorenz y que asegura la

invariancia Lorentz, ii). ~∇ ~A = 0, denominado gauge de Coulomb, etc..

Como hemos mencionado antes, al escribir las ecuaciones de Maxwell en forma covariante,

tenemos una interacción entre el campo del fotón y fuentes externas. Si estas fuentes son los

electrones, necesitamos describir cómo se comportan éstos, así como cualquier otro fermión,

tema del que nos ocupamos en la sección 2.3.

2.2. Cuantización del campo electromagnético libre.

Hasta ahora no hemos cuantizado ninguno de los campos, simplemente los hemos tratado

de manera clásica hasta llegar a una expresión covariante de los mismos. Procedemos pues

a cuantizar el campo electromagnético. Para ello, se puede ver que la densidad Lagrangiana

definida en (2.11) no es adecuada para cuantizar de manera canónica, pues uno de los

momentos canónicos es nulo y además, no existe el propagador asociado.

Para solucionar esto tenemos que tener en cuenta que hay una invariancia gauge de la que

ya hemos hablado anteriormente. Vamos a tomar el gauge de Lorenz (∂µAµ = 0) de manera

que procederemos a fijar el gauge.

Primeramente, vamos a modificar la densidad Lagrangiana de Maxwell (2.11)

introduciendo la definición del tensor electromagnético, obteniendo,

L = −1

2
(∂µAν)(∂

µAν) +
1

2
(∂µA

µ)2 − jµAµ . (2.12)

Se puede ver que esta densidad soluciona el problema del momento canónico nulo, sin

embargo, no hemos hecho ningún cambio que solucione la existencia del propagador. Para
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ello vamos a añadir el término que nos va a permitir fijar el gauge. Este término es,

LGF = − 1

2ξ
(∂µA

µ)2 , (2.13)

donde ξ es un parámetro que nos permitirá elegir el gauge. De esta forma, obtenemos,

L = −1

2

[
(∂µAν)(∂

µAν)−
(
1− 1

ξ

)
(∂µA

µ)2
]
− jµAµ . (2.14)

Podemos recuperar las ecuaciones de Maxwell tomando las ecuaciones de Euler-Lagrange,

pero incluyendo el parámetro ξ,

�Aν −
(
1− 1

ξ

)
∂ν(∂µA

µ) = jν , (2.15)

de manera que no hemos cambiado las ecuaciones, sino que hemos transformado Aµ, pero

respetando el gauge de Lorenz. Notar que ahora los momentos canónicos no son nulos,

Πµ =
∂L

∂(∂0Aµ)
= −Ȧµ +

(
1− 1

ξ

)
gµ0(∂νA

ν) , (2.16)

donde gµ0 es la componente µ, 0 de la métrica del espacio de Minkowski, gµν . Sin embargo,

no podemos realizar la cuantización canónica directamente. Si promovemos Aµ al carácter de

operador, este tiene que cumplir la siguiente relación de conmutación,

[∂µAµ(~x, t),Π
ν(~y, t)] = i∂νδ3(~x− ~y) 6= 0 , (2.17)

donde δ3(~x − ~y) es la delta de Dirac en tres dimensiones centrada en ~y. Sin embargo, al

emplear el gauge de Lorenz, esta relación no puede imponerse, pues uno de los términos del

conmutador es nulo.

Así, vamos a emplear otra manera para llegar a la cuantización del campo

electromagnético. Comenzamos considerando que no hay fuentes externas, es decir, jµ = 0.

Ahora, vamos a ver cómo es la solución de la ecuación realizando una expansión de Aµ

como un conjunto completo de soluciones de la ecuación, es decir, vamos a estudiar el

espacio de Fock asociado. Separamos Aµ en modos de frecuencia positiva y negativa,

Aµ(~x) = Aµ+(~x) +Aµ−(~x), donde

Aµ+(~x) =

∫
d3~k√

(2π)32ωk

3∑
r=0

εµr (
~k)ar(~k)e

−ikµxµ ,

Aµ−(~x) =

∫
d3~k√

(2π)32ωk

3∑
r=0

ε∗µr (
~k)a†r(

~k)eikµx
µ
,

(2.18)

donde εµr representa un conjunto de cuadrivectores linealmente independientes que definen

la polarización para cada una de las componentes de ~k (cuatro estados posibles para cada

una); kµ es el cuadrivector número de ondas, ωk ≡
∣∣∣~k∣∣∣ y ar(~k) y a†r(~k) son los operadores

de aniquilación y creación de fotones asociados al espacio de Fock, respectivamente. Notar
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que εµr (~k) ha de cumplir ciertas restricciones a la hora de transformarse pues tiene cuatro

componentes, pero sólo existen dos estados físicos de polarización del fotón, por lo que

cumplen las siguientes relaciones de ortogonalidad y completitud,

εµr ε
∗
sµ = −ζrδrs r, s = 0, 1, 2, 3

3∑
r=0

ζrε
µ
r ε

∗ν
r = −gµν

 con
ζ0 = −1

ζ1 = ζ2 = ζ3 = 1
, (2.19)

donde δrs es la delta de Kroenecker.

Ahora vamos a realizar una cuantización covariante. Para ello, vamos a imponer unas

relaciones de conmutación para Aµ y Πν ,

[Aµ(~x, t),Π
ν(~y, t)] = iδνµδ

3(~x− ~y) , (2.20)

[Aµ(~x, t), Aν(~y, t)] = [Πµ(~x, t),Πν(~y, t)] = 0 , (2.21)

que en términos de los operadores creación y aniquilación serían,

[ar(~k), a
†
s(
~k′)] = ζrδrsδ

3(~k − ~k′) , (2.22)

[ar(~k), as(~k′)] = [a†r(
~k), a†s(

~k′)] = 0 , (2.23)

donde aparece un signo negativo en el conmutador de a0 con a†0. Esto conlleva a la existencia

de probabilidades negativas por lo que surge un problema. Éste se soluciona al relajar la

condición del gauge de Lorenz empleando la solución de Gupta y Bleuler, por la que para

conectar esta teoría cuántica con la teoría clásica del electromagnetismo basta con imponer

que un estado |ψ〉 cumpla,

∂µA
µ+ |ψ〉 = 0. (2.24)

Esta condición nos lleva a la eliminación de los estados de polarización escalar y

longitudinal que son estados no físicos del sistema. Estos estados han sido definidos en el

anexo A.1. De esta manera ya hemos obtenido la cuantización del campo.

Ahora podemos ver que el Hamiltoniano del sistema estaría dado por,

H =

∫
d3~k ωk

[
3∑
r=1

a†r(
~k)ar(~k)− a†0(

~k)a0(~k)

]
. (2.25)

Esta ecuación nos muestra que el valor esperado del Hamiltoniano depende únicamente

de los estados de polarización transversal, es decir, los estados no físicos no son relevantes.

Por tanto, no tenemos el problema de probabilidades negativas que hemos mencionado.

Así pues, podemos crear el espacio de Fock del fotón. Definimos un estado como la suma

de los estados transversales y la combinación de los estados escalares y longitudinales,

|ψ〉 = |ψT 〉+ |ψSL〉 , (2.26)
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de manera que la parte transversa solo contiene fotones transversales. Sea |0〉 el estado de

vacío,

|ψT 〉 ∝ a†1(
~k1)a

†
2(
~k2) |0〉 , (2.27)

mientras que en la parte escalar y longitudinal tenemos,

|ψSL〉 ∝
(
a†3(
~k)− a†0(

~k)
)
|0〉 . (2.28)

Podemos ver que dependiendo del valor de |ψSL〉 tenemos varios estados posibles que

corresponden al mismo estado físico. De esta forma hemos creado una interpretación cuántica

del campo electromagnético libre. Un desarrollo más completo de la cuantización del campo

electromagnético se presenta en el anexo A.2.

2.2.1. Propagador del fotón.

Otra forma de ver la cuantización de la teoría es comprobar la existencia del propagador.

Los cálculos detallados para obtener la expresión para el propagador del fotón (Dµν(kσ)), así

como la notación empleada, se presentan en el anexo A.3. Éste nos queda,

Dµν(kσ) =
1

k2 + iε

[
2∑
r=1

εµr (k
σ)ενr (k

σ) +
(kµ − (k · n)nµ)(kν − (k · n)nν

(k · n)2 − k2
− nµnν

]
, (2.29)

donde podemos identificar distintas contribuciones. La primera de ellas contiene únicamente

las polarizaciones transversales y la podemos entender como un intercambio de fotones reales.

Los siguientes dos términos los podemos escribir como la suma de dos contribuciones,

Dµν
C (kσ) =

k2

k2 + iε

nµnν

(k · n)2 − k2
, (2.30)

Dµν
R (kσ) =

kµkν − (k · n)(nµkν + kµnν)

(k2 + iε) [(k · n)2 − k2]
. (2.31)

Para darle significado físico, vamos a estudiar un proceso de dispersión que involucre el

fotón como una partícula intermedia. El elemento de matriz de esta interacción lo podemos

escribir en forma integral como,∫
d4xρ

∫
d4yσjµi (x

ρ)Dµν(x
ρ − yσ)jν2 (y

σ) , (2.32)

siendo jµ1 y jν2 dos densidades de corriente que interactúan vía el campo del fotón. Tomando

ε→ 0 podemos escribir Dµν
C (kλ) como,

Dµν
C (xα) =

nµnν

(2π)4

∫
d3~kei

~k~x

|~k|2

∫
dk0e−ik

0x0 =
nµnν

4π |~x|
δ(x0) . (2.33)

Así pues, tenemos una contribución de la forma,∫
d4xρ

∫
d4yσ

j01(x
ρ)j02(y

σ)

4π |~x− ~y|
δ(x0 − y0) . (2.34)
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La expresión tiene una dependencia con 1/r en el denominador y con δ(x0) que son

características de un potencial de Coulomb instantáneo, pero en este caso es entre dos

densidades de corriente.

Finalmente, vamos a ver la interpretación física de Dµν
R (kλ). Para empezar, (2.32) en el

espacio de momentos pasa a ser,

Dµν
R =

∫
d4kα

(2π)4
jµ1 (−k

α)Dµν(k
α)jν2 (k

α) . (2.35)

Puesto que las corrientes son conservadas, en el espacio de momentos, los términos de

la forma kνJ
ν se anulan, por tanto, como todos los términos de Dµν

R multiplicados por las

corrientes tienen esa forma, su contribución al elemento de matriz de interacción es nula. Por

ende, el propagador del fotón nos describe únicamente el intercambio de fotones transversos

y la interacción de Coulomb instantánea entre cargas. Las reglas de Feynman asociadas al

fotón se pueden encontrar en el anexo D.1.

2.3. Campo de Dirac.

Para describir el comportamiento de fermiones libres vamos a introducir la ecuación de

Dirac,

(iγµ∂µ −m)ψ = 0, (2.36)

donde γµ son las matrices de Dirac, m la masa de la partícula y ψ es el campo fermiónico.

Tanto la definición de estas matrices, como el desarrollo para obtener la ecuación de Dirac se

incluyen en el anexo A.4.

La densidad Lagrangiana asociada a la ecuación de Dirac viene dada por

LD = ψ†γ0(iγµ∂µ −m)ψ = ψ̄(i/∂ −m)ψ , (2.37)

donde hemos introducido la notación /∂ ≡ γµ∂µ y definimos ψ̄ ≡ ψ†γ0, con ψ† el adjunto del

campo ψ. Si aplicamos las ecuaciones de Euler-Lagrange a esta densidad recuperaremos la

ecuación (2.36).

Como queremos que el Lagrangiano sea invariante bajo transformaciones de Lorentz vamos

a ayudarnos de la representación quiral. El grupo de Lorentz ortocrono propio es isomorfo al

grupo SU(2)⊗SU(2) ya que toda representación irreducible del grupo de Lorentz la podemos

escribir como el producto de las representaciones espinoriales. Estas son dos componentes,

los espinores de Weyl, ψL y ψR, que se tratan de los campos levógiro y dextrógiro. Podemos

escribir un espinor de Dirac de cuatro componentes en la representación quiral como,

ψD =

(
ψL

ψR

)
. (2.38)
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Similar a lo que hemos hecho en la sección anterior, podemos obtener las soluciones de la

ecuación de Dirac como una descomposición de Fourier,

ψ(x) =

∫
d3~p

(2ψ)3
√

2Ep

(
u(~p)e−i~p~x + v(~p)ei~p~x

)
, (2.39)

donde Ep es la energía correspondiente al momento ~p, u(~p) y v(~p) son los espinores de Dirac

básicos y donde podemos definir dos componentes del campo ψ+ y ψ− que satisfacen las

siguientes ecuaciones,
ψ+ ' u(~p)e−i~p~x ⇒ (/p−m)u(~p) = 0,

ψ− ' v(~p)ei~p~x ⇒ (/p−m) v(~p) = 0,
(2.40)

de manera que u(~p) representa soluciones con estados de energía positiva, es decir, partículas

y v(~p) con estados de energía negativa, antipartículas.

