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Abstract

The main objective of this work is to present a proof of the Riemann’s mapping theorem. To do this,
we will introduce different results of convergent function sequences, we will talk about some types of
convergence for families of functions, but paying special attention to normal convergence.

After the introductory first chapter, the purpose of the second chapter is to give a proof of Montel’s
theorem, a result which will be fundamental in the proof of Riemann’s theorem.

The third chapter focuses on Riemann’s mapping theorem. Throughout the chapter we will work
with simply connected domains. We will say that a set Q is simply connected if C\ Q has no bounded
components. We will remember the concept of simple connectivity and we will expose some introductory
lemmas that will be very useful in the proof of the theorem.

Riemann’s mapping theorem precisely provides us with a way to establish an equivalence between a
specific type of domain and the unit disk.

Riemann’s mapping theorem states that:

Suppose that D is a simply connected domain in the complex plane, D # C, and zg is a point of
D. Under these conditions, there exists a unique conformal transformation f : D — A verifying that
F(D) = A, f(z0) =0 and f(z0) > 0.

Furthermore, once the Riemann’s mapping theorem has been proved, we will obtain a generalisa-
tion for any pair of simply connected domains in C, none of them the complex plane, which states the
existence of a conformal mapping between them.

Finally, in the last chapter we will discuss the concept of double connectivity. We will say that a set
Q is doubly connected if Q has a single bounded component.

We will study a series of related theorems, leading to a final theorem, which will establish the dif-
ferent cases, by means of which we can construct a conformal transformation with a doubly connected
set.

The last theorem states that:

For a doubly connected domain €, one of the following three situations is true:

1. Q=C\{c} for some ¢ € C.
2. Qs conformally equivalent to A(0,1) \ {0}.

3. Qs conformally equivalent to A(r, 1) for some r such that 0 < r < 1.
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Capitulo 1

Introduccion

El tema del trabajo que presento se sitia en el campo del andlisis matemadtico, en concreto en el de
la variable compleja. Gira alrededor de la idea de las transformaciones conformes, funciones que son
holomorfas y biyectivas entre abiertos de C. Este tipo de funciones define una relacién de equivalencia
entre conjuntos, es decir dos abiertos U,V C C estan relacionados si hay alguna y : U — V holomorfa y
biyectiva.

Una situacion andloga aparece en otros contextos en el mundo de las matematicas, por ejemplo hemos
estudiado a lo largo del grado: isomorfismos entre espacios vectoriales, homeomorfismos entre espacios
topolégicos, difeomorfismos entre abiertos de R”...

En 4lgebra lineal, un isomorfismo es una aplicacién entre dos espacios vectoriales U,V y: U —V
lineal y biyectiva (con inversa lineal).

En topologia, estudidbamos los homeomorfismos, tratindose un homeomorfismo de una funcién
v : U — V continua, biyectiva y con inversa continua.

Por dltimo en el campo de la variable compleja, nos interesaremos por las transformaciones confor-
mes.

Una transformacién conforme, es una aplicacion y : Q — W, tratdndose Q, W abiertos en C, holo-
morfa y biyectiva (con inversa holomorfa).

Las funciones holomorfas son el principal objeto de estudio del andlisis complejo; son aplicaciones
que se definen sobre un subconjunto del plano complejo C y con valores en C, siendo diferenciables en
algtin entorno de todo punto de su dominio. Si la funcién es holomorfa en cada punto de su dominio, se
dice que es holomorfa en su dominio. Esta condicién es mucho més fuerte que la diferenciabilidad en
caso real e implica que la funcién es infinitamente diferenciable y que puede ser descrita mediante su
serie de Taylor.

Cabe destacar que toda funcién holomorfa en C es analitica y viceversa. Tratandose una funcién ana-
litica de aquella que puede expresarse como una serie de potencias convergente en algin disco centrado
en cada punto de su dominio. Por tltimo recordaremos que una funcién holomorfa sobre todo el plano
complejo se dice funcidn entera.

Una vez presentado el concepto de aplicacién conforme, es 16gico preguntarse el por qué nos interesa
estudiar este tipo de aplicaciones.

Y bien, las aplicaciones conformes:

= Preservan dngulos.

» Las propiedades para transformaciones conformes f : W — C, se pueden extender a aplicaciones
conformes g : Q — C debido a que por composicién tenemos que:

g:Q—>W-—-C

siendo g = f o y transformacién conforme, ya que la composicién de funciones holomorfas y
biyectivas (transformaciones conformes), es holomorfa y biyectiva.

