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Capitulo 1

Introduccion.

El Modelo Estandar (SM - del inglés ”Standard Model”) es una teoria cuantica de
campos que consigue explicar, a través de una serie de simetrias, tres de las interacciones
fundamentales de la naturaleza, la interaccién fuerte, el electromagnetismo y la interaccion
débil, unificando estas dos tltimas en una sola, la interaccion electrodébil.

Este modelo ha sido confirmado experimentalmente con gran precisién en los experimentos
de altas energias, siendo la tltima de sus evidencias el descubrimiento de la particula de Higgs.
Sin embargo, existen algunas medidas experimentales recientes que muestran desviaciones
respecto a las predicciones del SM, como son los procesos que involucran el intercambio de
sabor de los quarks ¢ y b, B = D& — = y B, — J/vl~ 1, entre otros.

Nuestro objetivo en este trabajo es el estudio de dichos procesos, para los cudles vamos
a ver el desarrollo de la teoria del SM. En el Capitulo 2, veremos cémo se llega a la
Electrodindmica Cuantica (QED - del inglés "Quantum Electrodynamics”) partiendo desde el
electromagnetismo clasico, pasando por cuantizar el campo electromagnético libre y viendo
el desarrollo de la ecuaciéon de Dirac. Después, en el Capitulo 3 veremos el SM, comprobando
primeramente cémo podemos encontrar la QED simplemente imponiendo invariancia gauge.
A continuacion nos detendremos en el estudio de la teoria electrodébil, acabando el capitulo
con una breve introducciéon a la Cromodindmica Cuédntica (QCD - del inglés "Quantum
Cromodynamics”). En el Capitulo 4, emplearemos todo lo aprendido para estudiar un proceso
regido por la QED, asi como varios de los procesos de la teoria electrodébil en los que
encontramos discrepancias con las predicciones del SM, lo que constituye el resultado principal
de este Trabajo de Fin de Grado. Finalmente, en el Capitulo 5 se exponen las conclusiones
obtenidas. Como material suplementario, en los Anexos A y B se detallan los desarrollos
matematicos necesarios para estudiar el electromagnetismo y el SM respectivamente, en el
Anexo C se encuentran los calculos analiticos empleados en los procesos fisicos estudiados,
en el Anexo D se resumen las reglas de Feynman que intervienen en los diagramas que hemos
estudiado, y en el Anexo E incluimos los valores numéricos que introducimos en los programas

para obtener nuestros resultados.



Capitulo 2

Interaccion electromagnética.

En este capitulo presentamos la electrodindmica; la formulacién dindmica del campo
electromagnético, que incluye una de las interacciones fundamentales entre particulas; la
interaccion electromagnética. Partiremos del campo electromagnético libre, obtendremos
las ecuaciones de Maxwell en forma covariante e introduciremos la invariancia gauge. A
continuacién discutiremos el proceso de cuantizacién, terminando con la introduccién del

Lagrangiano de la electrodindmica para fermiones y presentando la teoria de la QED.

2.1. Campo electromagnético clasico. Ecuaciones de Maxwell.

Forma covariante. Invariancia gauge.

Para introducirnos al formalismo de la teoria covariante, que implica invariancia Lorentz
de las ecuaciones, vamos a partir de las ecuaciones de Maxwell para el campo electromagnético

clasico, las cuales podemos agrupar en ecuaciones homogéneas y no homogéneas,

L. . . 10B -

VB=0, VxE+-— =0, 2.1
% +08t (2.1)

VE=p, VxB--2=7] 2.2

donde B es el campo magnético, E el campo eléctrico, ¢ la velocidad de la luz, V se define

Oz’ dy’ Oz
mientras que ; es la densidad de corriente eléctrica (fuente vectorial del campo B ). En total, 8

como V = ( i 8) y p es la densidad de carga eléctrica (fuente escalar del campo E),

ecuaciones que involucran las componentes del campo eléctrico y magnético. Podemos ahora

introducir el campo escalar ¢ y el potencial vector /1

L., , - 104
B=V x4, e vy 194 (2.3)

Estas cantidades las podemos agrupar en un vector de cuatro componentes (cuadrivector)

que denominaremos potencial, A* = (¢, A). Sin embargo, no estdn determinadas de manera

tnica. Si tomamos una funcién al menos dos veces derivable arbitraria, f(Z,t), tenemos,

10f L

oo =p+-—, A A =A-VFf, (2.4)
c Ot
o empleando la notacién covariante,
AF 5 AT =AM L ORf (2.5)



donde 0* = (%%, — _’).

Estas transformaciones mantienen invariantes los campos B y E y sSe conocen
como transformacion de gauge de segunda especie. Las mismas corresponden con una
transformacion global que actiia sobre todos los puntos del espacio que estamos empleando,
y que se puede ver que coincide con U(1).

Asi pues, podemos reescribir las ecuaciones de Maxwell en funcién de ¢ y A. Las ecuaciones
homogéneas (2.1) se cumplen directamente, mientras que las ecuaciones no homogéneas (2.2)
pasan a reescribirse como,

18 18@ - - — - 1880 - - 1_.,
c@t<c8t+v> o, +V< +v) -7, (2.6)

donde [0 = cizg—; — V2 es el operador de D’Alambert. Notar que estas ecuaciones no son
invariantes Lorentz (debido al segundo término de éstas), por lo que introducir A" no nos ha
llevado a una teoria covariante. Asi pues, vamos a definir un nuevo tensor que nos permitira
escribir las ecuaciones de Maxwell en forma covariante. Lo denominaremos Tensor de Campo

Electromagnético y viene dado por,

94, 04,
Ozt Qav ]

Fl = 0,A, — 8,0, (2.7)

donde z# = (ct, —%). Tomando unidades naturales, es decir i = ¢ = 1, podemos reescribir las

ecuaciones de Maxwell homogéneas (2.1) como,
8)\FMV + 8MFI,)\ + a,,FAH =0, (2.8)
y las ecuaciones no homogéneas (2.2) como,

8, F* = ji (2.9)

-,

donde j* = (p,j) es el cuadrivector densidad de carga-corriente. Es inmediato ver que el

tensor de campo electromagnético es invariante bajo las transformaciones gauge (2.5) ya que,
F'" =0t A" — VA = 9P AY 4 010" f — OV AF — OVOM f = O AV — O¥ AV, (2.10)

y por tanto las ecuaciones del campo electromagnético (EM) en forma covariante (2.8)-(2.9)
son también invariantes bajo transformaciones gauge. De esta forma hemos conseguido escribir
de manera covariante las ecuaciones de Maxwell.

Si quisiéramos utilizar una formulacién Lagrangiana, partirifamos de la densidad

Lagrangiana definida como,
_ 1 [y}
Lpy = —ZFWF —jrA,, (2.11)

donde el primer término describe la dindmica del campo electromagnético libre y el segundo

corresponde con la corriente de interaccién entre el campo A, y el operador de campo asociado



a las fuentes externas. A partir de esta densidad Lagrangiana, obtenemos las ecuaciones (2.9)
utilizando las ecuaciones de Euler-Lagrange.

Finalmente, necesitariamos cuantizar la teoria del campo electromagnético. Antes de
intentar cuantizar, vamos a estudiar los grados de libertad del sistema. Desde el principio,
tenemos un total de 8 ecuaciones para 6 parametros, las componentes de los campos E y B , de
manera que nos quedan dos grados de libertad independientes. Esto implica que en el potencial
AP que pasaremos a denominar campo del fotén, tenemos 4 componentes de las cuales dos
de ellas son independientes. Por otro lado, conocemos que el fotén tiene dos estados fisicos
distintos, sus dos estados de polarizaciéon. La discordancia entre el nimero de componentes
del campo del foton y el nimero de estados fisicos se denomina Invariancia gauge, que viene
dada por la simetria gauge de la teoria de Maxwell. Una forma de solucionarlo es imponer
condiciones adicionales sobre el campo A, que restringen el nimero de sus componentes
independientes. Llamaremos a este proceso fijar el gauge. Hay diferentes condiciones que
podemos imponer, por ejemplo: 7). 9, A* = 0, denominado gauge de Lorenz y que asegura la
invariancia Lorentz, ). VA = 0, denominado gauge de Coulomb, etc..

Como hemos mencionado antes, al escribir las ecuaciones de Maxwell en forma covariante,
tenemos una interaccion entre el campo del fotén y fuentes externas. Si estas fuentes son los
electrones, necesitamos describir como se comportan éstos, asi como cualquier otro fermion,

tema del que nos ocupamos en la seccién 2.3.

2.2. Cuantizacién del campo electromagnético libre.

Hasta ahora no hemos cuantizado ninguno de los campos, simplemente los hemos tratado
de manera clasica hasta llegar a una expresion covariante de los mismos. Procedemos pues
a cuantizar el campo electromagnético. Para ello, se puede ver que la densidad Lagrangiana
definida en (2.11) no es adecuada para cuantizar de manera canodnica, pues uno de los
momentos candnicos es nulo y ademaés, no existe el propagador asociado.

Para solucionar esto tenemos que tener en cuenta que hay una invariancia gauge de la que
ya hemos hablado anteriormente. Vamos a tomar el gauge de Lorenz (0, A" = 0) de manera
que procederemos a fijar el gauge.

Primeramente, vamos a modificar la densidad Lagrangiana de Maxwell (2.11)

introduciendo la definicién del tensor electromagnético, obteniendo,
— L0400 %) + E@,4m2 — jra
L= —5(0,4,)(0" A7) + S (0, A")" — " Ay (2.12)

Se puede ver que esta densidad soluciona el problema del momento canénico nulo, sin

embargo, no hemos hecho ningin cambio que solucione la existencia del propagador. Para



ello vamos a anadir el término que nos va a permitir fijar el gauge. Este término es,
Lgr = —2(3 A”) (2.13)

donde £ es un parametro que nos permitird elegir el gauge. De esta forma, obtenemos,

1 1
L=-3 [(@Au)(a"A") - <1 - g) (8;“4“)2} —j*A,. (2.14)
Podemos recuperar las ecuaciones de Maxwell tomando las ecuaciones de Euler-Lagrange,
pero incluyendo el parametro &,

A (1 - g) 0" (9, AM) = ", (2.15)

de manera que no hemos cambiado las ecuaciones, sino que hemos transformado A,, pero

respetando el gauge de Lorenz. Notar que ahora los momentos canénicos no son nulos,

o 1 opn g
0 = i Au+(1 §>gu (9,AY), (2.16)

donde g"° es la componente j,0 de la métrica del espacio de Minkowski, g**. Sin embargo,
no podemos realizar la cuantizacién canodnica directamente. Si promovemos A* al caricter de

operador, este tiene que cumplir la siguiente relacién de conmutacién,
[0 AL(Z,), 11 (§,1)] = i0"8°(Z — §) # 0, (2.17)

donde §3(F — #) es la delta de Dirac en tres dimensiones centrada en 7. Sin embargo, al
emplear el gauge de Lorenz, esta relacion no puede imponerse, pues uno de los términos del
conmutador es nulo.

Asi, vamos a emplear otra manera para llegar a la cuantizaciéon del campo
electromagnético. Comenzamos considerando que no hay fuentes externas, es decir, j#* = 0.
Ahora, vamos a ver cémo es la soluciéon de la ecuacién realizando una expansiéon de A
como un conjunto completo de soluciones de la ecuacién, es decir, vamos a estudiar el

espacio de Fock asociado. Separamos A* en modos de frecuencia positiva y negativa,

A (Z) = AFT(Z) + AP~ (Z), donde

-

ol B
k ar ik ’

3 3
wer@) = [ =
27r 32wk

(2.18)
PE O it T ikt

A”f:/ et (k)al (k)e™

@)= | e BB

donde €} representa un conjunto de cuadrivectores linealmente independientes que definen
la polarizacion para cada una de las componentes de k (cuatro estados posibles para cada
una); k, es el cuadrivector nimero de ondas, wy = ‘E‘ v ar(k) v al(k) son los operadores

de aniquilacion y creacién de fotones asociados al espacio de Fock, respectivamente. Notar



que € (k) ha de cumplir ciertas restricciones a la hora de transformarse pues tiene cuatro
componentes, pero sélo existen dos estados fisicos de polarizacién del fotén, por lo que

cumplen las siguientes relaciones de ortogonalidad y completitud,

eﬁe*su = —(ops 1,5=0,1,2,3

3 . L ( con ) (2.19)
S Gt = gt G=G=C=1
r=0

donde 6, es la delta de Kroenecker.