Tras cuantizar el campo ψ(x), podemos ver que us(~p) y vs(~p) siguen las siguientes

relaciones de completitud, ∑
Si,Sj

u(p)Si ūSj (p) = pµγµ +m = /p+m, (2.41)

∑
Si,Sj

v(p)Si v̄Sj (p) = pµγµ −m = /p−m. (2.42)

2.4. Electrodinámica Cuántica.

Una vez hemos visto cómo cuantizamos el campo electromagnético podemos escribir la

densidad Lagrangiana de la QED. Añadiendo a la densidad del electromagnetismo (2.11) el

término de Dirac para fermiones libres (2.37) e identificando jµ ≡ eψ̄γµψ debido a ser el

acoplo mínimo, obtenemos,

LQED = ψ̄(i/∂ −m)ψ − 1

4
FµνFµν − eψ̄γµψAµ . (2.43)

El primer término es el Lagrangiano de Dirac (2.37), es decir, el correspondiente a los

fermiones libres. El segundo corresponde al Lagrangiano de Maxwell, que describe los fotones

libres. El último es el término de interacción,

Lint = −eψ̄γµψAµ . (2.44)

Este término nos describe las interacciones entre los fotones (Aµ) y los fermiones (ψ).

Siguiendo la estructura de este término vamos a poder estudiar las reglas de Feynman para

la QED. Un resumen de las mismas se presenta en el anexo D.1.
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Capítulo 3

Modelo Estándar.
En este capítulo vamos a presentar el SM, así como las distintas interacciones que éste

engloba, concentrándonos en el estudio de la Física del Sabor.

El SM es una teoría gauge basada en el grupo de simetría SU(3)C ⊗ SU(2)L ⊗ U(1)Y

que describe las interacciones electromagnética y débil (unificadas en la teoría electrodébil),

así cómo la interacción fuerte [1]. Estás interacciones se describen mediante el intercambio

de campos gauge de espín 1. Estos bosones de gauge responsables o portadores de las

interacciones son 8 gluones, los bosones W± y Z y el fotón. Este modelo contiene en su

estructura el contenido de materia del Universo, siendo además las partículas elementales de

la materia los fermiones, agrupados en seis quarks y sesis leptones, que están organizados en

tres familias o generaciones que solamente se diferencian por su masa y sabor,[
νe u

e− d

]
,

[
νµ c

µ− s

]
,

[
ντ t

τ− b

]
, (3.1)

donde se tiene, [
νl qu

l− qd

]
≡

(
νl

l−

)
L

,

(
qu

qd

)
L

, l−R , quR, qdR, (3.2)

y donde además cada quark aparece en tres colores diferentes. Los subíndices L y R

representan la componente levógira y dextrógira de los campos. Con esto podemos ver que los

campos levógiros son dobletes bajo SU(2)L mientras que los campos dextrógiros son singletes.

Además, el SM no contempla el caso de neutrinos dextrógiros.

Este modelo ha sido confirmado experimentalmente con gran precisión, y se han medido

las masas de todas sus partículas constituyentes [2]. Sin embargo, para dotar de masa a los

bosones gauge que la tengan así cómo a los fermiones se necesita la Ruptura Espontánea de la

Simetría (SSB por sus siglas en inglés Spontaneous Symmetry Breaking) SU(2)L ⊗ U(1)Y →

U(1)em. Esto se realiza mediante el mecanismo de Higgs, que introduce una partícula escalar

al modelo, el llamado Bosón de Higgs.

3.1. QED en el SM.

En esta sección trataremos la QED en el contexto del SM. En la última sección del

capítulo anterior presentamos el Lagrangiano de QED, uno de cuyos términos correspondía
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con el Lagrangiano libre de Dirac que escribiremos como,

L0 = iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x) , (3.3)

Este Lagrangiano es invariante bajo una transformación global U(1),

ψ(x) −→ ψ′(x) ≡ eiQ θψ(x), (3.4)

donde Qθ es una constante real, parámetro de la transformación. Sin embargo, bajo

transformaciones locales, es decir, tomando θ = θ(x), el Lagrangiano deja de ser invariante

debido a que,

∂µψ(x) −→ eiQθ (∂µ + iQ ∂µθ)ψ(x). (3.5)

El principio de invariancia gauge nos indica que el requerimiento de que la invariancia

U(1) debería mantenerse localmente. Esto sólo es posible añadiendo términos nuevos al

Lagrangiano para poder eliminar ∂µθ. Esto se arregla introduciendo un campo de espín 1,

Aµ(x), que transforma según,

Aµ(x) −→ A′
µ(x) ≡ Aµ(x)−

1

e
∂µθ, (3.6)

con e el módulo de la carga del electrón, y se define la derivada covariante como,

Dµψ(x) ≡ [∂µ + ieQAµ(x)]ψ(x), (3.7)

de manera que realizando la transformación local,

Dµψ(x) −→ (Dµψ)
′ (x) = eiQθ(x)Dµψ(x). (3.8)

De esta forma el Lagrangiano modificado queda,

L ≡ iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x) = L0 − eQAµ(x)ψ̄(x)γ
µψ(x), (3.9)

que es invariante bajo transformaciones locales U(1), que llamaremos U(1)em.

Nótese que el principio de invariancia gauge ha generado una interacción entre el campo

Aµ y los fermiones de Dirac ψ(x), que es precisamente el vértice de interacción de QED que

teníamos en (2.44). De esta forma, podemos identificar ese bosón Aµ con el fotón, tal y como

hemos visto en el capítulo anterior.

Si queremos que Aµ sea un verdadero campo propagador de la interacción, tenemos que

añadir un término cinético invariante gauge, de la forma,

Lkin = −1

4
FµνF

µν , (3.10)

donde Fµν es el tensor electromagnético, definido en (2.7). Notar que un término de masa

para el fotón está prohibido. Éste, que tendría la forma Lm = 1
2m

2AµAµ, violaría el principio

de invariancia local, por lo que el campo del fotón no tiene masa. Del Lagrangiano total,

suma de (3.9) y (3.10), podemos obtener las ecuaciones de Maxwell (2.9), luego simplemente

imponiendo la invariancia gauge U(1) al Lagrangiano libre de Dirac hemos recuperado la

QED. Las reglas de Feynman de QED se presentan en el anexo D.1.
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3.2. Interacción electrodébil.

En el SM la interacción nuclear débil se logra unificar con la interacción electromagnética,

en lo que se denomina teoría electrodébil. Ciertos experimentos de baja energía, así como

de dispersión de neutrinos, demostraron que sólo los fermiones levógiros (y antifermiones

dextrógiros) participan en las interacciones débiles. Los bosones W± y Z fueron introducidos

y predichos previos a su descubriento como las partículas encargadas de mediar la interacción.

Ahora vamos a construir una teoría cuántica de campos que describa la interacción

electrodébil. Como vimos en la introducción a este capítulo, cada generación estaba formada

por dos dobletes levógiros, el correspondiente a los leptones y el correspondiente a los quarks,

y tres singletes dextrógiros. Esto es debido a que los bosones W± se acoplan a estos dobletes

fermiónicos. Es por esto que queremos una representación de dobletes, de manera que el

grupo más simple es SU(2). Como además, queremos añadir la interacción electromagnética,

necesitamos del grupo U(1). Por tanto vamos a considerar el grupo,

G = SU(2)L ⊗ U(1)Y ,

donde la L viene de Levógiro (o “left-handed” en inglés) y la Y está relacionada con la

Hipercarga, ya que no podemos identificarlo directamente con el electromagnetismo. Este

grupo lo denominaremos el grupo electrodébil.

Por simplicidad, vamos a trabajar con una única familia de quarks y vamos a introducir

la notación

ψ1(x) =

(
u

d

)
L

, ψ2(x) = uR, ψ3(x) = dR, (3.11)

que será también válida para el sector fermiónico haciendo los cambios u → ν y d → l−.

Similar a la QED, vamos a introducir las derivadas covariantes,

Dµψ1(x) ≡
[
∂µ + ig

σi
2
W i
µ(x) + ig′y1Bµ(x)

]
ψ1(x),

Dµψ2(x) ≡
[
∂µ + ig′y2Bµ(x)

]
ψ2(x),

Dµψ3(x) ≡
[
∂µ + ig′y3Bµ(x)

]
ψ3(x),

(3.12)

donde σi son las matrices de Pauli y g, g′ y yi constantes. Además, hemos introducido 4

bosones gauge (Bµ y W i
µ con i=1,2,3), uno por cada parámetro que aparece al realizar una

transformación local del grupo electrodébil. De esta forma podemos llegar al Lagrangiano,

L =

3∑
j=1

iψ̄j(x)γ
µDµψj(x). (3.13)

Como hemos incluído nuevos campos vectoriales, tenemos que adicionar el término de

propagación de los campos o término cinético, que debe ser invariante gauge. Para ello
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definimos los tensores,

Bµν ≡ ∂µBν − ∂νBµ,

W̃µν ≡ − i

g

[
(∂µ + igW̃µ), (∂ν + igW̃ν)

]
= ∂µW̃ν − ∂νW̃µ + ig

[
W̃µ, W̃ν

]
,

W̃µν ≡ σi
2
W i
µν con W i

µν = ∂µW
i
ν − ∂νW

i
µ − gεijkW j

µW
k
ν . (3.14)

El Lagrangiano sería,

L = −1

4
BµνB

µν − 1

4
W i
µνW

µν
i . (3.15)

El primer término es el Lagrangiano de Maxwell para el campo Bµ, mientras que el término

libre de los campos no-Abelianos está dado por el Lagrangiano de Yang-Mills, que incluye

el término cinético y las interacciones a 3 y 4 bosones. Notar que no tenemos términos de

masa en el Lagrangiano ni de bosones ni de fermiones, pues la simetría gauge nos lo prohíbe.

En el caso de los fermiones es debido a que para construir un término de masas necesitamos

mezclar los campos levógiros y dextrógiros, que rompe la simetría debido a que tenemos

una combinación de dobletes y singletes que no es invariante bajo SU(2)L. De esta manera,

todas las partículas que hemos descrito hasta ahora en nuestro modelo no tienen masa. Un

desarrollo más extenso de la obtención de estos Lagrangianos se puede ver en el anexo B.1.

3.2.1. Interacciones de corrientes cargadas y de corrientes neutras.

Vamos ahora a ver los términos de interacción del Lagrangiano (3.13) entre bosones y

campos fermiónicos,

Lint = −gψ̄1γ
µW̃µψ1 − g′Bµ

∑
j

yjψ̄jγ
µψj , (3.16)

donde aparece un término que contiene la matriz SU(2)L, que podemos escribir como,

W̃µ =
σi
2
W i
µ =

1

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
=

1

2

(
W 3
µ

√
2W †

µ√
2Wµ −W 3

µ

)
(3.17)

donde hemos definido Wµ ≡ 1√
2
(W 1

µ + iW 2
µ) y W †

µ ≡ 1√
2
(W 1

µ − iW 2
µ), que dan lugar a las

corrientes cargadas. Para una familia de quarks y de leptones se tiene entonces,

LCC = − g

2
√
2

{
W †
µ [ūγ

µ(1− γ5)d+ ν̄lγ
µ(1− γ5)l] + h.c.

}
, (3.18)

donde hemos introducido el proyector sobre los estados levógiros, PL = 1−γ5
2 , con γ5 =

iγ0γ1γ2γ3. A partir de este término, podemos ver la interacción entre corrientes cargadas,

sin embargo, no se describe la dinámica de las mismas, pues tanto los bosones gauge como

los fermiones no tienen masa. Para poder incluir esa masa, como ya se ha mencionado,

necesitaremos del mecanismo de Higgs.