Por lo tanto, si existe y : Q — W estos dos subconjuntos tendran las mismas propiedades.
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Serd, en este contexto, natural estudiar si es posible que dados dos abiertos cualesquiera de C exista
alguna transformacién conforme entre ellos, es decir, si todos los abiertos son conformemente equiva-
lentes.

Ahora bien, no todos los abiertos Q C C son conformemente equivalentes.

= Por ejemplo, no existe ninguna transformacién conforme y : C — A = A(0, 1) entre el plano com-
plejo y el disco unidad. (Nota: Definimos el disco de centro zy y radio r como A(zg,r) = {w €
C: |w—2z0| <r}). Ya que si existiera y : C — A llegariamos a una contradiccién por el teorema
de Liouville, debido a que si una funcién y entera, es acotada en C, entonces dicha aplicacion es
constante, por lo que no podrd ser una transformacién conforme, al no cumplirse la condicién de
ser biyectiva.

= Por lo que serd interesante descubrir que abiertos son conformemente equivalentes, en este contex-
to es légico pensar en los abiertos conexos, aquellos que no presentan una separacién. No obstante
trabajeremos en especial con los conjuntos simplemente conexos debido a los resultados proceden-
tes del teorema de Riemann y de otros lemas. Exponemos brevemente la definicién de conjunto
simplemente conexo:

Nota. Diremos que Q se trata de un conjunto simplemente conexo si C\ Q no tiene componentes
conexas acotadas.

= Precisamente, no es posible hallar una ¥ : A — Q si Q no es un abierto conexo y simplemente
conexo, distinto de C. Debido al siguiente lema:

Lema. Sea f : D — C una transformacion conforme, donde D es un dominio simplemente conexo
en C. Entonces se tiene que D' = f(D) verifica también tal propiedad.

Que lo volveremos a enunciar y demostrar al inicio del tercer capitulo.

En resumen nos vamos a dedicar a estudiar qué tipo de conjuntos son conformemente equivalentes
y posteriormente descubriremos que el teorema de Riemann da una respuesta muy interesante a nuestra
pregunta:

Todos los Q simplemente conexos, salvo C, son equivalentes a A.

Este resultado nos permite establecer una relacién de equivalencia entre conjuntos propios de C
simplemente conexos cualesquiera.

Un paso siguiente serd preguntarse qué ocurre con los conjuntos doblemente conexos, que expondre-
mos y estudiaremos en el dltimo capitulo.



Capitulo 2

Teorema de Montel

En este capitulo, nos centraremos en el estudio de las familias normales, para acabar derivando en la
exposicién de teoremas como el teorema de Arzela-Ascoli y el teorema de Montel.

El teorema de Montel constituye el principal resultado de este capitulo, que nos serd de gran utilidad
para poder demostrar el teorema de Riemann, del capitulo 3. Asi, este capitulo constituird una prepara-
cién, para poder abordar con detalle el siguiente capitulo de conjuntos simplemente conexos, y contar
con las herramientas suficientes para estudiar el teorema de Riemann.

La referencia principal que hemos empleado en este capitulo es [4].

2.1. Convergencia normal

Lo primero que haremos sera definir lo que es la convergencia normal.

Dada una sucesion de funciones bien definida, f,, : U — C, que no tienen por qué ser necesariamente
analiticas en un subconjunto abierto U de C, diremos que {f,} converge normalmente en U a una
funcién f: U — C, si converge puntualmente a f en U y ademds converge uniformemente en cada
conjunto compacto de U.

Como podemos observar el término de convergencia normal se encuentra entre la convergencia pun-
tual y la convergencia uniforme, exigiendo mds condiciones para cumplirse que la primera, pero sin la
necesidad de satisfacer la convergencia uniforme en todo el dominio U, pudiendo verificarse solamente
en los conjuntos compactos de U.

En la practica, para comprobar si {f,} converge normalmente en U no es necesario mirar si se
cumple la convergencia normal en cada conjunto compacto en U, con demostrar que se verifica en los
discos cerrados en U seria suficiente.

2.2. Familias normales

2.2.1. Subfamilias normales de C(U)

Nota. Por C(U) denotamos el conjunto de funciones continuas en U.

Es importante recordar que toda sucesion acotada de nimeros complejos {z,,} siempre posee al me-
nos un punto de acumulacién, lo que implica que {z,} tiene subsucesiones convergentes.

En esta seccidn, consideraremos una situacién andloga pero para sucesiones de funciones, en vez de
sucesiones de niimeros complejos.

En concreto nos interesa estudiar que dada una sucesién de funciones {f,} cuyos términos son ana-
liticos en un conjunto abierto U, consideraremos la posibilidad de extraer de { f,, } una subsucesion { f;,, }
que converge normalmente en U.