Ahora vamos a realizar una cuantizacién covariante. Para ello, vamos a imponer unas

relaciones de conmutacion para A, y 117,

[Au (&, 1), 117 (§,1)] = i6,,6° (& — 7) , (2.20)
[Au(Z,1), Ay (7, 0)] = [IT*(Z, 1), 11"(9,1)] = 0, (2.21)

que en términos de los operadores creacién y aniquilacién serian,

)] = Gr0rs0® (k= K) (2.22)
lar (), as(K)] = [al (k). al (k)] = 0, (2.23)

donde aparece un signo negativo en el conmutador de ag con ag. Esto conlleva a la existencia
de probabilidades negativas por lo que surge un problema. Este se soluciona al relajar la
condicién del gauge de Lorenz empleando la solucién de Gupta y Bleuler, por la que para
conectar esta teoria cudntica con la teoria clasica del electromagnetismo basta con imponer
que un estado [¢) cumpla,

O AP ) = 0. (2.24)

Esta condicién nos lleva a la eliminaciéon de los estados de polarizacién escalar y
longitudinal que son estados no fisicos del sistema. Estos estados han sido definidos en el
anexo A.l. De esta manera ya hemos obtenido la cuantizaciéon del campo.

Ahora podemos ver que el Hamiltoniano del sistema estaria dado por,

3
H= / 4k wy, [Z al(K)a, (k) — al(k)ao(F)| . (2.25)
r=1

Esta ecuacién nos muestra que el valor esperado del Hamiltoniano depende tinicamente
de los estados de polarizaciéon transversal, es decir, los estados no fisicos no son relevantes.
Por tanto, no tenemos el problema de probabilidades negativas que hemos mencionado.

Asi pues, podemos crear el espacio de Fock del foton. Definimos un estado como la suma

de los estados transversales y la combinacién de los estados escalares y longitudinales,

) = [vr) + [¥siL) (2.26)



de manera que la parte transversa solo contiene fotones transversales. Sea |0) el estado de
vacio,

¥r) o< al (k)ab(k2) [0) (2.27)

mientras que en la parte escalar y longitudinal tenemos,

) o< (al(E) = a(F)) 10} (2:28)

Podemos ver que dependiendo del valor de |¢g7) tenemos varios estados posibles que
corresponden al mismo estado fisico. De esta forma hemos creado una interpretacion cudntica
del campo electromagnético libre. Un desarrollo més completo de la cuantizaciéon del campo

electromagnético se presenta en el anexo A.2.

2.2.1. Propagador del fotén.

Otra forma de ver la cuantizacion de la teoria es comprobar la existencia del propagador.
Los célculos detallados para obtener la expresién para el propagador del fotén (D*(k7)), asi
como la notacién empleada, se presentan en el anexo A.3. Este nos queda,

2

D) = g | o ebhertan) + B S T | 220
r=1

donde podemos identificar distintas contribuciones. La primera de ellas contiene tinicamente
las polarizaciones transversales y la podemos entender como un intercambio de fotones reales.

Los siguientes dos términos los podemos escribir como la suma de dos contribuciones,

k2 ntn?
DY (k%) = 2.30
¢ (K7) k2 +ie (k-n)2 — k2’ (2:30)
bRy — (k- BEY 4 kHnY
DI (k) = ErEY — (k- n)(n kY + kEFn”) (231)

(k%2 +ie) [(k - n)? — k2]
Para darle significado fisico, vamos a estudiar un proceso de dispersién que involucre el

fotén como una particula intermedia. El elemento de matriz de esta interaccién lo podemos

escribir en forma integral como,
[ e [ atye @)D )5 ). (2.32)

siendo j{' y j4 dos densidades de corriente que interactiian via el campo del fotén. Tomando

e — 0 podemos escribir D’ (k*) como,

hnv [ d3kekT 0.0  ntn?
D (z0) = 2 w A0k — 5(z°). 2.
¢ = e | T [ = o) (2.33)

Asi pues, tenemos una contribucién de la forma,

/d4m”/d4 G (gi?)d(:):o —yY). (2.34)

47 |x

7



La expresién tiene una dependencia con 1/r en el denominador y con §(z°) que son
caracteristicas de un potencial de Coulomb instantaneo, pero en este caso es entre dos
densidades de corriente.

Finalmente, vamos a ver la interpretacién fisica de D%’ (k). Para empezar, (2.32) en el

espacio de momentos pasa a ser,
122 d4ka - b « Q) V(1.0
Dy = (27r)4‘71 (—k )D,Lw(k )dz (k%) . (2.35)

Puesto que las corrientes son conservadas, en el espacio de momentos, los términos de
la forma k,J” se anulan, por tanto, como todos los términos de D%” multiplicados por las
corrientes tienen esa forma, su contribucién al elemento de matriz de interaccién es nula. Por
ende, el propagador del fotén nos describe tinicamente el intercambio de fotones transversos
y la interaccién de Coulomb instanténea entre cargas. Las reglas de Feynman asociadas al

foton se pueden encontrar en el anexo D.1.

2.3. Campo de Dirac.

Para describir el comportamiento de fermiones libres vamos a introducir la ecuacién de
Dirac,

(179 — m) = 0, (2.36)

donde v* son las matrices de Dirac, m la masa de la particula y 1 es el campo fermidnico.
Tanto la definicién de estas matrices, como el desarrollo para obtener la ecuacién de Dirac se
incluyen en el anexo A.4.

La densidad Lagrangiana asociada a la ecuacién de Dirac viene dada por
Lp= wT'yO(iv“é?H —m)p = (i —m)ip, (2.37)

donde hemos introducido la notacién @ = Y0, y definimos ¥ = iy0, con YT el adjunto del
campo . Si aplicamos las ecuaciones de Euler-Lagrange a esta densidad recuperaremos la
ecuacién (2.36).

Como queremos que el Lagrangiano sea invariante bajo transformaciones de Lorentz vamos
a ayudarnos de la representacién quiral. El grupo de Lorentz ortocrono propio es isomorfo al
grupo SU(2)®SU(2) ya que toda representacién irreducible del grupo de Lorentz la podemos
escribir como el producto de las representaciones espinoriales. Estas son dos componentes,
los espinores de Weyl, 11, v ¥r, que se tratan de los campos levégiro y dextrogiro. Podemos

escribir un espinor de Dirac de cuatro componentes en la representacion quiral como,

vp = (Z;) : (2.38)



Similar a lo que hemos hecho en la seccién anterior, podemos obtener las soluciones de la

ecuacion de Dirac como una descomposicién de Fourier,
p

o) = / (20)3\2E,

donde E, es la energia correspondiente al momento p, u(p) y v(p) son los espinores de Dirac

(u(me*iﬁf + v(ﬁ)eiﬁf) , (2.39)

bésicos y donde podemos definir dos componentes del campo 1+ y 1~ que satisfacen las

siguientes ecuaciones,
YT = u@)e” ™ = (p —m)u(p) =0,

¥~ = v(p)e?" = (p —m)v(p) =0,

de manera que u(p) representa soluciones con estados de energia positiva, es decir, particulas

(2.40)

y v(p) con estados de energia negativa, antiparticulas.
Tras cuantizar el campo (x), podemos ver que u®(p) y v*(p) siguen las siguientes

relaciones de completitud,

u(p)5a (p) = p'yu + m = p+m, (2.41)
S;,5;

v(p)¥ 0% (p) = p'y —m = p—m. (2.42)
5,5

2.4. Electrodinamica Cuantica.

Una vez hemos visto como cuantizamos el campo electromagnético podemos escribir la
densidad Lagrangiana de la QED. Anadiendo a la densidad del electromagnetismo (2.11) el
término de Dirac para fermiones libres (2.37) e identificando j# = eiy*1) debido a ser el

acoplo minimo, obtenemos,

Lorp = Y(id —m)y — iF‘“’FW — epyp A, . (2.43)

El primer término es el Lagrangiano de Dirac (2.37), es decir, el correspondiente a los
fermiones libres. El segundo corresponde al Lagrangiano de Maxwell, que describe los fotones

libres. El dltimo es el término de interaccién,
Lint = —ey' A, . (2.44)

Este término nos describe las interacciones entre los fotones (A,) y los fermiones (v).
Siguiendo la estructura de este término vamos a poder estudiar las reglas de Feynman para

la QED. Un resumen de las mismas se presenta en el anexo D.1.



Capitulo 3

Modelo Estandar.

En este capitulo vamos a presentar el SM, asi como las distintas interacciones que éste
engloba, concentrandonos en el estudio de la Fisica del Sabor.

El SM es una teoria gauge basada en el grupo de simetria SU(3)c ® SU(2)r @ U(1)y
que describe las interacciones electromagnética y débil (unificadas en la teoria electrodébil),
asi como la interaccién fuerte [1]. Estés interacciones se describen mediante el intercambio
de campos gauge de espin 1. Estos bosones de gauge responsables o portadores de las
interacciones son 8 gluones, los bosones W* y Z y el fotén. Este modelo contiene en su
estructura el contenido de materia del Universo, siendo ademas las particulas elementales de
la materia los fermiones, agrupados en seis quarks y sesis leptones, que estan organizados en

tres familias o generaciones que solamente se diferencian por su masa y sabor,

Ve U vy ¢ vr t (3.1)
e” d|’ u- s ’ = b|’ '
v, w v 5 _
_l 4 = _l ) ¢ ) lRa quR; ddR> (32)
I™ qa =)\,

y donde ademas cada quark aparece en tres colores diferentes. Los subindices L y R

donde se tiene,

representan la componente levogira y dextrégira de los campos. Con esto podemos ver que los
campos levdgiros son dobletes bajo SU(2)7, mientras que los campos dextrégiros son singletes.
Ademas, el SM no contempla el caso de neutrinos dextrogiros.

Este modelo ha sido confirmado experimentalmente con gran precision, y se han medido
las masas de todas sus particulas constituyentes [2]. Sin embargo, para dotar de masa a los
bosones gauge que la tengan asi como a los fermiones se necesita la Ruptura Espontdnea de la
Simetria (SSB por sus siglas en inglés Spontaneous Symmetry Breaking) SU(2)p @ U(1)y —
U(1)em.- Esto se realiza mediante el mecanismo de Higgs, que introduce una particula escalar

al modelo, el llamado Bosén de Higgs.

3.1. QED en el SM.

En esta seccion trataremos la QED en el contexto del SM. En la tltima seccién del

capitulo anterior presentamos el Lagrangiano de QED, uno de cuyos términos correspondia
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con el Lagrangiano libre de Dirac que escribiremos como,

Lo = iy(z)7" O (@) — mip(x)(z), (3.3)

Este Lagrangiano es invariante bajo una transformacion global U (1),

V(@) — ¢ (x) = 90 (a), (3.4)
donde @0 es una constante real, parametro de la transformaciéon. Sin embargo, bajo
transformaciones locales, es decir, tomando 6 = 6(x), el Lagrangiano deja de ser invariante
debido a que,

Ob(z) — €9 (9, +iQ0,0) Y(x). (3.5)

El principio de invariancia gauge nos indica que el requerimiento de que la invariancia
U(1) deberia mantenerse localmente. Esto sélo es posible anadiendo términos nuevos al
Lagrangiano para poder eliminar 0,0. Esto se arregla introduciendo un campo de espin 1,

A, (z), que transforma segin,
1
Ay(z) — AL(x) =A,(z) — E@,ﬁ, (3.6)
con e el modulo de la carga del electrén, y se define la derivada covariante como,
Dyp(x) = [0, +ieQAu(x)] ¢ (x), (3.7)
de manera que realizando la transformacién local,
Dyip(x) — (Dyy)) (x) = ¥ D,p(x). (3.8)
De esta forma el Lagrangiano modificado queda,

L = ip(x)y" Dytp(x) — mip(z)y(x) = Lo — e Q Au(x)ih(x)y" (), (3.9)
que es invariante bajo transformaciones locales U(1), que llamaremos U (1)ep,.
Noétese que el principio de invariancia gauge ha generado una interaccién entre el campo
A, y los fermiones de Dirac 9(x), que es precisamente el vértice de interaccion de QED que
tenfamos en (2.44). De esta forma, podemos identificar ese bosén A,, con el fotén, tal y como
hemos visto en el capitulo anterior.
Si queremos que A, sea un verdadero campo propagador de la interaccién, tenemos que

anadir un término cinético invariante gauge, de la forma,
1
Liin = *ZF;WF'LWa (3.10)

donde F),, es el tensor electromagnético, definido en (2.7). Notar que un término de masa
para el fotén estd prohibido. Este, que tendria la forma £,, = %mQA“AM, violaria el principio
de invariancia local, por lo que el campo del fotén no tiene masa. Del Lagrangiano total,
suma de (3.9) y (3.10), podemos obtener las ecuaciones de Maxwell (2.9), luego simplemente
imponiendo la invariancia gauge U(1) al Lagrangiano libre de Dirac hemos recuperado la

QED. Las reglas de Feynman de QED se presentan en el anexo D.1.
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3.2. Interaccion electrodébil.