Ahora vamos a estudiar el resto de términos que aparecen en (3.16). Queremos identificar

las interacción que aparecen del W 3
µ y del Bµ con el bosón Z y el fotón (Aµ). Sin embargo, el
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bosón Bµ no puede identificarse directamente con Aµ, pues requeriría que y1 = y2 = y3, ya

que el fotón se acopla igual a campos levógiros y dextrógiros, y a la vez g′yj = eQj , donde

Qj varía para cada j, por lo que no puede ocurrir. Así pues, vamos a suponer que el fotón y

bosón Z son una combinación lineal de los bosones Bµ y W 3
µ ,(

W 3
µ

Bµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Zµ

Aµ

)
, (3.19)

con θW el ángulo de Weinberg.

Notar que el boson Z todavía no tiene masa, debido a la simetría gauge. Así, en términos

de Aµ y Zµ, el Lagrangiano de corrientes neutras es,

LNC = −
∑
j

ψ̄j

{
Aµ

[
g
σ3
2

sin θW + g′yj cos θW

]
+ Zµ

[
g
σ3
2

cos θW − g′yj sin θW

]}
ψj .

(3.20)

Para recuperar la QED debemos imponer,

g sin θW = g′ cos θW , Y = Q− T3, (3.21)

donde T3 = σ3/2 y Q denota el operador carga electromagnética,

Q1 ≡

(
Qu/ν 0

0 Qd/l

)
, Q2 ≡ Qu/ν , Q3 ≡ Qd/l. (3.22)

Esto fija los valores de las hipercargas (yi) que han de tener tanto quarks como leptones,

siendo estas, para los quarks, y1 = 1
6 , y2 = 2

3 e y3 = −1
3 ; y para los leptones, y1 = −1

2 , y2 = 0

e y3 = −1.

A partir de los términos de interacción tanto de corrientes cargadas como neutras podemos

obtener las reglas de Feynman relacionadas con estos. Éstas se pueden encontrar en el

anexo D.2.

3.2.2. Física del sabor.

Para dar masa a las partículas, gracias al teorema de Goldstone, introducimos un doblete

de campos complejos escalares φ(x) =

(
φ(+)(x)

φ(0)(x)

)
= ei

σi
2
θi(x) 1√

2

(
0

v +H(x)

)
. Necesitamos

de una ruptura espontánea de la simetría gauge, que se basa en seleccionar como estado

fundamental el estado de vacío del doblete escalar, de manera que la simetría del grupo

SU(2)L ⊗ U(1)Y se rompe en U(1)em. Esto se hace de manera que agregamos a nuestro

modelo SU(2)L ⊗ U(1)Y el Lagrangiano escalar,

LS = (Dµφ)
†Dµφ− µ2φ†φ− h(φ†φ)2, (3.23)

donde h > 0, µ2 < 0 y tomando θi = 0, que se denomina el gauge unitario. Tenemos que,

(Dµφ)
†Dµφ =

1

2
∂µH∂

µH + (v +H)2
{
g2

4
W †
µWµ +

g2

8 cos2 θW
ZµZ

µ

}
. (3.24)
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Aquí hemos introducido el bosón de espín 0 H(x), que denominamos bosón de Higgs y v

representa el valor esperado del vacío v =
√
2
∣∣〈0 ∣∣φ(0)∣∣ 0〉∣∣.

De esta forma nos han aparecido términos cuadráticos en W± y en Z, por lo que podemos

identificar las masas de estos como MZ cos θW =MW = 1
2vg.

Para darle masa a los fermiones vamos a añadir un término de acoplo entre los campos

escalares y los fermiones. Para ello vamos a suponer un número NG de generaciones de

fermiones y denotaremos ν ′j , l′j , u′j y d′j a los miembros de la familia j con j = 1, ..., NG. El

Lagrangiano de Yukawa más general tiene la forma,

LY = −
∑
j,k

{
(ū′j , d̄

′
j)L

[
c
(d)
jk φd

′
kR + c

(u)
jk φ

†u′kR

]
+ (ν̄ ′j , l̄

′
j)Lc

(l)
jkφl

′
kR
}
+ h.c., (3.25)

donde c
(d)
jk , c(u)jk y c

(l)
jk son constantes arbitrarias en principio y el segundo término el

C-conjugado del campo escalar φ† ≡ iσ2φ
∗. Tomando el gauge unitario este Lagragiano de

tipo Yukawa nos queda,

LY = −
(
1 +

H

v

){
d̄′
LM

′
dd′

R + ū′
LM

′
uu′

R + l̄′LM ′
l l′R + h.c.

}
, (3.26)

donde d′, u′ y l′ denotan vectores en el espacio de sabor de NG componentes, las cuales son

respectivamente d′j , u′j y l′j . Por otro lado, M ′
d, M ′

u y M ′
l son las matrices de masa y vienen

dadas por,

(M ′
d)ij = c

(d)
ij

v√
2
, (M ′

u)ij = c
(u)
ij

v√
2
, (M ′

l )ij = c
(l)
ij

v√
2
. (3.27)

La diagonalización de estas matrices nos dará como resultado los autoestados de masas

dj , uj y lj , que son combinaciones lineales de los autoestados débiles, d′j , u′j y l′j .

Podemos descomponer la matriz M ′
d = HdUd donde Hd es una matriz hermítica definida

positiva tal que, Hd ≡
√
M ′
dM

′
d
†; y Ud es una matriz unitaria. Esta descomposición es única,

debido a que det(M ′
d) 6= 0. Ahora podemos diagonalizar la matriz hermítica gracias a una

matriz unitaria Sd, de manera que Hd = S†
dMdSdUd, donde Md es una matriz diagonal,

hermítica y definida positiva. Podemos realizar una descomposición similar en las otras dos

matrices, obteniendo M ′
u = S†

uMuSuUu y M ′
l = S†

lMlSlUl.

Las diagonales de las matrices contienen los valores de las masas del correspondiente

fermión de cada generación. Así pues, tomando NG = 3 se tiene Md = diag(md,ms,mb),

Mu = diag(mu,mc,mt) y Ml = diag(me,mµ,mτ ).

Ahora, podemos simplificar el Lagrangiano (3.26), obteniendo,

LY = −
(
1 +

H

v

)
{d̄LMddR + ūLMuuR + l̄LMllR}, (3.28)

donde los autoestados de masa vienen definidos por,

dL ≡ Sdd′
L, uL ≡ Suu′

L, lL ≡ Sll′L,

dR ≡ SdUdd
′
R, uR ≡ SuUuu

′
R, lR ≡ SlUll

′
R.
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Podemos ver directamente que f̄′Lf′L = f̄LfL y también, f̄′Rf′R = f̄RfR, por lo que el

Lagrangiano de la interacción de corriente neutras (3.20) no cambia y por tanto no hay

intercambio de sabor en este tipo de interacción.

Si suponemos que los neutrinos tienen masa nula, podemos redefinir el sabor del neutrino

de manera que eliminamos la mezcla de sabor en el sector leptónico, ν̄′Ll′L = ν̄′LS
†
l lL ≡

ν̄LlL, de manera que tenemos conservación del sabor leptónico. Cabe destacar que ha habido

observaciones experimentales de oscilaciones de neutrinos y conocemos que las masas de los

neutrinos son pequeñas pero no nulas.

Finalmente, podemos ver qué ocurre en interacciones con dos quarks de distintos sabores,

donde, ū′
Ld′

L = ūLSuS†
ddL ≡ ūLV dL. Como en general Su 6= Sd, tenemos que si escribimos

los autoestados débiles en función de los de masa, aparece una matriz NG ×NG que mezcla

dichos estados en la interacción de corrientes cargadas, V . Si escribimos (3.18) de forma

general para las tres generaciones conocidas, tenemos,

LCC = − g

2
√
2

W †
µ

∑
ij

ūiγ
µ(1− γ5)Vijdj +

∑
l

ν̄lγ
µ(1− γ5)l

+ h.c.

 . (3.29)

Una matriz NG × NG unitaria tiene N2
G parámetros reales, NG(NG − 1)/2 módulos y

NG(NG + 1)/2 fases. En el caso de V , podemos tomar ui → eiφiui y dj → eiθjdj de manera

que Vij → Vije
i(θj−φi), dejando 2NG − 1 fases no observables, por lo que nos quedan (NG −

1)(NG − 2)/2 fases.

Para el caso que nos ocupa, NG = 3, esta matriz V se denomina Matriz CKM (por

Cabbibo-Kobayashi-Maskawa) y viene dada por tres ángulos y una fase. En el Particle Data

Group [2] se emplea la siguiente representación,

V =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (3.30)

donde cij ≡ cos θij y sij ≡ sin θij con i y j referentes a las generaciones (i, j = 1, 2, 3), y δ13,

la fase. Los ángulos θij se pueden tomar todos en el primer cuadrante. Los valores de estos

ángulos han sido determinados de manera experimental, de manera que conocemos el módulo

de las distintas componentes de la matriz CKM.

3.3. Cromodinámica cuántica.

El SM incluye una serie de partículas y sus correspondientes antipartículas que asumimos

que forman los mesones y los bariones, los quarks. También vimos que se tratan de partículas

de espín 1/2 que tienen carga eléctrica fraccionaria y que pueden interactuar con los bosones

responsables de la interacción débil cambiando su sabor. A parte de estas características, para

que se cumpla la estadística de Fermi-Dirac, hemos de introducir un nuevo número cuántico,

16



el color. A cada quark le asignamos uno de los tres posibles colores, rojo, verde y azul. Los

bariones son estados ligados de quarks con distintos colores, mientras que los mesones se

tratan de estados con un quark y un anti-quark del mismo color.

Vamos a identificar el color como la carga asociada a la interacción fuerte y procedemos

a construir una teoría cuántica de campos entorna a ello. Imponemos dos propiedades.

La primera de ellas, se trata de la libertad asintótica, por la cual la interacción fuerte se

debilita en los estados cuyas distancias tienden a cero. La segunda se trata de la Hipótesis de

Confinamiento. Esta propiedad indica que para evitar la existencia de estados con color no

nulo, necesitamos que todos los estados asintóticos no tengan color, es decir, sean singletes

bajo rotaciones en el espacio de color. Esta hipótesis implica la no existencia de quarks libres.

De manera equivalente a la QED y a la interacción electrodébil, podemos obtener el

Lagrangiano correspondiente a la QCD, teniendo en cuenta que estamos trabajando con

transformaciones de un grupo no-Abeliano, SU(3)C . El desarrollo correspondiente a la

obtención del mismo así como la notación empleada se encuentra en los anexos B.2-B.3,

obteniendo el siguiente Lagrangiano,

LQCD = −1

4
Gµνa Gaµν +

∑
f

q̄f (iγ
µDµ −mf )qf , (3.31)

que es invariante bajo transformaciones SU(3)C locales. Similar a la QED, no podemos incluir

un término de masa para los gluones (Lm = 1
2m

2GµaGaµ) debido a que éste no es invariante

gauge SU(3)C local.
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Capítulo 4

Procesos físicos.
Tras haber visto todo el formalismo, en este capítulo vamos a estudiar dos procesos de

interacción físicos. En el primero de ellos, vamos a estudiar un proceso en el que sólo actúan los

mecanismos de la QED, mientras que en el segundo proceso veremos cómo lo hacen aquellos

de la interacción electrodébil.

4.1. Proceso e+e− → µ+µ−.

Queremos estudiar la sección eficaz del proceso de interacción entre dos electrones,

e+e− → µ+µ−, que representamos en la figura siguiente:

q

γ

e−

e+

µ+

µ− (4.1)

Para ello, vamos a designar pe1 al momento del electrón entrante, pe2 al del positrón entrante,

pµ1 al momento del muón saliente y pµ2 al del antimuón saliente.