Con lo que diremos que una subfamilia F de C(U) es normal en U si cada sucesion { f, } de F tiene
al menos una subsucesion { f,, } que converge normalmente en U.
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Enfatizamos en que la normalidad de F no requiere que cada funcién obtenida como el limite de una
sucesién que converge normalmente de F' sea a su vez un miembro de F. Una subfamilia normal de C(U)
dotada con esta propiedad extra se conoce como subfamilia compacta de C(U).

Mas adelante expondremos un criterio para detectar normalidad en subfamilias de C(U) cuyos miem-
bros son analiticos en U, que nos serd de gran utilidad. El principal resultado de esta seccion, el teorema
de Montel, da condiciones que aseguran que una familia es normal.

Aparte obtendremos una caracterizacion util para una subfamilia normal arbitraria de C(U ), gracias
al teorema de Arzela-Ascoli.

2.3. Concepto de equicontinuidad

Un elemento importante para reconocer cudando una subfamilia F de C(U) es normal en U es el
concepto de equicontinuidad que citamos a continuacion:

La familia F se dice equicontinua en un punto zj si para cada € > 0 existe § > 0 cumpliendo que
|f(z) — f(z0)| < € para cada f € F siempre que se cumpla que |z — z0| < & ( notar que & no depende de
la funcién f, es decir se cumple para cualquier f € F, aunque si depende del punto zg elegido).

En el caso de que la familia F sea equicontinua para todo punto de U, la llamaremos equicontinua
enU.

Lo més importante sobre el concepto de equicontinuidad es que se encarga de cerrar la brecha entre
convergencia puntual y convergencia normal. Procedemos a presentar un teorema que nos ayudard a
determinar cudndo una familia es normal:

Teorema 2.1. Sea {f,} una sucesion de una subfamilia equicontinua F de C(U). Supongamos que esta
sucesion converge puntualmente en U; entonces también lo hard normalmente en U.

Demostracion. Denotaremos por f el limite puntual de {f,,} en U. Sea K un conjunto compacto arbitra-
riode U.

Tenemos que demostrar que f,, — f uniformemente en K. Nos vamos a basar en el enunciado del
siguiente teorema:

Teorema. Supongamos que cada funcion en una sucesion { f,,} estd definida en un conjunto
K con valores en C. La sucesion converge uniformemente en K si y solo si es una sucesion
uniforme de Cauchy en K.

Nos bastard entonces con demostrar que {f,} es una sucesién uniforme de Cauchy en K. Lo com-
probaremos por reduccién al absurdo.

Si {f»} no es una sucesién de Cauchy en K, deberd existir un € > 0 (escogemos un € > 0y lo
mantenemos fijo durante el resto de la demostracién) con respecto al cual la siguiente afirmacién es
cierta: no existe ningin entero N cumpliendo que Vz € K y Vm,n tales que m > n > N se verifique
[fm(2) = fu(2)| <.

De acuerdo a esto, lo que si podemos asegurar es que para cada entero positivo k van a existir n; y
my, tales que my > nyx > k 'y un punto zx de K cumpliendo que | f, (zx) — f, (zx)| > €.

Este razonamiento da lugar a una sucesién {z} en K. Como K es compacto {z;} posee al menos un
punto de acumulacién en K, denotamos dicho punto por zg.

Utilizando la equicontinuidad de la familia F en zp, escogemos un § > 0 que para todo z verificando
que |z —zo| < O se tiene que

|fu(2) — fu(z0)| < €/3,Vn.

Por construccién ny — ooy my — oo cuando k — oo por lo que tenemos que

I}E?Jﬁnk (ZO) _fnk(Z0)| = |f(ZO) —f(ZO)| =0.

Lo anterior nos permite fijar un indice ko cumpliendo que

| fon (20) — fr (20)| < €/3,Yk > ko.
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Ademds como la sucesion z; tiene un punto de acumulacién en zg podemos escoger un indice k > kg
para el cual |z —zo| < 6.
Combinando las tres inecuaciones tenemos con la eleccion de &

e< |fmk(zk)_fnk(zk)| < |fmk(zk)_fmk(Z0)|"Hfmk(ZO)_fnk(ZO)|+’fnk(zo)_fnk(zk)’ < 8/3+£/3+8/3 =€

Por lo que hemos llegado a una contradiccién.

Por el método de reduccién al absurdo acabamos de probar que {f,} es una sucesiéon de Cauchy
uniforme en K, por lo cual f;, — f uniformemente en K y como K es un compacto arbitrario de U,
hemos probado que {f,} converge normalmente en U. U

El resultado que queremos demostrar es el siguiente:

Lema 2.2. Sea {f,} una sucesion de una subfamilia equicontinua F de C(U). Suponer que la sucesion
{f1(§)} es convergente para cada & perteneciente a algiin subconjunto denso S de U. Entonces f,
converge normalmente en U.