En el SM la interacciéon nuclear débil se logra unificar con la interaccién electromagnética,
en lo que se denomina teorfa electrodébil. Ciertos experimentos de baja energia, asi como
de dispersién de neutrinos, demostraron que sélo los fermiones levogiros (y antifermiones
dextrégiros) participan en las interacciones débiles. Los bosones W+ y Z fueron introducidos
y predichos previos a su descubriento como las particulas encargadas de mediar la interaccién.

Ahora vamos a construir una teoria cudntica de campos que describa la interaccion
electrodébil. Como vimos en la introduccién a este capitulo, cada generacién estaba formada
por dos dobletes levogiros, el correspondiente a los leptones y el correspondiente a los quarks,
y tres singletes dextrégiros. Esto es debido a que los bosones W se acoplan a estos dobletes
fermionicos. Es por esto que queremos una representacién de dobletes, de manera que el
grupo mas simple es SU(2). Como ademads, queremos afiadir la interaccién electromagnética,

necesitamos del grupo U(1). Por tanto vamos a considerar el grupo,
G=SU2),®U)y,

donde la L viene de Levégiro (o “left-handed” en inglés) y la Y estd relacionada con la
Hipercarga, ya que no podemos identificarlo directamente con el electromagnetismo. Este
grupo lo denominaremos el grupo electrodébil.

Por simplicidad, vamos a trabajar con una tunica familia de quarks y vamos a introducir

la notacion

P1(x) = (Z) , Yo(x) =ur, Y3(r)=dg, (3.11)
L

que serd también valida para el sector fermidnico haciendo los cambios v — vy d — [™.

Similar a la QED, vamos a introducir las derivadas covariantes,
R O .
Duthr(@) = [0+ ig 5 Wi() + ig'y1 Bulw)| v (2),
Dyta(x) = [0 + ig'y2Bu(2)] 2 (), (3.12)
Dyips(x) = [0y + ig'y3 Bu(x)] v3(),

donde o; son las matrices de Pauli y g, ¢’ y v; constantes. Ademds, hemos introducido 4
bosones gauge (B, y Wli con i=1,2,3), uno por cada pardmetro que aparece al realizar una

transformacion local del grupo electrodébil. De esta forma podemos llegar al Lagrangiano,
3 -
£=5" it (@) Dty (). (3.13)
j=1

Como hemos incluido nuevos campos vectoriales, tenemos que adicionar el término de

propagaciéon de los campos o término cinético, que debe ser invariante gauge. Para ello
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definimos los tensores,
B, = &LBV — 0y By,
Wy = —é [(8” + igWM), (0, + igwy)] = 8#WV — &,W# +ig [Wu, Wy] ,
W = %Wﬁu con WZV =0,W} — &,Wli - geijngWf. (3.14)
El Lagrangiano seria,

1
4

El primer término es el Lagrangiano de Maxwell para el campo B,,, mientras que el término

v 1 ]
L B,,B" — ZW[WWZ.“”. (3.15)

libre de los campos no-Abelianos estd dado por el Lagrangiano de Yang-Mills, que incluye
el término cinético y las interacciones a 3 y 4 bosones. Notar que no tenemos términos de
masa en el Lagrangiano ni de bosones ni de fermiones, pues la simetria gauge nos lo prohibe.
En el caso de los fermiones es debido a que para construir un término de masas necesitamos
mezclar los campos levogiros y dextrégiros, que rompe la simetria debido a que tenemos
una combinacién de dobletes y singletes que no es invariante bajo SU(2)r. De esta manera,
todas las particulas que hemos descrito hasta ahora en nuestro modelo no tienen masa. Un

desarrollo més extenso de la obtenciéon de estos Lagrangianos se puede ver en el anexo B.1.

3.2.1. Interacciones de corrientes cargadas y de corrientes neutras.

Vamos ahora a ver los términos de interaccién del Lagrangiano (3.13) entre bosones y

campos fermiénicos,
Lint = =gy Wuhs — g'Bu Y g0, (3.16)
J

donde aparece un término que contiene la matriz SU(2)r, que podemos escribir como,

3 L _ 2 3 T
o Ty L w3 Wy =Wz _1( Wi VoW, (3.17)
P22 \wlawz o W) 2 \vew, -w}

donde hemos definido W, = %(W/} + zWﬁ) y W,I = \%(Wﬁ — zWﬁ), que dan lugar a las

corrientes cargadas. Para una familia de quarks y de leptones se tiene entonces,

Loo ==L AWh (1= 5)d + 7y (1= 35)1] + hue. | (3.18)
2v2
donde hemos introducido el proyector sobre los estados levogiros, Py, = 1_—;5’, con v5 =

iv99142~3. A partir de este término, podemos ver la interaccién entre corrientes cargadas,
sin embargo, no se describe la dindmica de las mismas, pues tanto los bosones gauge como
los fermiones no tienen masa. Para poder incluir esa masa, como ya se ha mencionado,
necesitaremos del mecanismo de Higgs.

Ahora vamos a estudiar el resto de términos que aparecen en (3.16). Queremos identificar

las interaccién que aparecen del WS y del B,, con el bosén Z y el fotén (A,). Sin embargo, el
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bosén B,, no puede identificarse directamente con A,, pues requeriria que y1 = y2 = y3, ya
que el fotén se acopla igual a campos levégiros y dextrdgiros, y a la vez ¢'y; = eQ;, donde
(Q); varia para cada j, por lo que no puede ocurrir. Asi pues, vamos a suponer que el fotén y

bosén Z son una combinacién lineal de los bosones B, y WE,

Wg [ cosOw  sinfy Zy, (3.19)
B, ~ \ —sinfy cosOy A, ’ ’

con By el angulo de Weinberg.
Notar que el boson Z todavia no tiene masa, debido a la simetria gauge. Asi, en términos

de A, y Z,, el Lagrangiano de corrientes neutras es,

o .
Lnc = ij { [g— sinOw + ¢'y; COSQW} + 2y [g??’ cos 0w — ¢'y; s1nt9w} } ;.

(3.20)
Para recuperar la QED debemos imponer,
gsin Oy = ¢’ cos Oy, Y =0Q—1T;, (3.21)
donde T35 = 03/2 y @ denota el operador carga electromagnética,
Q 0
Q=< . Q=Quu @3=Qup (3.22)
0 Qan
Esto fija los valores de las hipercargas (y;) que han de tener tanto quarks como leptones,
siendo estas, para los quarks, y; = %, Yo = % eys = —%; y para los leptones, y; = —%, y2 =0
€ Yz = —1.

A partir de los términos de interaccién tanto de corrientes cargadas como neutras podemos
obtener las reglas de Feynman relacionadas con estos. Estas se pueden encontrar en el

anexo D.2.

3.2.2. Fisica del sabor.

Para dar masa a las particulas, gracias al teorema de Goldstone, introducimos un doblete

. (P @) mpie 1 0 -
de campos complejos escalares ¢(z) = (;5(0) () = e'2 7 L H@)) Necesitamos
x v T

de una ruptura espontanea de la simetria gauge, que se basa en seleccionar como estado
fundamental el estado de vacio del doblete escalar, de manera que la simetria del grupo
SU(2)r ® U(1)y se rompe en U(1)em. Esto se hace de manera que agregamos a nuestro

modelo SU(2)r, ® U(1)y el Lagrangiano escalar,
Ls = (D)’ D" — p*¢Te — h(e'9)?, (3.23)
donde h > 0, u? < 0 y tomando §* = 0, que se denomina el gauge unitario. Tenemos que,

1 g2
(Dpo) DHe = SOnHOMH + (v + H)? { WiIW, + mz Z“} : (3.24)
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Aqui hemos introducido el bosén de espin 0 H(z), que denominamos bosén de Higgs y v
representa el valor esperado del vacio v = /2 ‘ <0 ‘¢(0)| O>|

De esta forma nos han aparecido términos cuadraticos en W y en Z, por lo que podemos
identificar las masas de estos como Mz cos Oy = My = %vg.

Para darle masa a los fermiones vamos a afiadir un término de acoplo entre los campos
escalares y los fermiones. Para ello vamos a suponer un numero Ng de generaciones de
fermiones y denotaremos v}, I%, u; y d; a los miembros de la familia j con j = 1,..., Ng. El
Lagrangiano de Yukawa mas general tiene la forma,

Ly=-Y {(a;, d)r [cﬁ)gbd;R + Wt | + (7, Z;)Lc§l,3¢z;R} Y he, (3.25)
g,k
donde cg.i), cg.u) y cg.l) son constantes arbitrarias en principio y el segundo término el

C-conjugado del campo escalar ¢! = ioo¢*. Tomando el gauge unitario este Lagragiano de

tipo Yukawa nos queda,
H\ (- _
Ly = — (1 - U) {d'LMC’l e + 0 M uly + 1, M1y, + h.c.} : (3.26)

donde d’, u’ y I denotan vectores en el espacio de sabor de N componentes, las cuales son
respectivamente dj, u}; y l5. Por otro lado, My, My, y M; son las matrices de masa y vienen
dadas por,

_ w v noo— DY
= Cjj 2 (My)ij = ¢ NoR (3.27)

La diagonalizaciéon de estas matrices nos dard como resultado los autoestados de masas

v
(Mg)ij = Cz(j)ﬁv (M,,)ij

dj, uj y lj, que son combinaciones lineales de los autoestados débiles, d;, u’; y I.

Podemos descomponer la matriz M é = H,;U,; donde H; es una matriz hermitica definida
positiva tal que, Hg = /MM U’lT; y Uy es una matriz unitaria. Esta descomposicién es tinica,
debido a que det(M)) # 0. Ahora podemos diagonalizar la matriz hermitica gracias a una
matriz unitaria Sz, de manera que Hy = Sjl./\/ldeUd, donde M, es una matriz diagonal,
hermitica y definida positiva. Podemos realizar una descomposicion similar en las otras dos
matrices, obteniendo M), = S;E/\/luSuUu y M] = SlT/\/llSlUl.

Las diagonales de las matrices contienen los valores de las masas del correspondiente
fermién de cada generacién. Asi pues, tomando Ng = 3 se tiene My = diag(mg, ms, mp),
M, = diag(my, me, my) y M = diag(me, my, mr).

Ahora, podemos simplificar el Lagrangiano (3.26), obteniendo,
Ly = — (1 + Ij) {dyMgdg +urMyug + 1, M1R}, (3.28)
donde los autoestados de masa vienen definidos por,
d;, = S,d}, uy = S,uj, 1, = S},

dR = SdUdd/ y ur = SuUuulR, lR = SlUll/F,{-
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Podemos ver directamente que fJLf'L = f;f; y también, ?Rf'R = frfr, por lo que el
Lagrangiano de la interaccién de corriente neutras (3.20) no cambia y por tanto no hay
intercambio de sabor en este tipo de interaccién.