Así pues, la sección eficaz viene dada para procesos donde las partículas iniciales tienen

la misma masa, por unidad de ángulo sólido, como,

∂σ

∂Ω
=

1

2E2
cm

∣∣∣~k∣∣∣
16π2Ecm

|M|2 , (4.2)

donde Ecm es la energía del centro de masas,
∣∣∣~k∣∣∣ es el módulo de las componentes espaciales

del momento del muón y M se trata del elemento matriz correspondiente al proceso, que

viene dado por,

|M|2 = 8e4

q4
[(pe2 · pµ1)(pe1 · pµ2) + (pe2 · pµ2)(pe1 · pµ1)

+m2
µ(pe2 · pe1) +m2

e(pµ1 · pµ2) + 2m2
em

2
µ

]
. (4.3)

Colocándonos en el centro de masas (CDM) podemos calcular los distintos productos

escalares, obteniendo finalmente que la sección eficaz por unidad de ángulo sólido viene dada
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por,

dσ

dΩ
=

e4

64π2E2
cm

√
1−

4m2
µ

E2
cm

[
(1 + cos2 θ) +

16m2
µm

2
e

E4
cm

cos2 θ

+
4(m2

µ +m2
e)

E2
cm

(1− cos2 θ)

]
. (4.4)

Integrando en el diferencial de ángulo sólido e introduciendo la constante de estructura

fina α, la sección eficaz en función de los valores de la energía del centro de masas vienen

dados por,

σ =
πα2

4E2
cm

√
1−

4m2
µ

E2
cm

[
8

3
+

32m2
µm

2
e

3E4
cm

+
16(m2

µ +m2
e)

3E2
cm

]
. (4.5)

Para que el proceso exista, el término de dentro de la raíz ha de ser positivo, por lo que

se ha de cumplir que Ecm > 2mµ. El cálculo completo de la sección eficaz se encuentra en el

anexo C.1.

Para hacernos una mejor idea del comportamiento de la sección eficaz en función de la

energía del centro de masas la representamos gráficamente en la figura 4.1. Esta figura ha

sido obtenida mediante un programa en python, haciendo uso del paquete Matplotlib [3].

En ella podemos observar que la función es no nula para valores superiores a 2mµ ≈ 210MeV.

A partir de ahí, la función comienza a crecer hasta llegar a un máximo en torno a 250 MeV.

A partir de este punto comienza a decrecer, tendiendo a 0 cuando la energía del centro de

masas tiende a infinito.

200 250 300 350 400 450 500

Ecm (MeV )

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

0.00055

σ
(m

b)

Figura 4.1: Representación de la sección eficaz del proceso e+e− −→ µ+µ− en función de la
energía del centro de masas.
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4.2. Proceso b → clν.

Visto ya un proceso de la QED vamos a pasar a estudiar un proceso mediado por la

interacción electrodébil. Queremos estudiar el proceso por el cual un quark b se desintegra en

un quark c. Para ello vamos a tomar la desintegración del mesón B̄0(≡ bd̄) en los mesones D+

o D∗+(≡ cd̄) o del mesón B−
c (≡ bc̄) en J/ψ(≡ cc̄), además de un leptón y el correspondiente

antineutrino, ya que en la naturaleza no podemos encontrar los quarks aislados. Sin embargo,

para realizar un estudio de manera teórica tomaremos el proceso de desintegración con los

quarks, como se muestra en la siguiente figura:

k

W−

b

c

ν̄l

l− (4.6)

donde definimos k como el momento del bosón W−, pb al del quark b, pc al del quark c, pl al

del leptón saliente y pν al momento del neutrino.

En este caso, como se trata de un proceso de desintegración, tenemos que la anchura a

media altura (FWHM) de la desintegración viene dada, de manera diferencial por,

dΓ =
|M|2

2mb
(2π)4δ4(pb − pc − pl − pν)

d3~pc
(2π)32Ec

d3~pl
(2π)32El

d3~pν
(2π)32Eν

, (4.7)

con Ei la energía de la partícula correspondiente. El elemento matriz que obtenemos es,

|M|2 = g4 |Vcb|2

(k2 −m2
W )

(pc · pl)(pb · pν). (4.8)

con Vcb el elemento de la matriz CKM que relaciona el quark c con el b.

De nuevo, colocándonos en el sistema CDM, podemos calcular los productos escalares

hasta reducir la expresión obteniendo,

|M|2 = g4 |Vcb|2

2m2
W

(mbEν)
(
m2
b − 2mbEν −m2

c −m2
l

)
. (4.9)

De esta forma, reduciendo el diferencial de la anchura de la desintegración todo lo posible

e integrando obtenemos,

dΓ

dEl
=

32G2
F |Vcb|2

2(4π)3

[
(m2

b −m2
c −m2

l )
1

2
(E+

ν
2 − E−

ν
2
)− 2

3
mb(E

+
ν
3 − E−

ν
3
)

]
, (4.10)

donde,

E±
ν =

1
2(m

2
b −m2

c +m2
l )−mbEl

mb − El ∓
√
E2
l −m2

l

. (4.11)

El cálculo exhaustivo para llegar a esta expresión se puede ver en el anexo C.2. Ahora la

integral en El la vamos a realizar de manera numérica empleando el paquete SciPy [4]. Para
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ello primero vamos a estudiar la función que queremos integrar. De manera directa, podemos

ver que la integral se anulará cuando E+
ν = E−

ν o cuando E+
ν = E−

ν = 0. Podemos ver que la

primera condición se cumple cuando El = ml. La segunda se da si El =
m2

b−m
2
c+m

2
l

2mb
, lo cual

corresponde a la emisión de un quark c en reposo.

0 500 1000 1500 2000 2500

El (MeV )
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0.2

0.4
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1.4

d
Γ
/d

E
l

×10−14

ml = 0

ml = me

ml = mµ

ml = mτ

Figura 4.2: Representación de la anchura a media altura por diferencial de la energía del
leptón (4.10) para las distintas masas de los leptones, así como masa nula.

Ahora, en la figura (4.2), podemos observar el comportamiento para las distintas masas

leptónicas. Se observa que para las masas del electrón y del muón, así como para masa nula,

el comportamiento de la función es el mismo. Sin embargo, éste varía en gran medida para

el tauón, puesto que la masa de éste no es despreciable con respecto a las masas del resto de

partículas que intervienen en el proceso.

Una vez estudiada la forma de la función, procedemos a integrarla, tal y como dijimos

anteriormente. Los valores de las masas y otras constantes proporcionadas al programa se

pueden encontrar en el anexo E. Además, necesitamos conocer los valores de dichas anchuras

obtenidos para el SM, así como experimentalmente. En el Particle Data Group [2] , se nos

proporciona el tiempo de vida de los mesones B̄0 y B−
c , así como los “Branching-Ratios” (BR)

de cada uno de sus canales de desintegración. Podemos obtener la anchura de la desintegración

según,

Γi =
~
τ
BRi , (4.12)

donde i representa el canal de desintegración que estemos estudiando, τ el tiempo de vida de

la partícula y ~ la constante de Plank.

En la tabla (4.1) tenemos los valores que hemos obtenido para las anchuras de
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desintegración para las diferentes masas de los leptones (ignorando el caso ml = 0), así

como los correspondientes valores de las medidas experimentales.

Leptón Γl calculado (×10−12MeV) BR experimental Γl experimental (×10−12MeV)
e− 12,41± 0,04 2,24± 0,09% 9,7± 0,4

µ− 12,320± 0,025 2,24± 0,09% 9,7± 0,4

τ− 1,590± 0,026 1,05± 0,23% 4,5± 1,0

Tabla 4.1: Anchuras de desintegración calculadas de manera numérica, utilizando las
cinemática de los quarks, junto con el las anchuras obtenidas de manera experimental para
los distintos canales B̄0 → D−l−ν̄

A simple vista podemos ver que los valores no coinciden, como cabría esperar pues

el proceso experimental no involucra únicamente a los quarks, pero podemos ver ciertas

tendencias.

Por un lado en el caso de los electrones y muones es esperado que ambos se comporten

de forma similar y por ende obtenemos anchuras de desintegración similares. Las anchuras

calculadas son mayores que las experimentales, en concreto se separan ∼ 6σ.

Por otro lado, tenemos el caso del tauón, en el que cómo cabría esperar obtenemos

anchuras menores que las correspondientes a los procesos anteriores, debido al menor espacio

de fases disponible. En este caso, el valor teórico obtenido se acerca más al experimental,

alejándose tan sólo ∼ 3σ.

4.2.1. Desintegración de mesones. Resultados experimentales y anomalías
en física del sabor.

Como ya hemos hablado anteriormente, el proceso real no ocurre con quarks aislados,

pues debido a la Hipótesis de Confinamiento no podemos tener dichos estados. Sin embargo,

los datos experimentales que hemos tomado se trataban de los procesos reales que ocurren en

la naturaleza. Estos procesos han sido estudiados en diversos experimentos: BaBar (USA),

Belle (Japón) y en el detector LHCb situado en LHC (CERN, Suiza). El análisis estadístico

conjunto de estos resultados se encuentra en [5].

Vamos a estudiar tres procesos mesónicos: B̄0 → D+l−ν̄l, B̄0 → D∗+l−ν̄l, y B−
c →

J/ψl−ν̄l. Si quisiéramos realizar un cálculo teórico buscando una predicción más exacta,

necesitaríamos de mecanismos relacionados con QCD. En su lugar, vamos a realizar una

aproximación, que si bien no es correcta, nos debería acercar más al resultado experimental.

Esta aproximación se basa en sustituir las masas de los quarks por las de sus correspondientes

mesones, de manera que estamos un paso más cerca de describir los procesos reales, estudiando

la cinemática de los mesones. En nuestro cálculo numérico obtenemos las anchuras de

desintegración, sin embargo, para minimizar las incertidumbres teóricas, las magnitudes que
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se reportan experimentalmente son cocientes de razones de desintegración,

RD(∗) =
BR(B̄0 → D(∗)+τ−ν̄τ )

[BR(B̄0 → D(∗)+µ−ν̄µ) + BR(B̄0 → D(∗)+e−ν̄e)]/2
, (4.13)

RJ/ψ =
BR(B−

c → J/ψτ−ν̄τ )

BR(B−
c → J/ψµ−ν̄µ)

. (4.14)

Por tanto, vamos a estudiar directamente estas magnitudes. En la tabla (4.2) podemos

encontrar tanto nuestros valores aproximados, calculados numéricamente, como los valores

que predice el SM y los datos obtenidos experimentalmente.

Cociente Resultado Predicción SM Experimental
RD 0,237± 0,003 0,298± 0,004 [5] 0,356± 0,029 [5]
RD∗ 0,209± 0,003 0,254± 0,005 [5] 0,284± 0,013 [5]
RJ/ψ 0,198± 0, 004 0,2582± 0,0038 [6] 0,71± 0,17± 0,18 [7]

Tabla 4.2: Comparación en las distintas razones leptónicas para procesos b → clν de los
valores calculados con las predicciones del SM y las mediciones experimentales.

En todos los procesos analizados vemos que nuestros resultados siguen la misma tendencia

que los que se tienen en el SM, es decir, RD es mayor que RD∗ y este último es similar a RJ/ψ.

Aunque los valores numéricos difieran ligeramente, esto nos demuestra que hemos considerado

una buena aproximación.

Por otra parte, las medidas experimentales muestran una clara desviación con respecto a

los valores teóricos. La discrepancia de nuestros resultados para el cociente de las razones de

desintegración es RD ∼ 4,1σ, RD∗ ∼ 5,8σ, y RJ/ψ ∼ 2σ. Este último resultado se debe a la

gran incertidumbre en la medida experimental, tanto sistemática como estadística.

Estas desviaciones de nuestros cálculos con respecto a las medidas experimentales van

en la misma dirección de la comparativa de dichas medidas con la predicción del SM. Para

RJ/ψ, podemos ver en [7], que la medida experimental discrepa 1,8σ, mientras que en [5]

vemos que los cocientes de desintegración RD y RD∗ se desvían de la predicción 1,98σ y

2,15σ respectivamente. Podemos obtener un valor conjunto de estas dos últimas, teniendo en

cuenta las correlaciones entre ambos cocientes, de en torno a 3,2σ.

El hecho de que tenemos una desviación respecto a las predicciones del SM es un resultado

de gran relevancia fenomenológica. Cabe destacar que las diferencias entre el numerador y el

denominador de los cocientes, desde un punto de vista teórico, son únicamente el cambio de

la masa del leptón, pues el bosón mediador de la interacción, W−, se acopla igual a todos los

leptones como vemos en la ecuación (3.29). De ser confirmada dicha discrepancia, se abriría el

camino a Nueva Física, ya que sería indicativo de la existencia de una partícula o interacción

que se acoplaría de manera diferente con los leptones pesados.
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Capítulo 5

Conclusiones
Como hemos visto, el Modelo Estándar de la física de partículas elementales es una teoría

cuántica de campos que describe las interacciones electromagnética, débil y fuerte, así como

el contenido de materia del universo. Esta teoría está experimentalmente confirmada con gran

precisión en los experimentos de física de altas energías. Sin embargo, existen procesos en los

que se han encontrado ciertas discrepancias con respecto a las predicciones de este modelo,

como por ejemplo en procesos relacionados con la física de sabor, que han marcado el interés

central este trabajo.