Demostracion. Por el teorema 2.1 es suficiente con probar que f,, converge puntualmente en U. Para
demostrarlo tenemos que comprobar que Vz € U la sucesion { f,(z) } es de Cauchy.

Lo primero que haremos serd fijar un punto z y tomar un € > 0 cualquiera. Lo que pretendemos es
encontrar un entero N tal que | f,,(z) — f,4(z)| < € siempre y cuando tengamos que m > n > N. Para ello
utilizaremos que F es equicontinua en el punto z, con lo que escogeremos un § > 0 tal que

|fn(w) — fu(2)| < €/3,Vn

siempre que se verifique que |w —z| < 6.

Ademas el hecho de que el conjunto S es denso en U, nos permite escoger un punto & de S satisfa-
ciendo |€ —z| < 8. Por hipétesis la sucescion f,(§) es convergente. Por lo que se trata de una sucesién
de Cauchy, ya que sucesion convergente implica sucesiéon de Cauchy.

Con lo que existe un entero N tal que

|fn(E) — f(E)| < €/3 siempre y cuando m > n > N.

Por lo anteriormente expuesto concluimos que

[fn(2) = fa(@)| < |fin(2) = (S + [fn(8) = ()| +1/a(E) — fu(2)| < €/3+€/3+€/3=¢

siempre que m >n > N.

De esta forma, acabamos de probar que la sucesion { f,(z)} es de Cauchy. Ademds se cumple Vz € U
por lo que se verifica la convergencia puntual de {f,} en U. Usando el teorema 2.1 hemos probado la
convergencia normal en U. O

2.4. Elteorema de Arzela-Ascoli y el teorema de Montel

2.4.1. Definiciones previas

Expondremos en esta seccidon dos conceptos relevantes acerca de diferentes tipos de familias de
funciones acotadas.

El primero nos servird para referirnos a que una familia de funciones F : U — C estd puntualmente
acotada en U si para cada punto fijado z de U el conjunto de valores {f(z) : f € F} es un conjunto
acotado de nimeros complejos.

En segundo lugar, llamamos a la familia F como familia localmente acotada en U si sus miembros
son funciones uniformemente acotadas en cada conjunto compacto de U, lo que significa que existe para
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cada subconjunto compacto K de U una constante m = m(K) con la propiedad de que |f(z)| < m para
cada punto z en K y para toda funcién f de F.

Del mismo modo que para comprobar la convergencia normal, para verificar la acotacién local de F
en U es suficiente con asegurar que sus miembros son uniformemente acotados en cada disco cerrado
de U (o incluso menos, serviria con estudiar que cada punto z de U es el centro de algiin disco cerrado
en el cual las funciones de F' estdn uniformemente acotadas). La razén por la que podemos realizar este
procedimiento, es que un conjunto arbitrario compacto en U puede ser cubierto por un nimero finito de
dichos discos.

Nuestro primer teorema de familias normales constituye una caracterizacion de las subfamilias nor-
males de C(U), haciendo uso de alguna de las definiciones citadas en esta seccion.

2.5. Teorema de Arzela-Ascoli

Nota. Consideraremos posteriormente el subconjunto Sy = {z € U : Rez y Imz son racionales} ya que
se trata de un subconjunto denso de U, un subconjunto numerable, por lo que sus elementos se pueden
ordenar como los términos de una sucesion , en concreto podemos construir una sucesiéon donde no se
repitan los términos.

Teorema 2.3. Una subfamilia F de C(U) es normal en U si'y solo si es a su vez equicontinua y puntual-
mente acotada en este conjunto abierto.

Demostracion. Lo primero que asumiremos es que F es equicontinua y puntualmente acotada en U,
nuestro objetivo serd llegar a probar que F es una familia normal en U.

Para ello sea {f,} una sucesion en F; tendremos que demostrar la existencia de una subsucesién de
{fx} que converge normalmente . Recordamos que el conjunto Sy = {z € U : Rez y Imz son racionales }
es denso en U y numerable.

Sea Sy = {z,} . Comenzaremos una posible construccién utilizando la sucesién de nimeros comple-
jos {fu(z1)}. Debido a que F estd puntualmente acotada, se tiene que esta sucesion estd acotada.

Gracias al teorema de Bolzano-Weierstrass, { f,(z1)} tiene al menos un punto de acumulacion en C.
Escogemos dicho punto y lo denotamos por w;.