Si suponemos que los neutrinos tienen masa nula, podemos redefinir el sabor del neutrino
de manera que eliminamos la mezcla de sabor en el sector lepténico, 71 = 1’/LSZT I; =
vrlp, de manera que tenemos conservacién del sabor lepténico. Cabe destacar que ha habido
observaciones experimentales de oscilaciones de neutrinos y conocemos que las masas de los
neutrinos son pequenas pero no nulas.

Finalmente, podemos ver qué ocurre en interacciones con dos quarks de distintos sabores,
donde, ﬁ’Ld’L = ﬁLSuSCTldL =uyVdyg. Como en general S, # Sy, tenemos que si escribimos
los autoestados débiles en funcién de los de masa, aparece una matriz Ng X Ng que mezcla
dichos estados en la interaccion de corrientes cargadas, V. Si escribimos (3.18) de forma

general para las tres generaciones conocidas, tenemos,
Lec = —23;\/5 W) Zﬁﬂu(l —75)Vijd; + Z uy* (1 —s)l| +hee . (3.29)
1) l

Una matriz Ng x Ng unitaria tiene Né parametros reales, Ng(Ng — 1)/2 moédulos y
Ng(Ng + 1)/2 fases. En el caso de V, podemos tomar u; — ePiu; y d; — e d; de manera
que V;; — Vijei(ef‘ﬁi), dejando 2N¢ — 1 fases no observables, por lo que nos quedan (Ng —
1)(Ng — 2)/2 fases.

Para el caso que nos ocupa, Ng = 3, esta matriz V' se denomina Matriz CKM (por
Cabbibo-Kobayashi-Maskawa) y viene dada por tres dngulos y una fase. En el Particle Data

Group [2] se emplea la siguiente representacion,

€12€13 512€13 s13€70013
_ i i5
V = | —s12¢c23 — c12523513€""®  c12c23 — S12523513€"13 s23c13 | (3.30)
i 513
512823 — €12€23513€"°13  —C125823 — S12C23513€" €23C13

donde ¢;; = cosb;; v si; = sinf;; con i y j referentes a las generaciones (i,j5 = 1,2,3), y 013,
la fase. Los dngulos 6;; se pueden tomar todos en el primer cuadrante. Los valores de estos
angulos han sido determinados de manera experimental, de manera que conocemos el médulo

de las distintas componentes de la matriz CKM.

3.3. Cromodinamica cuantica.

El SM incluye una serie de particulas y sus correspondientes antiparticulas que asumimos
que forman los mesones y los bariones, los quarks. También vimos que se tratan de particulas
de espin 1/2 que tienen carga eléctrica fraccionaria y que pueden interactuar con los bosones
responsables de la interaccion débil cambiando su sabor. A parte de estas caracteristicas, para

que se cumpla la estadistica de Fermi-Dirac, hemos de introducir un nuevo niimero cuantico,
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el color. A cada quark le asignamos uno de los tres posibles colores, rojo, verde y azul. Los
bariones son estados ligados de quarks con distintos colores, mientras que los mesones se
tratan de estados con un quark y un anti-quark del mismo color.

Vamos a identificar el color como la carga asociada a la interaccién fuerte y procedemos
a construir una teoria cuantica de campos entorna a ello. Imponemos dos propiedades.
La primera de ellas, se trata de la libertad asintética, por la cual la interaccién fuerte se
debilita en los estados cuyas distancias tienden a cero. La segunda se trata de la Hipodtesis de
Confinamiento. Esta propiedad indica que para evitar la existencia de estados con color no
nulo, necesitamos que todos los estados asintdticos no tengan color, es decir, sean singletes
bajo rotaciones en el espacio de color. Esta hipotesis implica la no existencia de quarks libres.

De manera equivalente a la QED y a la interaccién electrodébil, podemos obtener el
Lagrangiano correspondiente a la QCD, teniendo en cuenta que estamos trabajando con
transformaciones de un grupo no-Abeliano, SU(3)c. El desarrollo correspondiente a la
obtenciéon del mismo asi como la notacién empleada se encuentra en los anexos B.2-B.3,

obteniendo el siguiente Lagrangiano,

1 _ .
Locp = =G Gy, + > @iy Dy — my)qy, (3.31)
f

que es invariante bajo transformaciones SU(3)¢ locales. Similar a la QED, no podemos incluir
un término de masa para los gluones (L£,, = %mQGQ‘GZ) debido a que éste no es invariante

gauge SU(3)¢ local.
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Capitulo 4

Procesos fisicos.

Tras haber visto todo el formalismo, en este capitulo vamos a estudiar dos procesos de
interaccion fisicos. En el primero de ellos, vamos a estudiar un proceso en el que sélo acttian los
mecanismos de la QED, mientras que en el segundo proceso veremos céomo lo hacen aquellos

de la interaccion electrodébil.

4.1. Proceso ete” — putpu.

Queremos estudiar la seccién eficaz del proceso de interacciéon entre dos electrones,

ete™ — putu~, que representamos en la figura siguiente:

e~ ut
y
—_—
q
+ —
€ H (4.1)

Para ello, vamos a designar p.1 al momento del electréon entrante, peo al del positron entrante,
pu1 al momento del muén saliente y p,2 al del antimuén saliente.
Asi pues, la seccion eficaz viene dada para procesos donde las particulas iniciales tienen

la misma masa, por unidad de angulo sélido, como,

oo _ 1|
00 2E2 1672E.,

M, (4.2)

donde E.,, es la energia del centro de masas, k:‘ es el médulo de las componentes espaciales

del momento del muén y M se trata del elemento matriz correspondiente al proceso, que

viene dado por,

8et
’M|2 = qT [(peQ 'pul)(pel 'qu) + (peQ : pu?)(pel : P;u)

+mi(Pe2 “Per) +mE(pu1 - Pu2) + 2m§mi] . (4.3)

Colocédndonos en el centro de masas (CDM) podemos calcular los distintos productos

escalares, obteniendo finalmente que la seccién eficaz por unidad de dngulo sélido viene dada

18



por,

do et 4m? 9 16mym?
=1 (1 4+ cos? ) + —=FC cos? 0
dQ ~ 647w2E2 E2, B,

4(mi +m?)

5 (1 — cos? 9)] . (4.4)

Integrando en el diferencial de angulo sélido e introduciendo la constante de estructura

fina «, la seccién eficaz en funcién de los valores de la energia del centro de masas vienen

2 4m2
a:& 1-— K
AEZ, EZ,

Para que el proceso exista, el término de dentro de la raiz ha de ser positivo, por lo que

dados por,
8 32mim? 16(mj + m?)

37 3B T 3EZ,

(4.5)

se ha de cumplir que E.,, > 2m,,. El calculo completo de la seccién eficaz se encuentra en el
anexo C.1.

Para hacernos una mejor idea del comportamiento de la seccién eficaz en funcién de la
energia del centro de masas la representamos graficamente en la figura 4.1. Esta figura ha
sido obtenida mediante un programa en python, haciendo uso del paquete Matplotlib [3].
En ella podemos observar que la funcién es no nula para valores superiores a 2m,, ~ 210 MeV.
A partir de ahi, la funcién comienza a crecer hasta llegar a un méximo en torno a 250 MeV.
A partir de este punto comienza a decrecer, tendiendo a 0 cuando la energia del centro de

masas tiende a infinito.

0.00055

0.00050 A
0.00045 1
0.00040 A
= 0.00035 1
£
N
0.00030 1
0.00025

0.00020

0.00015

T T T T T
200 250 300 350 400 450 500
Eem (MeV)

Figura 4.1: Representacién de la seccién eficaz del proceso ete™ — u™p~ en funcién de la
energia del centro de masas.

19



4.2. Proceso b — clv.

Visto ya un proceso de la QED vamos a pasar a estudiar un proceso mediado por la
interaccion electrodébil. Queremos estudiar el proceso por el cual un quark b se desintegra en
un quark c. Para ello vamos a tomar la desintegracién del mesén B°(= bd) en los mesones D
o D**(= cd) o del mesén B (= be) en J/¢(= cé), ademéas de un leptén y el correspondiente
antineutrino, ya que en la naturaleza no podemos encontrar los quarks aislados. Sin embargo,
para realizar un estudio de manera tedrica tomaremos el proceso de desintegracion con los

quarks, como se muestra en la siguiente figura:

(4.6)

donde definimos k£ como el momento del boséon W, py al del quark b, p. al del quark ¢, p; al
del leptén saliente y p, al momento del neutrino.

En este caso, como se trata de un proceso de desintegracién, tenemos que la anchura a
media altura (FWHM) de la desintegracion viene dada, de manera diferencial por,
d*p, d*p) d*p),

dl' =
2m)32E, (27)32E; (2m)32E),’

(27T) 164 (py — pe — o1 — p0) ( (4.7)

2my,

con F; la energia de la particula correspondiente. El elemento matriz que obtenemos es,

2 9 ch|

IM|” = (2 = W)(pc 1) (Db - Po).- (4.8)

con V,, el elemento de la matriz CKM que relaciona el quark ¢ con el b.
De nuevo, colocandonos en el sistema CDM, podemos calcular los productos escalares
hasta reducir la expresiéon obteniendo,
g ‘ cb|
IM|)? = 2 (mpB,) (m} — 2mpE, — m2 —mj) . (4.9)
2myy,
De esta forma, reduciendo el diferencial de la anchura de la desintegracion todo lo posible

e integrando obtenemos,

2 _2, 2 3 _3
(mb - m2 - ml) (E+ EI/ ) - gmb(Ezj_ - EI/ ) ) (410)

dr 332G} |Vl
dE;,  2(4m)3

donde,

1
Bt — 3(mp —mé +mp) — my i (4.11)

—El$1/Ef—ml2

El calculo exhaustivo para llegar a esta expresién se puede ver en el anexo C.2. Ahora la

integral en E; la vamos a realizar de manera numérica empleando el paquete SciPy [4]. Para
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ello primero vamos a estudiar la funcién que queremos integrar. De manera directa, podemos

ver que la integral se anulard cuando E = E, o cuando Ef = E; = 0. Podemos ver que la
mg—mz-‘rm?

oTTr— lo cual

primera condicién se cumple cuando E; = m;. La segunda se da si F; =

corresponde a la emisiéon de un quark ¢ en reposo.

x10~ 14

— ) = 0
1.4 - !

mp = Me
= mﬂ

1.2 A m; = mg

0.2 7

0.0 T T T T
0 500 1000 1500 2000 2500

E; (MeV)

Figura 4.2: Representacién de la anchura a media altura por diferencial de la energia del

leptén (4.10) para las distintas masas de los leptones, asi como masa nula.

Ahora, en la figura (4.2), podemos observar el comportamiento para las distintas masas
leptonicas. Se observa que para las masas del electrén y del muén, asi como para masa nula,
el comportamiento de la funcién es el mismo. Sin embargo, éste varia en gran medida para
el taudn, puesto que la masa de éste no es despreciable con respecto a las masas del resto de
particulas que intervienen en el proceso.

Una vez estudiada la forma de la funcién, procedemos a integrarla, tal y como dijimos
anteriormente. Los valores de las masas y otras constantes proporcionadas al programa se
pueden encontrar en el anexo E. Ademads, necesitamos conocer los valores de dichas anchuras
obtenidos para el SM, asi como experimentalmente. En el Particle Data Group [2] , se nos
proporciona el tiempo de vida de los mesones B? y B., asi como los “Branching-Ratios” (BR)
de cada uno de sus canales de desintegraciéon. Podemos obtener la anchura de la desintegracion
segun,

r; = "BR,, (4.12)
T

donde ¢ representa el canal de desintegracién que estemos estudiando, 7 el tiempo de vida de
la particula y & la constante de Plank.

En la tabla (4.1) tenemos los valores que hemos obtenido para las anchuras de
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desintegracién para las diferentes masas de los leptones (ignorando el caso m; = 0), asi

como los correspondientes valores de las medidas experimentales.

Leptén | Ty calculado (x107'2MeV) | BR experimental | I'; experimental (x10~12MeV)
e 12,41 + 0,04 2,24 + 0,09% 9,7+ 0,4
w 12,320 £ 0,025 2,24 +0,09% 9,7+04
T~ 1,590 £ 0,026 1,05+ 0,23 % 45+1,0

Tabla 4.1: Anchuras de desintegraciéon calculadas de manera numérica, utilizando las
cinematica de los quarks, junto con el las anchuras obtenidas de manera experimental para
los distintos canales B® — D™~ v

A simple vista podemos ver que los valores no coinciden, como cabria esperar pues
el proceso experimental no involucra tnicamente a los quarks, pero podemos ver ciertas
tendencias.