En primer lugar, nos hemos centrado en el estudio de la Electrodinámica Cuántica dentro

del marco del Modelo Estándar, así como de la interacción débil, las cuales hemos visto que se

unifican en la teoría electrodébil. Para ello se han adquirido los conocimientos necesarios para

poder estudiar una teoría cuántica de campos partiendo de las bases del electromagnetismo

y conceptos básicos de teoría de grupos. Vimos también de la necesidad del mecanismo de

Higgs para dar masa a las partículas y cómo debido a ello, en las interacciones de corrientes

cargadas aparece una constante, la matriz CKM, que nos da las diferentes intensidades de

acoplo entre los diferentes quarks.

Todo esto lo hemos hecho como preparación para conseguir el objetivo fundamental de

este trabajo, estudiar el proceso e+e− → µ+µ− y el proceso por el cual un quark b se

desintegra en un quark c; b → c l ν. Para éste último, primero partimos del estudio de la

cinemática de quarks, para acabar estudiando, dentro de una cierta aproximación, algunos

de los procesos en los que la medida experimental actual tiene una mayor desviación con

respecto a las predicciones del Modelo Estándar; en concreto los cocientes de razones de

desintegración RD, RD∗ y RJ/ψ. Para ello hemos hemos empleado programas que nos han

ayudado a realizar los cálculos numéricos necesarios, Scipy [4] y Matplotlib [3].

Finalmente, hemos comparado las predicciones obtenidas para estos observables con

nuestros cálculos con las que nos proporciona el Modelo Estándar, así como sus desviaciones

con respecto a las medidas experimentales y posibles consecuencias. De confirmarse estas

desviaciones estaríamos hablando de la posibilidad de encontrar Nueva Física más allá del

Modelo Estándar.
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Anexos A

Desarrollos matemáticos correspondientes al Capítulo 2.

A.1. Interpretación de los vectores de polarización.

Vamos a ver ahora una interpretación de dichos vectores. Vamos a escoger una forma

específica de éstos. En un sistema de referencia dado,

εµ0 (
~k) = nµ ≡ (1, 0, 0, 0) ≡ polarización escalar, (A.1)

εµr (
~k) ≡ (0, εr(~k)), r = 1, 2, 3 (A.2)

donde escogemos que ε1(~k) y ε2(~k), que llamaremos vectores de polarización transversal,

mutuamente ortogonales y, a su vez, ortogonales a ~k, es decir,

~k · εr(~k) = 0, r = 1, 2 (A.3)

εr(~k) · εs(~k) = δrs, r, s = 1, 2 (A.4)

de manera que ε3(~k), que llamaremos vector de polarización longitudinal, viene dado por,

εµ3 (
~k) =

kν − (k · n)nµ√
(k · n)2 − k2

. (A.5)

Así, se cumple que ε3µnµ = 0. Esta elección de los vectores corresponde con la polarización

lineal, pues para la polarización circular se necesitan de vectores de polarización complejos.

Notar que los dos estados de polarización físicos son los transversales, pues son los estados

que puede experimentar un fotón, mientras que los estados longitudinal y escalar no tienen

significado físico.

A.2. Cuantización del campo electromagnético libre.

Vamos a partir de la imposición de unas relaciones de conmutación para Aµ y Πν ,

[Aµ(~x, t),Π
ν(~y, t)] = iδνµδ

3(~x− ~y) , (A.6)

[Aµ(~x, t), Aν(~y, t)] = [Πµ(~x, t),Πν(~y, t)] = 0 , (A.7)

que en términos de los operadores creación y aniquilación serían,

[ar(~k), a
†
s(
~k′)] = ζrδrsδ

3(~k − ~k′) , (A.8)

[ar(~k), as(~k′)] = [a†r(
~k), a†s(

~k′)] = 0 , (A.9)
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donde el conmutador de a0 con a†0 tendría un signo negativo que no debería aparecer. Este

signo está ligado a la normalización escogida para los vectores de polarización en (2.19).

Estudiamos en lo siguiente sus implicaciones.

Vamos a construir el álgebra de Fock asociada. Para ello, sobre el vacío |0〉, que asumiremos

normalizado, esto es 〈0|0〉 = 1, el operador aniquilación actúa como,

ar(~k) |0〉 = 0 , ∀r,~k. (A.10)

Por otro lado, el operador creación actúa sobre el vacío creando un fotón de momento ~k

y polarización εr que representaremos como
∣∣∣1~k,r〉,∣∣∣1~k,r〉 ≡

√
2ωka

†
r(
~k) |0〉 . (A.11)

Ahora, si consideramos el estado con vector de polarización ε0 y buscamos la normalización

del estado encontramos,〈
1~k,0

∣∣∣1~k′,0〉 ∝
〈
0
∣∣∣a0(~k)a†0(~k′)∣∣∣ 0〉

=
〈
0
∣∣∣[a0(~k), a†0(~k′)]+ a†0(

~k′)a0(~k)
∣∣∣ 0〉

=
〈
0
∣∣∣[a0(~k), a†0(~k′)]∣∣∣ 0〉 = −δ3(~k − ~k′) ,

(A.12)

donde hemos utilizado la relación de conmutación (2.22) y la actuación del operador

aniquilación sobre el espacio de vacío (A.10). De esta forma llegamos a que el estado tiene una

norma negativa, que en términos de la mecánica cuántica está relacionado con la probabilidad

de existencia de la partícula, por lo que no puede haber normas negativas.

Hasta ahora, hemos estado suponiendo que imponíamos que se cumple el gauge de Lorenz

(∂µAµ = 0), sin embargo, durante todo este desarrollo no lo hemos aplicado. Además,

seguimos teniendo el problema de tener tan solo 2 estados de polarización reales, frente a

los cuatro estados de polarización distintos que tenemos en nuestra teoría. La solución fue

propuesta por Gupta y Bleuler quienes demostraron que para que que haya una conexión

entre la teoría cuántica que estamos construyendo y la teoría clásica del electromagnetismo

basta con imponer una condición más suave. Sea |ψ〉 un estado físico se ha de cumplir que,

∂µA
µ+ |ψ〉 = 0 , (A.13)

por lo que sean dos estados físicos cualesquiera |ψ〉 y |ψ′〉 tenemos que el siguiente elemento

de matriz entre dichos estados se anula,〈
ψ′|∂µAµ|ψ

〉
= 0 . (A.14)

Veamos qué implica esto físicamente. Primero, podemos ver,

∂µA
µ+ = −i

∫
d3~k√

(2π)32ωk

3∑
r=0

kµε
µ
r (
~k)ar(~k)e

−ikµxµ , (A.15)
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que al ser invariante Lorentz podemos estudiar en cualquier sistema de referencia. En concreto,

vamos a tomar el sistema tal que ~k se encuentra en la dirección del eje z,

kµ = (ωk, 0, 0, ωk) ⇒ kµ = (ωk, 0, 0,−ωk) , (A.16)

de manera que si sustituimos en la integral nos queda,

∂µA
µ+ = −i

∫
d3~kωk√
(2π)32ωk

[a0(~k)− a3(~k)]e
−ikµxµ . (A.17)

Luego si aplicamos (A.13) obtenemos,

∂µA
µ+ |ψ〉 = 0 ⇒ [a0(~k)− a3(~k)] |ψ〉 ⇒ a0(~k) |ψ〉 = a3(~k) |ψ〉 , ∀~k, (A.18)

lo cual implica,

〈ψ| ∂µAµ− = 0 ⇒ 〈ψ| a†0(~k) = 〈ψ| a†3(~k) , (A.19)

de manera que con esto eliminamos todos los estados de polarización escalares y longitudinales

(no físicos).

Así pues, vamos a ver el Hamiltoniano del sistema. Comenzamos tomando el gauge de

Feynman-’t Hooft que toma ξ = 1 en el Lagrangiano (2.14). Si además, imponemos jµ = 0,

tenemos que el momento canónico es Πµ = −Ȧµ. Así, el Hamiloniano es,

H =

∫
d3~xN

[
Πµ(xν)Ȧµ(x

ν)− L(xν)
]
, (A.20)

donde N es el número de fotones. Si realizamos la descomposición de Fourier de los campos

Aµ dadas en (2.18) tenemos que el Hamiltoniano pasa a ser,

H =

∫
d3~kωk

3∑
r=0

ζra
†
r(
~k)ar(~k)

=

∫
d3~kωk

[
3∑
r=1

a†r(
~k)ar(~k)− a†0(

~k)a0(~k)

]
,

(A.21)

por lo que el valor esperado del Hamiltoniano entre los estados físicos |ψ′〉 y |ψ〉 queda,

〈
ψ′ |H|ψ

〉
=

∫
d3~kωk

〈
ψ′

∣∣∣∣∣
[

3∑
r=1

a†r(
~k)ar(~k)− a†0(

~k)a0(~k)

]∣∣∣∣∣ψ
〉

=

∫
d3~kωk

〈
ψ′

∣∣∣∣∣
2∑
r=1

a†r(
~k)ar(~k)

∣∣∣∣∣ψ
〉
.

(A.22)

A.3. Obtención del propagador del fotón.

Queremos buscar el propagador asociado al fotón. Para ello, vamos a escribir la ecuación

(2.15) como, [
gνµ�−

(
1− 1

ξ

)
∂ν∂µ

]
Aµ = jν . (A.23)
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Ahora vamos a buscar las soluciones de esta ecuación. Para ello, vamos a utilizar el método

de la función de Green. Así pues definimos la función de Green, que identificaremos con el

propagador como,[
gνµ�−

(
1− 1

ξ

)
∂ν∂µ

]
Dµλ(x

σ − yρ) = gνλδ
4(xσ − yρ) , (A.24)

de manera que realizando la transformada de Fourier obtenemos,

−
[
gνµk2 −

(
1− 1

ξ

)
kνkµ

]
Dµλ(k

σ) = gνλ . (A.25)

Ahora vamos a suponer que el propagador tiene la forma,

Dµλ(k
σ) = agµλ + bkµkλ , (A.26)

luego la ecuación queda como,

gνλ = −ak2gνλ +
[
a

(
1− 1

ξ

)
− 1

ξ
bk2
]
kνkλ . (A.27)

Esta ecuación tiene solución si tomamos,

a = − 1

k2
; b =

1− ξ

k4
. (A.28)

Sin embargo, con esto tenemos un problema al escribir el propagador en el espacio de

coordenadas que se resuelve añadiendo un valor complejo en el denominador. Se define pues

el propagador de Feynman como,

Dµλ = − 1

k2 + iε

[
gµλ − (1− ξ)

kµkλ
k2

]
. (A.29)

Ahora vamos a ver cómo el propagador depende de los distintos estados de polarización.

Al no ser una cantidad física medible éste dependerá de los cuatro estados, no tan solo de los

físicos. Tomando el gauge de Feynman-’t Hooft (ξ = 1) tenemos,

Dµν(kσ) = − gµν

k2 + iε
=

1

k2 + iε

3∑
r=0

ζrε
µ
r ε

∗µ
r , (A.30)

donde hemos utilizado la propiedad (2.19). Tomando las definiciones de polarización escalar

(A.1) y longitudinal (A.5), el propagador tiene la forma,

Dµν(kσ) =
1

k2 + iε

[
2∑
r=1

εµr (k
σ)ενr (k

σ) +
(kµ − (k · n)nµ)(kν − (k · n)nν

(k · n)2 − k2
− nµnν

]
. (A.31)

A.4. Obtención de la ecuación de Dirac.

Puesto que a partir de la ecuación de Klein-Gordon se llegaban a densidad de probabilidad

negativa para sus campos, Dirac intentó buscar una ecuación lineal en ∂
∂t y en ~∇. En general,

esta ecuación tendría que tener una forma tal que,

Hψ = (~α~p+ βm)ψ , (A.32)
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donde αi con i = 1, 2, 3 y β son los coeficientes por determinar, ψ sería el espinor o campo

de Dirac que veremos que se trata de un cuadrivector, m la masa del fermión, ~p su momento

y H la energía del sistema (o Hamiltoniano).