Por un lado en el caso de los electrones y muones es esperado que ambos se comporten
de forma similar y por ende obtenemos anchuras de desintegracion similares. Las anchuras
calculadas son mayores que las experimentales, en concreto se separan ~ 6o.

Por otro lado, tenemos el caso del tauén, en el que cémo cabria esperar obtenemos
anchuras menores que las correspondientes a los procesos anteriores, debido al menor espacio
de fases disponible. En este caso, el valor tedrico obtenido se acerca més al experimental,

alejandose tan sélo ~ 3o.

4.2.1. Desintegracion de mesones. Resultados experimentales y anomalias
en fisica del sabor.

Como ya hemos hablado anteriormente, el proceso real no ocurre con quarks aislados,
pues debido a la Hipotesis de Confinamiento no podemos tener dichos estados. Sin embargo,
los datos experimentales que hemos tomado se trataban de los procesos reales que ocurren en
la naturaleza. Estos procesos han sido estudiados en diversos experimentos: BaBar (USA),
Belle (Japén) y en el detector LHCD situado en LHC (CERN, Suiza). El analisis estadistico
conjunto de estos resultados se encuentra en [5].

Vamos a estudiar tres procesos mesénicos: B — D¥i~y, B — D*fi~ip, y B —
J/Yl~ 1y Si quisiéramos realizar un célculo tedrico buscando una prediccién més exacta,
necesitariamos de mecanismos relacionados con QCD. En su lugar, vamos a realizar una
aproximacion, que si bien no es correcta, nos deberia acercar mas al resultado experimental.
Esta aproximacion se basa en sustituir las masas de los quarks por las de sus correspondientes
mesones, de manera que estamos un paso mas cerca de describir los procesos reales, estudiando
la cinematica de los mesones. En nuestro calculo numérico obtenemos las anchuras de

desintegracion, sin embargo, para minimizar las incertidumbres teéricas, las magnitudes que
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se reportan experimentalmente son cocientes de razones de desintegracién,

BR(B° — D®+r=1,)
[BR(B® — D®+u~p,) + BR(B® — D®+e15,)] /2’

_ BR(B; — J/yT )
YT BR(B: = Jfdp )

(4.14)

Por tanto, vamos a estudiar directamente estas magnitudes. En la tabla (4.2) podemos
encontrar tanto nuestros valores aproximados, calculados numéricamente, como los valores

que predice el SM y los datos obtenidos experimentalmente.

Cociente Resultado Prediccion SM Experimental
Rp 0,237 £ 0,003 | 0,298 + 0,004 [5] 0,356 £ 0,029 [5]
Rp~ 0,209 £+ 0,003 | 0,254 + 0,005 [5] 0,284 4+ 0,013 [5]
Ry 0,198 +£ 0,004 | 0,2582 + 0,0038 [6] | 0,71 + 0,17 £ 0,18 [7]

Tabla 4.2: Comparacién en las distintas razones leptonicas para procesos b — clv de los
valores calculados con las predicciones del SM y las mediciones experimentales.

En todos los procesos analizados vemos que nuestros resultados siguen la misma tendencia
que los que se tienen en el SM, es decir, Rp es mayor que Rp-+ y este ultimo es similar a R j/y,.
Aunque los valores numéricos difieran ligeramente, esto nos demuestra que hemos considerado
una buena aproximacién.

Por otra parte, las medidas experimentales muestran una clara desviacién con respecto a
los valores tedricos. La discrepancia de nuestros resultados para el cociente de las razones de
desintegracion es Rp ~ 4,10, Rp« ~ 5,80, y Rj/; ~ 20. Este ultimo resultado se debe a la
gran incertidumbre en la medida experimental, tanto sistematica como estadistica.

Estas desviaciones de nuestros calculos con respecto a las medidas experimentales van
en la misma direcciéon de la comparativa de dichas medidas con la prediccion del SM. Para
Ry, podemos ver en [7], que la medida experimental discrepa 1,80, mientras que en [5]
vemos que los cocientes de desintegraciéon Rp y Rp+ se desvian de la prediccién 1,980 y
2,150 respectivamente. Podemos obtener un valor conjunto de estas dos tltimas, teniendo en
cuenta las correlaciones entre ambos cocientes, de en torno a 3,20.

El hecho de que tenemos una desviacion respecto a las predicciones del SM es un resultado
de gran relevancia fenomenoldgica. Cabe destacar que las diferencias entre el numerador y el
denominador de los cocientes, desde un punto de vista tedrico, son tinicamente el cambio de
la masa del leptén, pues el bosén mediador de la interaccion, W, se acopla igual a todos los
leptones como vemos en la ecuaciéon (3.29). De ser confirmada dicha discrepancia, se abriria el
camino a Nueva Fisica, ya que seria indicativo de la existencia de una particula o interaccién

que se acoplaria de manera diferente con los leptones pesados.
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Capitulo 5

Conclusiones

Como hemos visto, el Modelo Estandar de la fisica de particulas elementales es una teoria
cuantica de campos que describe las interacciones electromagnética, débil y fuerte, asi como
el contenido de materia del universo. Esta teoria estd experimentalmente confirmada con gran
precision en los experimentos de fisica de altas energias. Sin embargo, existen procesos en los
que se han encontrado ciertas discrepancias con respecto a las predicciones de este modelo,
como por ejemplo en procesos relacionados con la fisica de sabor, que han marcado el interés
central este trabajo.

En primer lugar, nos hemos centrado en el estudio de la Electrodindmica Cuéntica dentro
del marco del Modelo Estandar, asi como de la interaccién débil, las cuales hemos visto que se
unifican en la teoria electrodébil. Para ello se han adquirido los conocimientos necesarios para
poder estudiar una teoria cuantica de campos partiendo de las bases del electromagnetismo
y conceptos basicos de teoria de grupos. Vimos también de la necesidad del mecanismo de
Higgs para dar masa a las particulas y como debido a ello, en las interacciones de corrientes
cargadas aparece una constante, la matriz CKM, que nos da las diferentes intensidades de
acoplo entre los diferentes quarks.

Todo esto lo hemos hecho como preparacion para conseguir el objetivo fundamental de
este trabajo, estudiar el proceso eTe™ — pTu~ y el proceso por el cual un quark b se
desintegra en un quark c¢; b — clv. Para éste ultimo, primero partimos del estudio de la
cinematica de quarks, para acabar estudiando, dentro de una cierta aproximacién, algunos
de los procesos en los que la medida experimental actual tiene una mayor desviacién con
respecto a las predicciones del Modelo Estandar; en concreto los cocientes de razones de
desintegracion Rp, Rp~ y Rj/,;. Para ello hemos hemos empleado programas que nos han
ayudado a realizar los célculos numéricos necesarios, Scipy [4] y Matplotlib [3].

Finalmente, hemos comparado las predicciones obtenidas para estos observables con
nuestros calculos con las que nos proporciona el Modelo Estandar, asi como sus desviaciones
con respecto a las medidas experimentales y posibles consecuencias. De confirmarse estas
desviaciones estariamos hablando de la posibilidad de encontrar Nueva Fisica més alla del

Modelo Estandar.

24



Bibliografia

1]

[5]

A. Pich. The Standard model of electroweak interactions. In 2006 European School of
High-FEnergy Physics, pages 1-49, 2007.

R. L. et al. Workman. Review of Particle Physics. PTEP, 2022:083C01, 2022.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90-95, 2007.

P. Virtanen, R. Gommers, T. E. Oliphant, et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261-272, 2020.

Y. S. Amhis et al. Averages of b-hadron, c-hadron, and 7-lepton properties as of 2021.
Phys. Rev. D, 107(5):052008, 2023. Resultados actualizados en https://hflav-eos.web.
cern.ch/hflav-eos/semi/winter23_prel/html/RDsDsstar/RDRDs.html.

J. Harrison, C. T. H. Davies, and A. Lytle. R(J/v) and B; — J/¢{" v, Lepton Flavor
Universality Violating Observables from Lattice QCD. Phys. Rev. Lett., 125(22):222003,
2020.

R. Aaij et al Measurement of the ratio of branching fractions B(BS —

J/Yrru,)/B(BF — J/yutv,). Phys. Rev. Lett., 120(12):121801, 2018,

25


https://hflav-eos.web.cern.ch/hflav-eos/semi/winter23_prel/html/RDsDsstar/RDRDs.html
https://hflav-eos.web.cern.ch/hflav-eos/semi/winter23_prel/html/RDsDsstar/RDRDs.html

Anexos A

Desarrollos matematicos correspondientes al Capitulo 2.

A.1. Interpretacién de los vectores de polarizacion.

Vamos a ver ahora una interpretaciéon de dichos vectores. Vamos a escoger una forma

especifica de éstos. En un sistema de referencia dado,
65(12) =nt = (1,0,0,0) = polarizacién escalar, (A.1)

(k) = (0,e.(k)), r=1,2,3 (A.2)

- —

donde escogemos que €1(k) vy ea(k), que llamaremos vectores de polarizacién transversal,

mutuamente ortogonales y, a su vez, ortogonales a k, es decir,

k-e(k)=0, r=1,2 (A.3)
(k) - es(k) =65, T,5=1,2 (A.4)

de manera que 63(]2), que llamaremos vector de polarizacién longitudinal, viene dado por,

k" — (k- n)nt

iR = S

(A.5)

Asi, se cumple que e3,n* = 0. Esta eleccion de los vectores corresponde con la polarizacion
lineal, pues para la polarizacién circular se necesitan de vectores de polarizacion complejos.
Notar que los dos estados de polarizacion fisicos son los transversales, pues son los estados
que puede experimentar un fotén, mientras que los estados longitudinal y escalar no tienen

significado fisico.

A.2. Cuantizacién del campo electromagnético libre.

Vamos a partir de la imposicién de unas relaciones de conmutacién para A, y 117,

[Au(&,1), I1(§, )] = i6,6°(& — §) , (A.6)
[Au(Z, 1), Ay (g, 8)] = [I4(Z, 1), IT"(4, £)] = 0, (A7)

que en términos de los operadores creacién y aniquilacién serian,



donde el conmutador de ag con ag; tendria un signo negativo que no deberia aparecer. Este

signo estd ligado a la normalizacién escogida para los vectores de polarizaciéon en (2.19).
Estudiamos en lo siguiente sus implicaciones.
Vamos a construir el algebra de Fock asociada. Para ello, sobre el vacio |0), que asumiremos

normalizado, esto es (0|0) = 1, el operador aniquilacién actia como,
ar(k)|0) =0, Vrk. (A.10)

Por otro lado, el operador creacién acttia sobre el vacio creando un fotén de momento k

y polarizacién €, que representaremos como ‘1 Er>’
b

1%,) = V2l (k) [0) . (A11)

Ahora, si consideramos el estado con vector de polarizacién g y buscamos la normalizacion

del estado encontramos,

)| 0 (A.12)

donde hemos utilizado la relacién de conmutacion (2.22) y la actuacién del operador
aniquilacién sobre el espacio de vacio (A.10). De esta forma llegamos a que el estado tiene una
norma negativa, que en términos de la mecénica cuantica esta relacionado con la probabilidad
de existencia de la particula, por lo que no puede haber normas negativas.

Hasta ahora, hemos estado suponiendo que imponiamos que se cumple el gauge de Lorenz
(OuA* = 0), sin embargo, durante todo este desarrollo no lo hemos aplicado. Ademas,
seguimos teniendo el problema de tener tan solo 2 estados de polarizacién reales, frente a
los cuatro estados de polarizacién distintos que tenemos en nuestra teoria. La solucién fue
propuesta por Gupta y Bleuler quienes demostraron que para que que haya una conexién
entre la teoria cudntica que estamos construyendo y la teoria clésica del electromagnetismo

basta con imponer una condicién mds suave. Sea |1¢)) un estado fisico se ha de cumplir que,
DA ) =0, (A.13)

por lo que sean dos estados fisicos cualesquiera [1)) y |¢)') tenemos que el siguiente elemento

de matriz entre dichos estados se anula,
(W10, A"|v) = 0. (A.14)
Veamos qué implica esto fisicamente. Primero, podemos ver,

Oy APt = ke thu (A.15)

, Bk 3
_Z/ V@32, & Z ner (
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que al ser invariante Lorentz podemos estudiar en cualquier sistema de referencia. En concreto,

vamos a tomar el sistema tal que k se encuentra en la direccién del eje z,
Kt = (wk, 0, O,Wk) = kﬂ = (wk, 0,0, —wk) s (A16)

de manera que si sustituimos en la integral nos queda,

d3ka g - .
APt = —i o(k) — az(k)]jeHua" . A7
2 t \/m a3( )]6 ( )
Luego si aplicamos (A.13) obtenemos,
Ou AP () = 0 = [ag (k) — as(k)] [) = ao(k) [¢) = as(k) [v) , VE, (A.18)
lo cual implica,
(] 8, A"~ =0 = (] af(F) = (] al(F), (A.19)

de manera que con esto eliminamos todos los estados de polarizacion escalares y longitudinales
(no fisicos).

Asi pues, vamos a ver el Hamiltoniano del sistema. Comenzamos tomando el gauge de
Feynman-'t Hooft que toma £ = 1 en el Lagrangiano (2.14). Si ademds, imponemos j* = 0,

tenemos que el momento canoénico es IT# = — A, Asi, el Hamiloniano es,
H= / dB3EN [H“(m”)Au(x”) — L)), (A.20)

donde N es el niimero de fotones. Si realizamos la descomposiciéon de Fourier de los campos

AF dadas en (2.18) tenemos que el Hamiltoniano pasa a ser,
(A.21)

por lo que el valor esperado del Hamiltoniano entre los estados fisicos [¢') y |[¢) queda,

3
1) = [ i (3| | B )~ ]
= /d?’lZwk <¢’ ¢> .

A.3. Obtenciéon del propagador del foton.

(A.22)

Queremos buscar el propagador asociado al fotén. Para ello, vamos a escribir la ecuacion

(2.15) como,
o= (1-¢) oo A= (A.23)
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Ahora vamos a buscar las soluciones de esta ecuacion. Para ello, vamos a utilizar el método
de la funcién de Green. Asi pues definimos la funcién de Green, que identificaremos con el

propagador como,
1
{gwm - (1 - 5) a”a“] Dyn(a® — ) = 642 — ), (A.21)
de manera que realizando la transformada de Fourier obtenemos,
1
- [g””kz — <1 - £> k”k”} Dn(K7) = gX. (A.25)

Ahora vamos a suponer que el propagador tiene la forma,

D, \(k7) = agux + b,k (A.26)
luego la ecuaciéon queda como,
g\ = —ak?*g¥ + {a (1 - é) - 2(;/{2] K’k . (A.27)
Esta ecuacion tiene solucién si tomamos,
a:—% ; b:1];1§ (A.28)

Sin embargo, con esto tenemos un problema al escribir el propagador en el espacio de
coordenadas que se resuelve anadiendo un valor complejo en el denominador. Se define pues

el propagador de Feynman como,

k"kk} . (A.29)

1
Dy=—— —(1—
LA L2 i |:g,u/\ ( 5) k2
Ahora vamos a ver cémo el propagador depende de los distintos estados de polarizacién.

Al no ser una cantidad fisica medible éste dependera de los cuatro estados, no tan solo de los

fisicos. Tomando el gauge de Feynman-"t Hooft (£ = 1) tenemos,

9" 1
DM (k) = et *“ A.30
(k%) = k2 tie K2 +ie Z Grere ( )

donde hemos utilizado la propiedad (2.19). Tomando las definiciones de polarizacién escalar

(A.1) y longitudinal (A.5), el propagador tiene la forma,

DM (k%) =

22: G (k‘” _ (k . n)nﬂ)(k:V — (k‘ . n)nV — kv (A.31)

k2+z (k-n)? — k2

A.4. Obtencion de la ecuacion de Dirac.

Puesto que a partir de la ecuacién de Klein-Gordon se llegaban a densidad de probabilidad
negativa para sus campos, Dirac intenté buscar una ecuacién lineal en % y en V.En general,

esta ecuacién tendria que tener una forma tal que,
Hy = (ap+ fm)v, (A.32)
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donde «; con i = 1,2,3 y B son los coeficientes por determinar, v seria el espinor o campo
de Dirac que veremos que se trata de un cuadrivector, m la masa del fermion, p'su momento
y H la energia del sistema (o Hamiltoniano).

Queremos que la particula cumpla con la relacién de energia-momento relativista, por lo

que hemos de imponer, en unidades naturales,
E% —p? =m?, (A.33)

y por tanto,

H* = (p* + m*)¢ = (@p + Bm)*¢, (A.34)
lo que nos lleva a las siguientes relaciones entre los distintos valores de las a; y 3,

a? =p2=1 con i=1,23
(A.35)

a0+ ooy = i+ Boy; =0 con 4,5 =1,2,3; i#]j
Si queremos que la solucién no sea trivial, a; y § han de tratarse de matrices, cuya
dimension mas baja posible es una matriz cuadrada de dimensién 4. Por ende, el campo v ha

de ser un vector columna de cuatro componentes. La eleccion de dichas matrices no es tnica,

pero la mas usada, la representacion de Dirac-Pauli, es tal que,

I i .
B = (0 —0]I> , Q= <—(<)7¢ %) con 1=1,2,3 (A.36)

donde o; son las matrices de Pauli y I la matriz cuadrada identidad de dimensiéon 2. Si

multiplicamos (A.32) por la matriz § e identificando H — z% yp— —iV tenemos,

i ng = —iBaviy +ma, (A.37)

que introduciendo las matrices de Dirac v* = (3, @) podemos reescribirlo como,
(iv" Oy —m)y =0. (A.38)

Esta es la ecuacion de Dirac en forma covariante.
Cabe destacar que hasta aqui hemos escrito todo en la representacién de Dirac, sin
embargo, no es la tnica. Una representaciéon interesante es la representacion de Weyl, en

la cual identificamos

I —0; .
B = 0 , o= oi 0 con i=1,2,3 (A.39)
I 0 0 o;

La ventaja de esta representacion es la sencillez con la que se obtienen las proyecciones

quirales del campo de Dirac pues podemos escribir,

o = (jﬁ;) (A.40)
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donde 91, g son espinores de dos componentes que se identifican con las proyecciones levégira
y dextrégira respectivamente.

Ademas, la representacién de Weyl nos ayuda para la representacion irreducible del grupo
de Lorentz ortocrono propio, E? . Podemos etiquetar estas como (ji, j2), de manera que la
dimensién total es (2j; + 1)(272 + 1). En la representacién espinorial del grupo £, podemos

escribir su representaciéon fundamental como el producto tensorial de las representaciones

espinoriales (%, O) y (0, %), de dimension 2. Estas representaciones se tratan de los espinores
de Weyl, de manera que 9y, € (%,0) v YR € (0, %)

Los espinores de Weyl cumplen las ecuaciones de Weyl, que tienen la forma,

i10,1r, = 0, (A.41)
iR = 0, (A.42)

donde o# = (I,5) y o = (I, —&). Aqui los espinores de Weyl representan particulas de masa
nula y espin 1/2. Podemos ver que ademés se tratan de autoestados de la helicidad. Esta se

define como la proyeccién del espin en la direccién del momento,

1

h=pS = b7, (A.43)
de manera que, tomando por ejemplo ¥;, = ure™P?, que es una solucién de onda plana,
. 1
oy =0 == (0o — 'O =0 = F(E + dp)ur, =0 = dpFup = —Fup = h = 3
(A.44)

Si la masa es distinta de 0, los espinores de Weyl dejan de ser autoestados de la helicidad,
por lo que la quiralidad deja ser equivalente a la helicidad. En este caso, los espinores de Weyl

cumplen las ecuaciones de Dirac de manera que se encuentran acoplados,

z’&“@ﬂm = miyg, (A.45)
i0"0r = M. (A.46)

De esta manera si tomamos (A.40) con las matrices de Dirac que tomen la forma (A.39),

recuperamos la ecuacién de Dirac (2.36).
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Anexos B

Desarrollos matematicos correspondientes al Capitulo 3.

B.1. Obtenciéon Lagrangiano de la interaccién débil.

Similar a la QED vamos a considerar el Lagrangiano libre,

3

Lo =) ithj(x)y"Oubi(x), (B.1)

j=1
donde hemos de notar que no aparecen términos de masas para los fermiones. No hemos
incluido estos términos pues mezclarfa campos levégiros y dextrégiros mynp = m(hrir +
YrY1), lo que rompe nuestras consideraciones de simetria, ya que tenemos una combinacién
de singletes y dobletes que no es invariante bajo SU(2). El Lagrangiano (B.1) es invariante

bajo una transformacién electrodébil global,
i(x) — Y (x) = PULP1 (),
a(x) — Py(a) = 20y (), (B.2)
Y3(x) — () = ey (),
donde la matriz de la transformacién SU(2)r, que se trata de un grupo no-Abeliano, es,

Up =et7% . coni=1,2,3, (B.3)

siendo o; las matrices de Pauli, que son los generadores de la representaciéon fundamental del
grupo y que sélo actian sobre 11, es decir, sobre el doblete.3 y o' son cuatro constantes.
Los pardametros y; se llaman hipercargas, ya que la transformaciéon U(1)y es andloga a la
correspondiende de la QED.

Vamos ahora a requerir que el Lagrangiano sea invariante bajo transformaciones locales
gauge SU(2);, @ U(1)y, es decir o = o'(z) y B = B(x). Tal y cémo hicimos en la QED,
vamos a cambiar las derivadas por derivadas covariantes. Como tenemos cuatro parametros

gauge, necesitamos cuatro bosones gauge diferentes,

Dytn(z) = [3M +igW (@) + z’g/leu(a:)] b (@),
Dyipo(x) = [0y + ig'y2 Bu()] 2 (),
D, 3(x) = [8“ + ig’ygBu(x)] Y3 (x), (B.4)

donde g y ¢’ son dos constantes de acoplo y hemos definido el campo matriz de SU(2),

W, (z) = %Wg(x). (B.5)
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Queremos que D,1);(z) transforme igual que los campos 1j(x), lo que nos fija cémo se

han de transformar los campos gauge,

1

Byu(z) — B,/ (x) = Bu(z) - ?(9“[3(33),
~ —~ —~ i
W(z) — Wi(z) = Up(a)W, U (2) + gﬁuULUz(x). (B.6)

De esta forma B, transforma de manera similar al fotén de la QED y W# transforma segin
SU(2). Cabe destacar que, por el momento, las hipercargas son parametros arbitrarios, por
lo que los acoplos entre B, y v, son libres y su intensidad puede variar, pero veremos mas
adelante cémo quedan fijadas. Sin embargo, como en SU(2) las relaciones de conmutacién no
son lineales, esto no pasa para Wﬁ, por lo que la magnitud del acoplo es la misma.

Asi pues, el Lagrangiano,
3 -
L= ih(x)y" Dyupj(x), (B.7)
j=1

es invariante bajo transformaciones locales del grupo electrodébil. Para construir un término
cinético para los bosones gauge, vamos a introducir unos tensores de una forma similar a la

del tensor electromagnético de la QED,

By = 8,8, — 8,B,,
W = _é [(au +igW,), (B, + igwy)] = 0,W, — 8, W, +ig [WM, Wy] :

Oirri i i i ij j
Wi = 5 W, con Wy, =0,W; —0,W, — g FWIWE, (B.8)

de manera que tenemos que B,,, es invariante bajo transformaciones de &G, mientras que W,
transforma de forma covariante (W, — U, LW;WU}E)~ De esta forma el Lagrangiano cinético
viene dado por,

1

1. .
Liin = _ZBNVB“V - EWZLVWZHV' (Bg)

De nuevo, la simetria gauge prohibe la existencia de un término cinético para los bosones,

por lo que las particulas que describimos hasta ahora no tienen masa.