Queremos que la partícula cumpla con la relación de energía-momento relativista, por lo

que hemos de imponer, en unidades naturales,

E2 − p2 = m2 , (A.33)

y por tanto,

H2ψ = (p2 +m2)ψ = (~α~p+ βm)2ψ , (A.34)

lo que nos lleva a las siguientes relaciones entre los distintos valores de las αi y β,

α2
i = β2 = 1 con i = 1, 2, 3

αiαj + αjαi = αiβ + βαi = 0 con i, j = 1, 2, 3; i 6= j

 (A.35)

Si queremos que la solución no sea trivial, αi y β han de tratarse de matrices, cuya

dimensión más baja posible es una matriz cuadrada de dimensión 4. Por ende, el campo ψ ha

de ser un vector columna de cuatro componentes. La elección de dichas matrices no es única,

pero la más usada, la representación de Dirac-Pauli, es tal que,

β ≡

(
I 0

0 −I

)
, αi ≡

(
0 σi

−σi 0

)
con i = 1, 2, 3 (A.36)

donde σi son las matrices de Pauli y I la matriz cuadrada identidad de dimensión 2. Si

multiplicamos (A.32) por la matriz β e identificando H → i ∂∂t y ~p→ −i~∇ tenemos,

iβ
∂ψ

∂t
= −iβ~α~∇ψ +mψ , (A.37)

que introduciendo las matrices de Dirac γµ ≡ (β, β~α) podemos reescribirlo como,

(iγµ∂µ −m)ψ = 0 . (A.38)

Esta es la ecuación de Dirac en forma covariante.

Cabe destacar que hasta aquí hemos escrito todo en la representación de Dirac, sin

embargo, no es la única. Una representación interesante es la representación de Weyl, en

la cual identificamos

β ≡

(
0 I
I 0

)
, αi ≡

(
−σi 0

0 σi

)
con i = 1, 2, 3 (A.39)

La ventaja de esta representación es la sencillez con la que se obtienen las proyecciones

quirales del campo de Dirac pues podemos escribir,

ψD =

(
ψL

ψR

)
(A.40)
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donde ψL,R son espinores de dos componentes que se identifican con las proyecciones levógira

y dextrógira respectivamente.

Además, la representación de Weyl nos ayuda para la representación irreducible del grupo

de Lorentz ortocrono propio, L+
↑ . Podemos etiquetar estas como (j1, j2), de manera que la

dimensión total es (2j1 +1)(2j2 +1). En la representación espinorial del grupo L+
↑ , podemos

escribir su representación fundamental como el producto tensorial de las representaciones

espinoriales
(
1
2 , 0
)

y
(
0, 12
)
, de dimensión 2. Estas representaciones se tratan de los espinores

de Weyl, de manera que ψL ∈
(
1
2 , 0
)

y ψR ∈
(
0, 12
)
.

Los espinores de Weyl cumplen las ecuaciones de Weyl, que tienen la forma,

iσ̄µ∂µψL = 0, (A.41)

iσµ∂µψR = 0, (A.42)

donde σµ = (I, ~σ) y σ̄ = (I,−~σ). Aquí los espinores de Weyl representan partículas de masa

nula y espín 1/2. Podemos ver que además se tratan de autoestados de la helicidad. Ésta se

define como la proyección del espín en la dirección del momento,

h = p̂~S =
1

2
p̂~σ, (A.43)

de manera que, tomando por ejemplo ψL = uLe
±i~p~x, que es una solución de onda plana,

σ̄µ∂µψL = 0 ⇒= (∂0 − σi∂i)ψL = 0 ⇒ ∓(E + ~σ~p)uL = 0 ⇒ ~σp̂EuL = −EuL ⇒ h = −1

2
(A.44)

Si la masa es distinta de 0, los espinores de Weyl dejan de ser autoestados de la helicidad,

por lo que la quiralidad deja ser equivalente a la helicidad. En este caso, los espinores de Weyl

cumplen las ecuaciones de Dirac de manera que se encuentran acoplados,

iσ̄µ∂µψL = mψR, (A.45)

iσµ∂µψR = mψL. (A.46)

De esta manera si tomamos (A.40) con las matrices de Dirac que tomen la forma (A.39),

recuperamos la ecuación de Dirac (2.36).
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Anexos B

Desarrollos matemáticos correspondientes al Capítulo 3.

B.1. Obtención Lagrangiano de la interacción débil.

Similar a la QED vamos a considerar el Lagrangiano libre,

L0 =
3∑
j=1

iψ̄j(x)γ
µ∂µψj(x), (B.1)

donde hemos de notar que no aparecen términos de masas para los fermiones. No hemos

incluído estos términos pues mezclaría campos levógiros y dextrógiros mψ̄ψ = m(ψ̄LψR +

ψ̄RψL), lo que rompe nuestras consideraciones de simetría, ya que tenemos una combinación

de singletes y dobletes que no es invariante bajo SU(2)L. El Lagrangiano (B.1) es invariante

bajo una transformación electrodébil global,

ψ1(x) −→ ψ′
1(x) ≡ eiy1βULψ1(x),

ψ2(x) −→ ψ′
2(x) ≡ eiy2βψ2(x),

ψ3(x) −→ ψ′
3(x) ≡ eiy3βψ3(x),

(B.2)

donde la matriz de la transformación SU(2)L, que se trata de un grupo no-Abeliano, es,

UL = ei
σi
2
αi
, con i = 1, 2, 3 , (B.3)

siendo σi las matrices de Pauli, que son los generadores de la representación fundamental del

grupo y que sólo actúan sobre ψ1, es decir, sobre el doblete.β y αi son cuatro constantes.

Los parámetros yi se llaman hipercargas, ya que la transformación U(1)Y es análoga a la

correspondiende de la QED.

Vamos ahora a requerir que el Lagrangiano sea invariante bajo transformaciones locales

gauge SU(2)L ⊗ U(1)Y , es decir αi = αi(x) y β = β(x). Tal y cómo hicimos en la QED,

vamos a cambiar las derivadas por derivadas covariantes. Como tenemos cuatro parámetros

gauge, necesitamos cuatro bosones gauge diferentes,

Dµψ1(x) ≡
[
∂µ + igW̃µ(x) + ig′y1Bµ(x)

]
ψ1(x),

Dµψ2(x) ≡
[
∂µ + ig′y2Bµ(x)

]
ψ2(x),

Dµψ3(x) ≡
[
∂µ + ig′y3Bµ(x)

]
ψ3(x), (B.4)

donde g y g′ son dos constantes de acoplo y hemos definido el campo matriz de SU(2),

W̃µ(x) =
σi
2
W i
µ(x). (B.5)
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Queremos que Dµψj(x) transforme igual que los campos ψj(x), lo que nos fija cómo se

han de transformar los campos gauge,

Bµ(x) −→ Bµ
′(x) ≡ Bµ(x)−

1

g′
∂µβ(x),

W̃µ(x) −→ W̃ ′
µ(x) ≡ UL(x)W̃µU

†
L(x) +

i

g
∂µULU

†
L(x). (B.6)

De esta forma Bµ transforma de manera similar al fotón de la QED y W̃µ transforma según

SU(2). Cabe destacar que, por el momento, las hipercargas son parámetros arbitrarios, por

lo que los acoplos entre Bµ y ψj son libres y su intensidad puede variar, pero veremos más

adelante cómo quedan fijadas. Sin embargo, como en SU(2) las relaciones de conmutación no

son lineales, esto no pasa para W i
µ, por lo que la magnitud del acoplo es la misma.

Así pues, el Lagrangiano,

L =

3∑
j=1

iψ̄j(x)γ
µDµψj(x), (B.7)

es invariante bajo transformaciones locales del grupo electrodébil. Para construir un término

cinético para los bosones gauge, vamos a introducir unos tensores de una forma similar a la

del tensor electromagnético de la QED,

Bµν ≡ ∂µBν − ∂νBµ,

W̃µν ≡ − i

g

[
(∂µ + igW̃µ), (∂ν + igW̃ν)

]
= ∂µW̃ν − ∂νW̃µ + ig

[
W̃µ, W̃ν

]
,

W̃µν ≡ σi
2
W i
µν con W i

µν = ∂µW
i
ν − ∂νW

i
µ − gεijkW j

µW
k
ν , (B.8)

de manera que tenemos que Bµν es invariante bajo transformaciones de G, mientras que W̃µν

transforma de forma covariante (W̃µν → ULW̃µνU
†
L). De esta forma el Lagrangiano cinético

viene dado por,

LKin = −1

4
BµνB

µν − 1

4
W i
µνW

µν
i . (B.9)

De nuevo, la simetría gauge prohíbe la existencia de un término cinético para los bosones,

por lo que las partículas que describimos hasta ahora no tienen masa.

B.2. Obtención Lagrangiano de la QCD.

Queremos construir una teoría cuántica de campos. Para ello, vamos a denotar qαf al campo

de un quark con sabor f = (u, d, c, s, t, b) y color α. Para simplificar la notación, vamos a

tomar una notación vectorial en el espacio de color, qf ≡
(
q1f , q

2
f , q

3
f

)
. El Lagrangiano libre

de Dirac, viene pues dado por,

L0 =
∑
f

q̄f (iγ
µ∂µ −mf )qf , (B.10)
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que es invariante bajo transformaciones globales SU(3)C en el espacio de color,

qαf −→ (qαf )
′ ≡ Uαβ q

β
f , UU † = U †U = I, det(U) = 1, (B.11)

donde U ∈ SU(3). Esta matriz de rotación puede escribirse como,

U = ei
λa

2
θa , (B.12)

en donde 1
2λ

a (a = 1, 2, ..., 8) son las matrices generadores de la representación fundamental

de SU(3) y θa son parámetros arbitrarios.

Las matrices λa tienen traza nula, podemos denominar Ta = λa
2 y cumplen las siguientes

relaciones de conmutación, [
T a, T b

]
= ifabcT c, (B.13)

donde fabc son las constantes de estructura de SU(3) que son reales y totalmente

antisimétricas.

Como hemos hecho para los casos anteriores, vamos a exigir que el Lagrangiano sea

invariante bajo transformaciones locales de SU(3)C , es decir θa = θa(x). Para satisfacer esto,

de manera similar a Aµ en la QED, vamos a introducir una serie de campos gauge para

transformar la derivada en derivada covariante, ya que es la parte que nos da problemas.

Estos campos corresponderán a 8 bosones gauge, pues tenemos 8 parámetros distintos, y los

denominaremos gluones. Se denotan como Gµa(x), por lo que definimos,

Dµqf ≡ [∂µ + igsTaG
µ
a(x)] qf ≡ [∂µ + igsG

µ(x)] qf (B.14)

donde hemos introducido la matriz compacta [Gµ(x)] ≡ T aGµa(x) y donde gs es la constante

de acoplo de la interacción fuerte.

Queremos que Dµqf transforme igual que qf , lo que fija las propiedades de la

transformación del campo gauge,

Dµ −→ (Dµ)′ ≡ UDµU †, (B.15)

y por tanto, bajo una transformación infinitesimal δθa se tiene

qαf −→ (qαf )
′ = qαf + i(T a)αβδθaq

β
f , Gµa −→ (Gµa)

′ = Gµa −
1

gs
∂µ(δθa)− fabcδθbG

µ
c . (B.16)

El cómo se llega a la transformación del campo del gluón se puede ver en el anexo (B.3).

Notar que si comparamos con la transformación del campo del fotón en la QED (3.6), aquí

aparece un término extra debido a que SU(3) es un grupo no-Abeliano. Además, al contrario

que en la QED, gs es única, no dependiente del tipo del fermión.

Para construir un término cinético para los campos de los gluones, introducimos los

siguientes tensores,

Gµν(x) ≡ − i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + igs[G

µ, Gν ] ≡ T aGµνa (x), (B.17)

Gµνa (x) ≡ ∂µGνa − ∂νGµa − gsf
abcGµbG

ν
c (B.18)
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Luego bajo una transformación gauge SU(3)C ,

Gµν −→ (Gµν)′ = UGµνU † (B.19)

y la traza Tr(GµνGµν) = 1
2G

µν
a Gaµν permanece invariante. Tomando la normalización

apropiada del término cinético, el Lagrangiano invariante local SU(3)C de la QCD queda,

LQCD = −1

4
Gµνa Gaµν +

∑
f

q̄f (iγ
µDµ −mf )qf . (B.20)

B.3. Transformación local del gluón.