B.2. Obtenciéon Lagrangiano de la QCD.

Queremos construir una teoria cuantica de campos. Para ello, vamos a denotar qf al campo
de un quark con sabor f = (u,d,c,s,t,b) y color . Para simplificar la notacién, vamos a
tomar una notacion vectorial en el espacio de color, g5 = (q}, q]%, qj’[) El Lagrangiano libre

de Dirac, viene pues dado por,

Lo=>_qp(iv" 0y — my)qy, (B.10)
f
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que es invariante bajo transformaciones globales SU(3)¢ en el espacio de color,
¢ — (¢§) = Ugdq}, UUt=UU =1, det(U) =1, (B.11)

donde U € SU(3). Esta matriz de rotacién puede escribirse como,

U = el ta, (B.12)
en donde %)\a (a =1,2,...,8) son las matrices generadores de la representacién fundamental
de SU(3) y 6, son pardmetros arbitrarios.

Las matrices A\, tienen traza nula, podemos denominar 7T, = % y cumplen las siguientes
relaciones de conmutacién,

[T@,T‘-”} — j fabeqe. (B.13)
donde fo¢ son las constantes de estructura de SU(3) que son reales y totalmente
antisimétricas.

Como hemos hecho para los casos anteriores, vamos a exigir que el Lagrangiano sea
invariante bajo transformaciones locales de SU(3)¢, es decir 0, = 0,(z). Para satisfacer esto,
de manera similar a A, en la QED, vamos a introducir una serie de campos gauge para
transformar la derivada en derivada covariante, ya que es la parte que nos da problemas.
Estos campos corresponderdn a 8 bosones gauge, pues tenemos 8 parametros distintos, y los

denominaremos gluones. Se denotan como G4 (), por lo que definimos,
DFq; = [0" +ig,ToGE(x)] qf = [0" +ig.G"(x)] 45 (B.14)

donde hemos introducido la matriz compacta [GH(x)] = T*G%(x) y donde g es la constante
de acoplo de la interaccién fuerte.
Queremos que DFgy transforme igual que ¢y, lo que fija las propiedades de la

transformacion del campo gauge,
Dt — (D" = UDMUT, (B.15)
y por tanto, bajo una transformacién infinitesimal 46, se tiene

1
g — (@) = qf +i(Tapdled, GE — (GE) = Gl — —0"(80,) — f60,GE. (B.16)

gs

El cémo se llega a la transformacién del campo del gluén se puede ver en el anexo (B.3).
Notar que si comparamos con la transformacién del campo del fotén en la QED (3.6), aqui
aparece un término extra debido a que SU(3) es un grupo no-Abeliano. Ademas, al contrario
que en la QED, g5 es Unica, no dependiente del tipo del fermion.
Para construir un término cinético para los campos de los gluones, introducimos los
siguientes tensores,
i

G"(x) =
Gs

[D#, DY = OMGY — 0¥ GF + igy|G*, G¥] = TG (), (B.17)

G () = O"GY — 9"GE — g, f*"“GlLGY (B.18)
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Luego bajo una transformacién gauge SU(3)¢,
G — (G™)Y = UG Ut (B.19)

y la traza Tr(G*'G,,) = %Gg”wa permanece invariante. Tomando la normalizacién

apropiada del término cinético, el Lagrangiano invariante local SU(3)¢c de la QCD queda,

1 o
Locp = _ZGZ G, + E qr(i" Dy —my)gy. (B.20)
f

B.3. Transformacién local del gludn.

Sea un gluén Gj; y un vector de color g5 = (q},q?,q?) donde (1,2,3) son los posibles
colores y f = u,d,c,s,t,b el sabor del quark. Vamos ahora a tomar una transformacién local

SU(3)c en el espacio de color, de manera que conocemos cémo cambia gy pero no GZ,
GH(z) — Gh(z) + 6Gh (), qr(x) — qp(x) +iT60,(x)qs(x). (B.21)

La derivada covariante, definida como D¥ = 0" + ig,T*G%, actuando sobre un vector de

color transformara como,
Dtqp — (Dlqp) = [0" +igs T (GH + 6GY)] (1 +iT%66,) 45
= (1 4+iT%0,)0"q + iTq0"(60,) + igs T°G (1 4+ iT*60,)q s+ (B.22)
+igsT*6GH (1 +iT560)qy .
Ahora, puesto que las matrices T% no conmutan, vamos a sumar y restar el término
(14T “60a)igsTbG§ qf, despreciando los términos de segundo orden obtenemos,
Dtqp — (1 +4T60,) (0" + igs T*GY) qr + iT%qp0" (60a) + igs T*0GH qp+
+igs TP G (1 4+ iT*60,)qp — (1 +iT%60,)igs T°GY qp (B.23)
= (1+iT%00,) D" qp 4+ iT%qr0" (66,) + igs T 0Ghqr + g560.[T*, Th) Gl qy.
Conocemos la relacién de conmutacién de las matrices 7%, dado en (B.13). Ademads, estas

matrices tienen la siguiente relacién con la traza,
arb 1 ab
Tr(T°T) = 56 . (B.24)

Ahora, queremos que D#q; transforme como gy, por tanto si imponemos esto se ha de
cumplir,
0 = iT%q;0"(60,) + igsT*0G qs + gs f*00,GY T, (B.25)
que multiplicando por Ty y tomando las trazas nos queda,

0 = iTe(TYT)q;0"(604) + igs Tr(TYTY) G g + g5 f*°00,GLTr(TT,) 520
B.26
= i0"(804) + 950G + g5 f1450,GY.

35



Despejando (5G§ , realizando una permutacién ciclica de los indices en f*? y renombrando

a—b,b— cy d— a obtenemos,

SGH = —gla(aea) — fabes0,GE. (B.27)
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Anexos C

Calculos analiticos del Capitulo 4.

C.1. Cailculo de la seccién eficaz del proceso ee™ — uu~.

La seccién eficaz de manera tedrica viene dada para procesos donde las particulas iniciales
tienen la misma masa, por unidad de angulo sélido, como,

do 1 ‘E‘

0N 2E2 1672E.,

IM?, (C.1)

donde F.,, es la energia del centro de masas,

k ’ es el médulo de las componentes espaciales
del momento del muén y M se trata del elemento matriz correspondiente al proceso.

Conocemos que el elemento matriz viene dado por,

iM = <¢zm |Duu(Q)| wfinal> 5 (02)

por lo que leyendo el diagrama de Feynman empleando D tenemos,
M = lp.a) (0@ ulpr) (=242 ) ) (eQr) (). (©3)
Ahora para calcular | M ]2, necesitamos conocer el complejo conjugado del elemento matriz,
M = () (-ieQr" o) (5 ) ) (ieQ ) o). (€

donde tanto para electrones como para muones || = 1 Luego, realizando suma sobre espines
finales y promedio sobre iniciales, obtenemos,

1 et _ _
|/Vl|2 1 Z —10(Pe2) v u(Pe1)u(pu1)vuv (ppu2)
Se1,Se2,5u1,5u2

- 0(pp2) Y u(pu1)u(per )y v(per). (C.5)

Ahora reorganizamos los términos para poder realizar mas adelante la suma de espines,
2 e
|M| = Agh § [T)(peQ)’yHu(pel)a(pel)’YVU(pel)]
q
381756215#17‘9#2

[@(Pu1) v (Puz) - 0(pp2)vwu(p)] - (C.6)

Utilizando las relaciones para los espinores u y v (2.42) encontramos,

el

2:

Tr (}’)62 n me)’y”(pel + me)vl’] Tr [(pul + mu)’ﬁt(pw = M)W - (C.7)
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Vamos ahora a realizar el cdlculo de cada una de las trazas. Comencemos con la

concerniente a los electrones,
Tr [(peQ o me)’yu(pel + me)ﬁyu} =Tr [pe2ﬁyuzﬁelfyy} + meTr [peZVH’YV}
- mTr [P, 7] = mETe (9] (C8)

Ahora, vamos a calcular el valor de estas trazas. Para ello, vamos a emplear las siguientes

propiedades de las matrices de Dirac,
Tr[y#4"7*] =0, Tr[y"+"] = 4g"", (C.9)
Tr {'y v”’yo‘vﬂ} 4 (g“”gaﬁ g"g"" + g"Pg ”a)- (C.10)
Asi pues, las trazas nos quedan,
T 1 vl — Tr [~@~HAB~Y | = 4 apaBu _ geBou 4 jov up
TPy PorY Pe2aPe1 g Tt |75 9"y Pe2aPeip (9797 — g™ 9" + 9*g
= 4 (plopcs — (Pea - per) g™ + péavly)
Tr [Jr”eﬂ“v”} = pe2a Tr[1*7"7"] = 0 = Tr [v“l”eﬂ”} = Pe1 T [V“ v’ 7”} :
Tr [y*"] = 49",
por lo que finalmente obtenemos,
Tr |:(pe2 —me) Y (P, +me)y } =4 [phoply — (Pe2 - per) g™ + ploply — m2g ] (C.11)
De manera similar podemos obtener el valor de la traza correspondiente a los muones,
Tr [(pul + m“)%(p;ﬂ B m“)%] =1 [pulwpuﬂ”} — [puﬂ“%}
+m,Tr [fyugéﬂfyy} — mZTr Y], (C.12)

que empleando de nuevo las relaciones (C.9) obtenemos,

m#)%/} =4 [puluplﬂl, - (pul 'p,u2) Guv +p,ulypu2u - mig/w .
(C.13)

Ahora ya podemos calcular el elemento matriz al realizar la multiplicacién de las dos

Tr [(ij + mu)w(iéw -

trazas,

16e4
M| = gt (Pez - pin) e - pr2) = (Pea - per) Py - py2)

+ (pe2 - Pu2) (Pet - pu1) — M (Pez - Pe1)

( )
- (peQ ) pel) [(pul pp,2 4(]7“1 : pp,Z) + (p;ﬂ 'p,u,l) - 4mi] (014)
+ (Pe2 - Pp2) (et - Pu1) — (Pet - Pe2)(Pu1 - Pu2)

( )

+ (pe2 - Pu1) (Pet - pu2) — M0 (Pet - Pe2)

_mfza [(p,ul : p,u2) - 4(pul *Pu2 + (]%2 : pul) - 4mi)]} )
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lo cual podemos simplificar hasta obtener,

8e?
M = 7 [(Pe2 - Pu1) (pet * Pu2) + (Pe2 - Pu2)(Pet - Put)

+m? (pe2 - Per) + mZ(pu1 - pu2) + 2mim?] . (C.15)

Una vez obtenido el elemento matriz en funcién de los productos de los momentos hemos
de calcular dichos productos. Para ello, vamos a colocarnos en el sistema CDM. Como vemos

en el la figura (C.1), los momentos de las distintas particulas las podemos escribir como,

Pul

Puz

Figura C.1: Momentos de las particulas iniciales y finales vistas desde el sistema centro de

masas.

Pe1 = (E, pe, 0,0) put = (E,pyucosb,p,sin 6,0)
’ ’ (C.16)

Pe2 = (E, —pe, 0,0) pu2 = (E, —pucos 6, —p,sin 6,0)
Con esto podemos calcular de manera directa el valor del momento del fotén, asi como
los productos de los dos primeros términos del elemento matriz. El momento del fotén viene

dado por,
q = Pe1 + pe2 = (2F,0,0,0) = ¢* = 4E°. (C.17)

Ahora los productos los podemos escribir como,

(Pe1 - Pu2) = E* 4 pepy cos 0 (pet1 - 1) = E* — pepy, cos 0 (©18)
(Pe2 - Pu1) = E* 4 pepy cos 0 (pe2 - Pu2) = E* — pepycos 0
Ahora para calcular los términos que acompanan a las masas vamos a emplear,
(Per + Pe2)” = P21 + Pla + 2(per - pez)
(C.19)
— = 4E?

y de manera similar para los muones. Realizando un poco de algebra encontramos,

(pe1 - Pe2) = 2E* — m? (Put - Pu2) = 2E° —m, (C.20)
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Con todo esto y desarrollando las ecuaciones, llegamos a que el elemento de matriz en
funcién de los momentos queda,

64

2

[E* + p2p}, cos® 0 + E*(m? + m()] (C.21)

Ahora si tomamos que p?> = E? — m? tanto para electrones como para muones en el

sistema CDM, podemos reescribir (C.21) como,

m2m?2 m2 +m?
MP=e*|(1+cos?0) + —~ € cos?0 + —H——°(1 — cos? 0 C.22
E4 E?