Sea un gluón Gaµ y un vector de color qf = (q1f , q
2
f , q

3
f ) donde (1, 2, 3) son los posibles

colores y f = u, d, c, s, t, b el sabor del quark. Vamos ahora a tomar una transformación local

SU(3)C en el espacio de color, de manera que conocemos cómo cambia qf pero no Gaµ,

Gµa(x) −→ Gµa(x) + δGµa(x), qf (x) −→ qf (x) + iT aδθa(x)qf (x). (B.21)

La derivada covariante, definida como Dµ = ∂µ + igsT
aGµa , actuando sobre un vector de

color transformará como,

Dµqf −→ (Dµqf )
′ = [∂µ + igsT

a (Gµa + δGµa)] (1 + iT aδθa) qf

= (1 + iT aδθa)∂
µqf + iT aqf∂

µ(δθa) + igsT
bGµb (1 + iT aδθa)qf+

+ igsT
aδGµa(1 + iT bδθb)qf .

(B.22)

Ahora, puesto que las matrices T a no conmutan, vamos a sumar y restar el término

(1 + iT aδθa)igsT
bGµb qf , despreciando los términos de segundo orden obtenemos,

Dµqf −→ (1 + iT aδθa) (∂
µ + igsT

aGµa) qf + iT aqf∂
µ(δθa) + igsT

aδGµaqf+

+ igsT
bGµb (1 + iT aδθa)qf − (1 + iT aδθa)igsT

bGµb qf

= (1 + iT aδθa)D
µqf + iT aqf∂

µ(δθa) + igsT
aδGµaqf + gsδθa[T

a, Tb]G
µ
b qf .

(B.23)

Conocemos la relación de conmutación de las matrices T a, dado en (B.13). Además, estas

matrices tienen la siguiente relación con la traza,

Tr(T aT b) =
1

2
δab. (B.24)

Ahora, queremos que Dµqf transforme como qf , por tanto si imponemos esto se ha de

cumplir,

0 = iT aqf∂
µ(δθa) + igsT

aδGµaqf + gsf
abcδθaG

µ
b Tc, (B.25)

que multiplicando por Td y tomando las trazas nos queda,

0 = iTr(T dT a)qf∂
µ(δθa) + igsTr(T

dT a)δGµaqf + gsf
abcδθaG

µ
bTr(T

dTc)

= i∂µ(δθd) + gsδG
µ
d + gsf

abdδθaG
µ
b .

(B.26)
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Despejando δGµd , realizando una permutación cíclica de los índices en fabd y renombrando

a→ b, b→ c y d→ a obtenemos,

δGµa = − 1

gs
∂(δθa)− fabcδθbG

µ
c . (B.27)
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Anexos C

Cálculos analíticos del Capítulo 4.

C.1. Cálculo de la sección eficaz del proceso e+e− → µ+µ−.

La sección eficaz de manera teórica viene dada para procesos donde las partículas iniciales

tienen la misma masa, por unidad de ángulo sólido, como,

∂σ

∂Ω
=

1

2E2
cm

∣∣∣~k∣∣∣
16π2Ecm

|M|2 , (C.1)

donde Ecm es la energía del centro de masas,
∣∣∣~k∣∣∣ es el módulo de las componentes espaciales

del momento del muón y M se trata del elemento matriz correspondiente al proceso.

Conocemos que el elemento matriz viene dado por,

iM = 〈ψini |Dµν(q)|ψfinal〉 , (C.2)

por lo que leyendo el diagrama de Feynman empleando D tenemos,

iM = v̄(pe2) (ieQγ
µ)u(pe1)

(
− igµν

q2

)
ū(pµ1) (ieQγ

ν) v(pµ2). (C.3)

Ahora para calcular |M|2, necesitamos conocer el complejo conjugado del elemento matriz,

− iM∗ = v̄(pµ2) (−ieQγν)u(pµ1)
(
igµν
q2

)
ū(pe1) (−ieQγµ) v(pe2), (C.4)

donde tanto para electrones como para muones |Q| = 1 Luego, realizando suma sobre espines

finales y promedio sobre iniciales, obtenemos,

|M|2 = 1

4

∑
Se1,Se2,Sµ1,Sµ2

e4

q4
v̄(pe2)γ

µu(pe1)ū(pµ1)γµv(pµ2)

· v̄(pµ2)γνu(pµ1)ū(pe1)γνv(pe1). (C.5)

Ahora reorganizamos los términos para poder realizar más adelante la suma de espines,

|M|2 = e4

4q4

∑
Se1,Se2,Sµ1,Sµ2

[v̄(pe2)γ
µu(pe1)ū(pe1)γ

νv(pe1)]

· [ū(pµ1)γµv(pµ2) · v̄(pµ2)γνu(pµ1)] . (C.6)

Utilizando las relaciones para los espinores u y v (2.42) encontramos,

|M|2 = e4

4q4
Tr
[
(/pe2 −me)γ

µ(/pe1 +me)γ
ν
]
Tr
[
(/pµ1 +mµ)γµ(/pµ2 −mµ)γν

]
. (C.7)
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Vamos ahora a realizar el cálculo de cada una de las trazas. Comencemos con la

concerniente a los electrones,

Tr
[
(/pe2 −me)γ

µ(/pe1 +me)γ
ν
]
= Tr

[
/pe2γ

µ
/pe1γ

ν
]
+meTr

[
/pe2γ

µγν
]

−meTr
[
γµ/pe1γ

ν
]
−m2

eTr [γ
µγν ] . (C.8)

Ahora, vamos a calcular el valor de estas trazas. Para ello, vamos a emplear las siguientes

propiedades de las matrices de Dirac,

Tr [γµγνγα] = 0, Tr [γµγν ] = 4gµν , (C.9)

Tr
[
γµγνγαγβ

]
= 4

(
gµνgαβ − gµαgνβ + gµβgνα

)
. (C.10)

Así pues, las trazas nos quedan,

Tr
[
/pe2γ

µ
/pe1γ

ν
]
= pe2αpe1βTr

[
γαγµγβγν

]
= 4pe2αpe1β

(
gαµgβν − gαβgµν + gανgµβ

)
,

= 4 (pµe2p
ν
e1 − (pe2 · pe1)gµν + pνe2p

µ
e1) ,

Tr
[
/pe2γ

µγν
]
= pe2αTr [γ

αγµγν ] = 0 = Tr
[
γµ/pe1γ

ν
]
= pe1βTr

[
γµγβγν

]
,

Tr [γµγν ] = 4gµν ,

por lo que finalmente obtenemos,

Tr
[
(/pe2 −me)γ

µ(/pe1 +me)γ
ν
]
= 4

[
pµe2p

ν
e1 − (pe2 · pe1)gµν + pνe2p

µ
e1 −m2

eg
µν
]

(C.11)

De manera similar podemos obtener el valor de la traza correspondiente a los muones,

Tr
[
(/pµ1 +mµ)γµ(/pµ2 −mµ)γν

]
= Tr

[
/pµ1γµ/pµ2γν

]
−mµTr

[
/pµ1γµγν

]
+mµTr

[
γµ/pµ2γν

]
−m2

µTr [γµγν ] , (C.12)

que empleando de nuevo las relaciones (C.9) obtenemos,

Tr
[
(/pµ1 +mµ)γµ(/pµ2 −mµ)γν

]
= 4

[
pµ1µpµ2ν − (pµ1 · pµ2) gµν + pµ1νpµ2µ −m2

µgµν

]
.

(C.13)

Ahora ya podemos calcular el elemento matriz al realizar la multiplicación de las dos

trazas,

|M|2 = 16e4

4q4
{(pe2 · pµ1)(pe1 · pµ2)− (pe2 · pe1)(pµ1 · pµ2)

+ (pe2 · pµ2)(pe1 · pµ1)−m2
µ(pe2 · pe1)

− (pe2 · pe1)
[
(pµ1 · pµ2)− 4(pµ1 · pµ2) + (pµ2 · pµ1)− 4m2

µ

]
+ (pe2 · pµ2)(pe1 · pµ1)− (pe1 · pe2)(pµ1 · pµ2)

+ (pe2 · pµ1)(pe1 · pµ2)−m2
µ(pe1 · pe2)

−m2
e

[
(pµ1 · pµ2)− 4(pµ1 · pµ2 + (pµ2 · pµ1)− 4m2

µ)
]}
,

(C.14)
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lo cual podemos simplificar hasta obtener,

|M|2 = 8e4

q4
[(pe2 · pµ1)(pe1 · pµ2) + (pe2 · pµ2)(pe1 · pµ1)

+m2
µ(pe2 · pe1) +m2

e(pµ1 · pµ2) + 2m2
em

2
µ

]
. (C.15)

Una vez obtenido el elemento matriz en función de los productos de los momentos hemos

de calcular dichos productos. Para ello, vamos a colocarnos en el sistema CDM. Como vemos

en el la figura (C.1), los momentos de las distintas partículas las podemos escribir como,

Figura C.1: Momentos de las partículas iniciales y finales vistas desde el sistema centro de
masas.

pe1 = (E, pe, 0, 0)

pe2 = (E,−pe, 0, 0)

 pµ1 = (E, pµcos θ, pµ sin θ, 0)

pµ2 = (E,−pµcos θ,−pµ sin θ, 0)

 (C.16)

Con esto podemos calcular de manera directa el valor del momento del fotón, así como

los productos de los dos primeros términos del elemento matriz. El momento del fotón viene

dado por,

q = pe1 + pe2 = (2E, 0, 0, 0) ⇒ q2 = 4E2. (C.17)

Ahora los productos los podemos escribir como,

(pe1 · pµ2) = E2 + pepµ cos θ

(pe2 · pµ1) = E2 + pepµ cos θ

 (pe1 · pµ1) = E2 − pepµ cos θ

(pe2 · pµ2) = E2 − pepµ cos θ

 (C.18)

Ahora para calcular los términos que acompañan a las masas vamos a emplear,

(pe1 + pe2)
2 = p2e1 + p2e2 + 2(pe1 · pe2)

= q2 = 4E2

 (C.19)

y de manera similar para los muones. Realizando un poco de álgebra encontramos,

(pe1 · pe2) = 2E2 −m2
e (pµ1 · pµ2) = 2E2 −m2

µ (C.20)
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Con todo esto y desarrollando las ecuaciones, llegamos a que el elemento de matriz en

función de los momentos queda,

|M|2 = e4

E4

[
E4 + p2ep

2
µ cos

2 θ + E2(m2
µ +m2

e)
]

(C.21)

Ahora si tomamos que p2 = E2 − m2 tanto para electrones como para muones en el

sistema CDM, podemos reescribir (C.21) como,

|M|2 = e4

[
(1 + cos2 θ) +

m2
µm

2
e

E4
cos2 θ +

m2
µ +m2

e

E2
(1− cos2 θ)

]
(C.22)

Ahora ya podemos calcular la sección eficaz según (4.2). Para ello, vamos a sustituir en

ella el valor del elemento matriz, tomando
∣∣∣~k∣∣∣ = pµ = E

√
1− m2

µ

E2 y Ecm = 2E, obteniendo,

dσ

dΩ
=

e4

64π2E2
cm

√
1−

4m2
µ

E2
cm

[
(1 + cos2 θ) +

16m2
µm

2
e

E4
cm

cos2 θ +
4(m2

µ +m2
e)

E2
cm

(1− cos2 θ)

]
.

(C.23)

Introduciendo la constante de estructura fina, que en unidades naturales se trata de α = e2

4π

e integrando en el diferencial de ángulo sólido se obtiene,

σ =
α2

4E2
cm

√
1−

4m2
µ

E2
cm

·

·
∫ 2π

0
dφ

∫ π

0
sin θdθ

[
(1 + cos2 θ)

16m2
µm

2
e

E4
cm

cos2 θ +
4(m2

µ +m2
e)

E2
cm

(1− cos2 θ)

]
=

=
πα2

4E2
cm

√
1−

4m2
µ

E2
cm

[
8

3
+

32m2
µm

2
e

3E4
cm

+
16(m2

µ +m2
e)

3E2
cm

]
.

(C.24)

Este es el valor de la sección eficaz en función de los valores de la energía del centro de

masas.

C.2. Cálculo de la anchura a media altura del proceso b → clν.