Ahora ya podemos calcular la seccién eficaz segtin (4.2). Para ello, vamos a sustituir en

5 2
ella el valor del elemento matriz, tomando ‘k’ =pu=FEy\1~- % v E.n = 2E, obteniendo,

do et 4m? 9 16m2m2 4(m? +m?2) )
— = - (14 cos® ) + —+—F cos® O + —+—— (1 — cos*0)| .
ds2 6472 E2,, E2. E4 . EZ,
(C.23)
Introduciendo la constante de estructura fina, que en unidades naturales se trata de o = %
e integrando en el diferencial de angulo sélido se obtiene,
a2 4mz
c=-— — .
2w Q 16m?m? 4(m2 4+ m?
: /0 d¢/0 sin 0df | (1 4 cos® §)——F—< cos® 0 + (226)(1 —cos?f)| = (C.24)
C cm

8 32mZm?  16(m2 +m?)

3 3EL 3E2

B a2 . 4mi
- 4EZ, EZ,

Este es el valor de la seccion eficaz en funciéon de los valores de la energia del centro de

masas.

C.2. Calculo de la anchura a media altura del proceso b — clv.

El elemento matriz vienen dado de nuevo segiin (C.2) de manera que, para este diagrama,

se obtiene,

. B 19 L 5 —1 kuky
= c E—— 1 - ‘/C v - 1
iM = a(pe) 2\/57( 7°) b]k2_m%v [gy + (¢ )kQ_gm%J
— Zg v 5
U ——~Y(1 — v(py), (C.25
) |55 =% o). (C29
donde myy es la masa del boson W~ y V, el elemento de la matriz CKM correspondiente

a este proceso. Tomando el complejo conjugado, el gauge de Feynman-"t Hooft, y sumando
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sobre espines finales y promediando sobre iniciales obtenemos,
2 1 g Val> u 5 _ 5
MP == D T ti(pe)y (1 = A7 )u(ps) w7 (1 — 7)o py)
4 26(k2 —mz,)
Sb,S¢,S1,5 w

~0(py) (L +2")mu(po)a(pe) (1 +~°)7"ulpe).  (C.26)
Similar al anterior proceso, reorganizando y utilizando (2.42) se llega a,

’M|2 _ 94“/Cb|2

= 57—y T [ eV (1= )+ ) (147"

Tr [(p, + mo)(1 =) (B, = m) 1+ . (C.27)

Utilizando las relaciones de las matrices de Dirac (C.9), asi cémo las siguientes relaciones

con la matriz +°,

,}/5,)/5 -1
PP = =yt
T [41979%9°] = Tr [449"7°] = 0
Tr [vav“’vﬁ 7”7‘1 = —4ig™P

donde 8V se trata del tensor totalmente antisimétrico de Levi-Civita. Podemos escribir el
elemento matriz como
4 2
2 g ‘Vb| .
IM|" = 22(k:2——cm2) PEDY — (P - pe) g™ + DEDY — iDeappe™ ™’
w

Py — (1 PG + PDY, — TP EGppn] - (C.32)

Ahora, si realizamos el producto aparecen diferentes términos multiplicados por el tensor
de Levi-Civita. Aquellos en los que éste se encuentre acompanado de los cuatro momentos se
anularan, pues, por conservacion de momento, p, = p. + pe + pr. También aparecen términos
en los que el tensor esté multiplicado por una métrica, como por ejemplo, gw,aa“ﬂ” = 5?,5 Y.

Estos términos se anularan por la antisimetria del tensor, obteniendo,

g |Vap)?

IM|? = P —m) [2(pc 1) (P - Pv) + 2(Pe - Pu) (Db - P1) — PeaPbP] Poe™ ™ oppn | -
w
(C.33)
Utilizando la antisimetria del tensor de Levi-Civita, asi como la propiedad,
e e 0 ppg = —2 (Y — SH3Y) | (C.34)
de manera que podemos simplificar hasta obtener,
4 2
9" [Ve|

MP=-Z 1% (p.- “py). C.35
M| (kg_m%v)(pc ) (D - po) (C.35)
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Ahora, situdndonos en el sistema centro de masas, tomando el quark b en reposo, podemos

obtener los valores de los productos escalares,

= (E3,0,0,0)
. Py Py = By, = mypE,, (0-36)
by = (Euapzx)
y el otro producto lo obtenemos como,
1
(pe +p1)* = P2+ D} +2(pe - p1) = pe -1 = 5 [(pe + ) —p:—pi], (C.37)
utilizando,
Pb=DPe+ P+ Dy = et 01 =py—pv=(Ep— By, —p1) (C.38)
tenemos,
1 1
De P = B [(Eb — E’l,)2 — Eg — mz — m%] =5 ( g —2mp B, — mz — m?) . (C.39)

Si suponemos que el momento del bosén es mucho menor que la masa del W~ obtenemos
que,
2 gVl 2 2 2
IM|” = W(mbE,,) (mj — 2mpE, — m; —my) . (C.40)
w
Una vez ya obtenido el elemento matriz en funciéon de las masas pasamos a calcular la
anchura a media altura de la desintegracion. Para ello, se tiene,
d*p, d*p) d*p),
2m)32E, (27)32E; (27)32E,

M

dar
2mb

(2m)*6* (b — pe — p1 — pv) ( (C.41)

Vamos a ver la funcion delta de Dirac en cuatro dimensiones. En concreto, ésta la podemos

escribir como,
54(pb — Pc — Pl — pu) - 5(Eb - Ec - El - El/)63(ﬁb - ﬁc - ﬁl - ﬁu)7 (C42)

donde, tomando el sistema CDM, p; = 0, £}, = my, por lo tanto la delta en tres dimensiones
nos permite eliminar la integral en p. ya que tenemos p. = p; + p,. Ademds, tenemos que

la energfa del quark ¢ la podemos escribir como E. = \/m2 + |p.|> = \/m2 + |5 + 7, |°. Si

suponemos que p; y P, tienen sus direcciones formando un édngulo 6 se tiene que |pj + ﬁu|2

]]5}\2 + |ﬁy\2 + 2P| |py| cos 0, y por tanto, como m, = 0, obtenemos que,
2, =2, 2 ~ 1/2
E.= <mc +|pi|” + E; + 2|pi| Ey cos 9) . (C.43)

Ahora queremos simplificar d*p,. Para ello vamos a derivar con respecto del dngulo la

energia del quark c,

dE. |pi| Evsin 0 . E.
a0 E, S E, |7l (C44)
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Si desarrollamos ahora d®p;,, y sustituimos la expresién anterior nos queda,

E.E,
1]

d*p, = E*dE, sin 0dfdp = dE,dE.dg. (C.45)

Podemos ver que la expresion (C.41), integrando en E. y en ¢ nos queda reducida a,

M]> d*p /E
ar=—2"1_ dE, dE,8(my — E. — E, — E,), A
(4m)4my, By |pi B (m : ) (C.46)

donde los limites de la integral los obtenemos de (C.43) cuando el coseno toma los valores £1.
Asi, si tenemos E. < my—E;—E, < E} la integral vale la unidad, de lo contrario, se anularé.

Vamos a suponer que nos encontramos dentro de los limites de la integral de aqui en adelante.

Vamos a continuar ahora viendo cémo desarrollar el valor de d3p;. Puesto que ya hemos
integrado en ¢ y en E, hemos integrado en todo el dngulo solido, de manera que d®p; =
A7 |pj)? d || Tomando diferenciales en E? = m} + 51|? se tiene EydE; = |pj|d|p|. Por lo
tanto obtenemos dp; = 4x |pj| E;dE). Asi, la expresién (C.46) queda reducida a,

IM|?

dl' =
(4m)3my

dE,dE,. (C.47)

Ahora ya que hemos obtenido todo en funcién de diferenciales de energias, podemos

sustituir el valor del elemento matriz (C.40). Realizando la integral en E,, tenemos,

+
o) A | Y

dE; = a(@mymd, E,(m} —m2 —m} — 2myE,)dE, (C.48)

2_
donde los limites de la integral vienen dados por la condicién E. < my, — E; — E, < ET.

Estos limites son,
2(mb* —m2 + m?) — myE,

Ef = (C.49)
mb—El:Fw/Elz—m%
De esta forma, resolviendo la integral y realizando la sustitucién nf—j = S%F, donde G
w
es la constante de Fermi, obtenemos,
dl' 32G2 |Vy|? 1, 2 2 2 3 .3
dE, = ﬁ (mg - mg - m%)§<E;r —E;7) - gmb(E;r -E;7)|- (C.50)
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Anexos D

Reglas de Feynman.

D.1. Reglas de Feynman para la QED.

Para este caso partimos del término de interaccién de la QED,
Eint = —6@1;’}/“1/)14“ . (Dl)

Podemos identificarlo con la cantidad asociada a un vértice de interaccién

electromagnético,

(G

= —ieQ". (D.2)

Los fotones internos se tratan de fotones mediadores de la interaccion, y por tanto van a

venir dados por el propagador obtenido en (A.29),

7 ki ko

/L«/\Z/Wy E’L.Du/\:

Los fotones externos, sin embargo, van a venir dados por el campo del fotéon y tendran

una polarizacion,

o = €u(KY), (D.4)
K

e = ) (D5)
K

Cuando queremos calcular la seccién eficaz de un proceso en el que intervienen fotones

externos hemos de sumar tinicamente sobre las polarizaciones transversales, obteniendo,

S k)l (k) = —g™ . (D.6)

r=1

Se puede ver que 1 puede aniquilar un fermién o crear un antifermién, 1 puede crear

un fermién o aniquilar un antifermién y finalmente A* crea o aniquila un fotén, es decir,
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tenemos,

Empleando las definiciones (2.40), podemos ver una relacién més estrecha con las particulas

y antiparticulas.

D.2. Reglas de Feynman Interaccién Electrodébil.

Similar a como hemos hecho en la seccién anterior, podemos obtener las reglas de Feynman
correspondientes a los términos de interaccién en la teoria electrodébil. Si nos fijamos en las
corrientes cargadas, partiendo del Lagrangiano (3.29), podemos obtener los siguientes vértices,

vy dj

_ io
Poo= —2 i1 — ),
2\@7( ¥5)

I~ U;
donde 7,5 = 1,2, 3 representa la familia correspondiente.
De la misma manera, tomando el Lagrangiano de las corrientes neutras (3.20) y separando

la interaccién con el fotén, que sigue las reglas de Feynman vistas en la seccién anterior de

este anexo, podemos obtener los vértices de interaccién para el Z como,

]
I = Zlcjgewv“(l —5), (D.8)
v
f
X = co:gﬂwfyu [g{ (1 _275> +g£ (1 ZWS)] . (09
f

Finalmente, podemos ver que los propagadores correspondientes a los bosones con masa

vienen dados por,

+
12 ’\/\/\/W\.»’\/\/\/\/ 1% 1% Z 14
4 q (D.10)

45



kHEY

—1
o |9 D)5
— m2 ( >q2—§m§(

q2 mx

con mx la masa del bosén W o Z, segiin corresponda.

DM (q) = (D.11)
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Anexos E

Valores numéricos usados en los calculos.

Todos los valores numéricos han sido obtenidos de la versién més reciente del Particle

Data Group, [2].

E.1. Masas de las particulas.

Particula | Masa [MeV]
e 0,51099895000
W 105,6583755
T 1776,86
b 4180
c 1270

BO 5279,66
B 6274,47
D~ 1869,66
D*~ 2010,26
J/ 3096,900

Tabla E.1: Masas de las particulas empleadas en los calculos.

E.2. Otras constantes.

o 0,0072973525628
Vit 0,04153

Gr | 1,1663787x 10~ " MeV 2
THo 1,519x10712 5
To- 0,510 x10712 s

ho | 6,582119569x10~22MeV s

Tabla E.2: Otras constantes empleadas en los célculos.
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