El elemento matriz vienen dado de nuevo según (C.2) de manera que, para este diagrama,

se obtiene,

iM = ū(pc)

[
ig

2
√
2
γµ(1− γ5)Vcb

]
−i

k2 −m2
W

[
gµν + (ξ − 1)

kµkν
k2 − ξm2

W

]
· ū(pl)

[
ig

2
√
2
γν(1− γ5)

]
v(pν), (C.25)

donde mW es la masa del bosón W− y Vcb el elemento de la matriz CKM correspondiente

a este proceso. Tomando el complejo conjugado, el gauge de Feynman-’t Hooft, y sumando
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sobre espines finales y promediando sobre iniciales obtenemos,

|M|2 = 1

4

∑
Sb,Sc,Sl,Sν

g4 |Vcb|2

26(k2 −m2
W )

ū(pc)γ
µ(1− γ5)u(pb)ū(pl)γµ(1− γ5)v(pν)

· v̄(pν)(1 + γ5)γνu(pl)ū(pb)(1 + γ5)γνu(pc). (C.26)

Similar al anterior proceso, reorganizando y utilizando (2.42) se llega a,

|M|2 = g4 |Vcb|2

28(k2 −m2
W )

Tr
[
(/pc +mc)γ

µ(1− γ5)(/pb +mb)(1 + γ5)γnu
]

Tr
[
(/pl +ml)γµ(1− γ5)(/pν −mν)(1 + γ5)γν

]
. (C.27)

Utilizando las relaciones de las matrices de Dirac (C.9), así cómo las siguientes relaciones

con la matriz γ5,

γ5γ5 = I (C.28)

γµγ5 = −γ5γµ (C.29)

Tr
[
γµγνγαγ5

]
= Tr

[
γµγνγ5

]
= 0 (C.30)

Tr
[
γαγµγβγνγ5

]
= −4iεαµβν (C.31)

donde εαµβν se trata del tensor totalmente antisimétrico de Levi-Civita. Podemos escribir el

elemento matriz como

|M|2 = g4 |Vcb|2

22(k2 −m2
W )

[
pµc p

ν
b − (pb · pc)gµν + pνcp

µ
b − ipcαpbβε

αµβν
]

·
[
plµpνν − (pl · pν)gµν + plνpνµ − ipσl p

ρ
νεσµρν

]
. (C.32)

Ahora, si realizamos el producto aparecen diferentes términos multiplicados por el tensor

de Levi-Civita. Aquellos en los que éste se encuentre acompañado de los cuatro momentos se

anularan, pues, por conservación de momento, pb = pc+ pe+ pν . También aparecen términos

en los que el tensor esté multiplicado por una métrica, como por ejemplo, gµνεαµβν = εαβνν .

Estos términos se anularán por la antisimetría del tensor, obteniendo,

|M|2 = g4 |Vcb|2

22(k2 −m2
W )

[
2(pc · pl)(pb · pν) + 2(pc · pν)(pb · pl)− pcαpbβp

σ
l p

ρ
νε
αµβνεσµρν

]
.

(C.33)

Utilizando la antisimetría del tensor de Levi-Civita, así como la propiedad,

εαβµνεαβρσ = −2
(
δµρ δ

ν
σ − δµσδ

ν
ρ

)
, (C.34)

de manera que podemos simplificar hasta obtener,

|M|2 = g4 |Vcb|2

(k2 −m2
W )

(pc · pl)(pb · pν). (C.35)
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Ahora, situándonos en el sistema centro de masas, tomando el quark b en reposo, podemos

obtener los valores de los productos escalares,

pb = (Eb, 0, 0, 0)

pν = (Eν , ~pν)

 pb · pν = EbEν = mbEν , (C.36)

y el otro producto lo obtenemos como,

(pc + pl)
2 = p2c + p2l + 2(pc · pl) ⇒ pc · pl =

1

2

[
(pc + pl)

2 − p2c − p2l
]
, (C.37)

utilizando,

pb = pc + pl + pν ⇒ pc + pl = pb − pν = (Eb − Eν ,− ~pν) (C.38)

tenemos,

pc · pl =
1

2

[
(Eb − Eν)

2 − E2
ν −m2

c −m2
l

]
=

1

2

(
m2
b − 2mbEν −m2

c −m2
l

)
. (C.39)

Si suponemos que el momento del bosón es mucho menor que la masa del W− obtenemos

que,

|M|2 = g4 |Vcb|2

2m2
W

(mbEν)
(
m2
b − 2mbEν −m2

c −m2
l

)
. (C.40)

Una vez ya obtenido el elemento matriz en función de las masas pasamos a calcular la

anchura a media altura de la desintegración. Para ello, se tiene,

dΓ =
|M|2

2mb
(2π)4δ4(pb − pc − pl − pν)

d3~pc
(2π)32Ec

d3~pl
(2π)32El

d3~pν
(2π)32Eν

. (C.41)

Vamos a ver la función delta de Dirac en cuatro dimensiones. En concreto, ésta la podemos

escribir como,

δ4(pb − pc − pl − pν) = δ(Eb − Ec − El − Eν)δ
3(~pb − ~pc − ~pl − ~pν), (C.42)

donde, tomando el sistema CDM, ~pb = 0, Eb = mb, por lo tanto la delta en tres dimensiones

nos permite eliminar la integral en ~pc ya que tenemos ~pc = ~pl + ~pν . Además, tenemos que

la energía del quark c la podemos escribir como Ec =
√
m2
c + |~pc|2 =

√
m2
c + |~pl + ~pν |2. Si

suponemos que ~pl y ~pν tienen sus direcciones formando un ángulo θ se tiene que |~pl + ~pν |2 =

|~pl|2 + |~pν |2 + 2 |~pl| |~pν | cos θ, y por tanto, como mν = 0, obtenemos que,

Ec =
(
m2
c + |~pl|2 + E2

ν + 2 |~pl|Eν cos θ
)1/2

. (C.43)

Ahora queremos simplificar d3~pν . Para ello vamos a derivar con respecto del ángulo la

energía del quark c,

dEc
dθ

=
|~pl|Eν sin θ

Ec
⇒ sin θdθ = dEc

Ec
Eν |~pl|

. (C.44)
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Si desarrollamos ahora d3~pν y sustituimos la expresión anterior nos queda,

d3~pν = E2
νdEν sin θdθdϕ =

EcEν
|~pl|

dEνdEcdϕ. (C.45)

Podemos ver que la expresión (C.41), integrando en Ec y en φ nos queda reducida a,

dΓ =
|M|2

(4π)4mb

d3~pl
El |~pl|

dEν

∫ E+
c

E−
c

dEcδ(mb − Ec − El − Eν), (C.46)

donde los límites de la integral los obtenemos de (C.43) cuando el coseno toma los valores ±1.

Así, si tenemos E−
c < mb−El−Eν < E+

c la integral vale la unidad, de lo contrario, se anulará.

Vamos a suponer que nos encontramos dentro de los límites de la integral de aquí en adelante.

Vamos a continuar ahora viendo cómo desarrollar el valor de d3~pl. Puesto que ya hemos

integrado en ϕ y en Ec hemos integrado en todo el ángulo solido, de manera que d3~pl =

4π |~pl|2 d |~pl|. Tomando diferenciales en E2
l = m2

l + |~pl|2 se tiene EldEl = |~pl| d |~pl|. Por lo

tanto obtenemos d3~pl = 4π |~pl|EldEl. Así, la expresión (C.46) queda reducida a,

dΓ =
|M|2

(4π)3mb
dEldEν . (C.47)

Ahora ya que hemos obtenido todo en función de diferenciales de energías, podemos

sustituir el valor del elemento matriz (C.40). Realizando la integral en Eν tenemos,

dΓ

dEl
=

g4 |Vcb|2

2(4π)3m4
W

∫ E+
ν

E−
ν

Eν(m
2
b −m2

c −m2
l − 2mbEν)dEν (C.48)

donde los límites de la integral vienen dados por la condición E−
c < mb − El − Eν < E+

c .

Estos límites son,

E±
ν =

1
2(mb

2 −m2
c +m2

l )−mbEl

mb − El ∓
√
E2
l −m2

l

. (C.49)

De esta forma, resolviendo la integral y realizando la sustitución g2

m2
W

= 8GF√
2

, donde GF
es la constante de Fermi, obtenemos,

dΓ

dEl
=

32G2
F |Vcb|2

2(4π)3

[
(m2

b −m2
c −m2

l )
1

2
(E+

ν
2 − E−

ν
2
)− 2

3
mb(E

+
ν
3 − E−

ν
3
)

]
. (C.50)
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Anexos D

Reglas de Feynman.

D.1. Reglas de Feynman para la QED.

Para este caso partimos del término de interacción de la QED,

Lint = −eQψ̄γµψAµ . (D.1)

Podemos identificarlo con la cantidad asociada a un vértice de interacción

electromagnético,

Aµ

ψ̄

ψ

≡ −ieQγµ. (D.2)

Los fotones internos se tratan de fotones mediadores de la interacción, y por tanto van a

venir dados por el propagador obtenido en (A.29),

γ
µ ν ≡ iDµλ = − i

k2 + iε

[
gµλ − (1− ξ)

kµkλ
k2

]
. (D.3)

Los fotones externos, sin embargo, van a venir dados por el campo del fotón y tendrán

una polarización,

k

Aµ ≡ εµ(k
α), (D.4)

k

Aµ ≡ ε∗µ(k
α). (D.5)

Cuando queremos calcular la sección eficaz de un proceso en el que intervienen fotones

externos hemos de sumar únicamente sobre las polarizaciones transversales, obteniendo,

2∑
r=1

εµr (k
α)ενr (k

α) = −gµν . (D.6)

Se puede ver que ψ puede aniquilar un fermión o crear un antifermión, ψ̄ puede crear

un fermión o aniquilar un antifermión y finalmente Aµ crea o aniquila un fotón, es decir,
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tenemos,

≡ ψ+(p),

≡ ψ̄−(p),

≡ ψ̄+(p),

≡ ψ−(p).

Empleando las definiciones (2.40), podemos ver una relación más estrecha con las partículas

y antipartículas.

D.2. Reglas de Feynman Interacción Electrodébil.

Similar a cómo hemos hecho en la sección anterior, podemos obtener las reglas de Feynman

correspondientes a los términos de interacción en la teoría electrodébil. Si nos fijamos en las

corrientes cargadas, partiendo del Lagrangiano (3.29), podemos obtener los siguientes vértices,

W−
µ

l−

ν̄l

≡ ig

2
√
2
γµ(1− γ5),

W−
µ

ui

dj

≡ ig

2
√
2
γµ(1− γ5)Vij , (D.7)

donde i, j = 1, 2, 3 representa la familia correspondiente.

De la misma manera, tomando el Lagrangiano de las corrientes neutras (3.20) y separando

la interacción con el fotón, que sigue las reglas de Feynman vistas en la sección anterior de

este anexo, podemos obtener los vértices de interacción para el Z como,

Zµ

νl

ν̄l

≡ ig

4 cos θW
γµ(1− γ5), (D.8)

Zµ

f

f̄

≡ ig

cos θW
γµ
[
gfL

(
1− γ5

2

)
+ gfR

(
1 + γ5

2

)]
. (D.9)

Finalmente, podemos ver que los propagadores correspondientes a los bosones con masa

vienen dados por,

q

W±
µ ν

q

Zµ ν

(D.10)
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Dµν(q) ≡ −i
q2 −m2

X

[
gµν + (ξ − 1)

kµkν

q2 − ξm2
X

]
, (D.11)

con mX la masa del bosón W o Z, según corresponda.
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Anexos E

Valores numéricos usados en los cálculos.

Todos los valores numéricos han sido obtenidos de la versión más reciente del Particle

Data Group, [2].

E.1. Masas de las partículas.

Partícula Masa [MeV]
e 0,51099895000
µ 105,6583755
τ 1776,86
b 4180
c 1270
B̄0 5279,66
B−
c 6274,47

D− 1869,66
D∗− 2010,26
J/ψ 3096,900

Tabla E.1: Masas de las partículas empleadas en los cálculos.

E.2. Otras constantes.

α 0,0072973525628
Vcb 0,04153
GF 1,1663787× 10−11MeV−2

τB0 1,519×10−12 s
τB−

c
0,510 ×10−12 s

~ 6,582119569×10−22MeV s

Tabla E.2: Otras constantes empleadas en los cálculos.
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