Por lo que {f,,(z1)} tiene una subsucesion convergente a w;. En otras palabras, es posible seleccionar
una sucesion de indices mj 1 < mj2 < my3... tal que

lim fml‘k (Z]) =W
k—yoo

Escribimos la sucesion de indices m ; para hacer notar que esta sucesion de enteros estd asociada al
punto z; de Sy. Para abreviar y adoptar una notacién més sencilla de usar, a partir de ahora denotaremos
a fm,, como f ;. Ahora { Sk (zg)}le es otra sucesién acotada de nimeros complejos. Podemos por
lo tanto, seleccionar uno de sus puntos de acumulacién, lo llamaremos w, y extraer una subsucesién
my 1 <mpp <mpj3 < .. procedente de {m l,k} para la cual se tiene (cambiando la notacién de la misma
manera) que

Iim f (22) = wa
k—yoo

Siguiendo de forma inductiva con este proceso, construiremos correspondiente con cada entero positivo
[, un nimero complejo w; y una sucesion estrictamente creciente de enteros positivos {m,(c )} tales que
(con la misma notacion)

Iim fjx(z1) = wy
k—yo0

teniéndose que {m;| x} es una subsucesion de {m; s }.
Para k > 1 denotamos a n; = my . Por construccion se sigue que n; < np < n3 < .... Como resultado
de este proceso, hemos comprobado que { f;, } es una subsucesién de {f,} .
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Mas atin, para un [ > 1 fijo, la sucesion {f,, } es, con la posible excepcion de sus primeros [ — 1
términos, una subsucesion de { f7« }. Esta observacion tiene como consecuencia que lim e f, (21) = Wy
VI, que es lo mismo que decir que { f,, (§)} tiene limite para todo punto & del conjunto S.

Como este conjunto es denso, el lema 2.2 demuestra que la subsucesién {f,, } de {f,} converge
normalmente en U. Con lo que acabamos de probar la normalidad de F en U.

Hemos visto que F equicontinua y puntualmente acotada = F' normal.

Demostremos ahora la otra implicacion, es decir asumiremos que F es normal en U. Sea zg un punto
de U. Si F no fuera equicontinua en zg, deberia existir un € > 0 (escogemos uno y lo fijamos durante
el resto de la demostracion) respecto al cual no exista ningtin 6 > 0 cumpliendo la condicién impuesta
por la definicién de equicontinuidad en zo: la desigualdad | f(z) — f(z0)| < € se cumple Vf € F yVz € U
satisfaciendo que |z — zo| < &. En particular, esta condicién tampoco se da con la eleccién de § = n~!,
siendo 7 un entero positivo.

Por lo tanto podemos seleccionar para cada n una funcién f, de F y un punto z, de U tales que |z, —
20| < n~!, pero cumpliendo que | f,,(z,) — fn(z0)| > €. Por hipétesis, la sucesién f, tiene una subsucesién
{fn.} que converge normalmente en U, llamemos a la funcién limite f. Se tiene por el siguiente teorema
que f es continuaen U.

Teorema. Suponer que toda funcion en una sucesion { f, } es continua en un conjunto abier-
to de U y que la sucesion converge normalmente en U a una funcion limite f. Entonces f es
continua en U.

La continuidad de f en zyp nos permite escoger un § > 0 tal que el disco cerrado K = A(zp,d) estéd
contenido en U y tal que |f(z) — f(z0)| < €/3 siempre y cuando z € K. Como f,, — f uniformemente
en K y ademds z,, — zo, podemos tomar un indice k con la propiedad de que |fy, (z) — f(z)] < €/3 se
satisface para todo z en Ky siendo z,,, un elemento de K. Para este k llegamos a la conclusién de que

€ <|fu(zn) = fou (20)| < o (2ne) = f(@n )|+ 1f (zm) = f(20) [ +1f(20) = S (20)| < €/3+€/3+€/3=¢

Hemos llegado a una contradiccion, por lo que rechazamos la hipétesis de que la familia F no es
equicontinua en el punto zp, con lo que F debe ser una subfamilia equicontinua de C(U).

Para finalizar, si F' no estuviera puntualmente acotada en U, existiria un punto zo de U y una suce-
sién {f,} de F, tal que |f,(z0)| — o cuando n — oo. Tal sucesién no podria tener una subsucesion que
convergiese normalmente en U, lo que contradirfa la hipdtesis de que F es una familia normal en U.

En resumen, acabamos de ver que una subfamilia normal de C(U ) tiene que ser a la vez equicontinua
y puntualmente acotada en U.

De este modo hemos verificado el si y solo si, expuesto en el enunciado y hemos demostrado el
teorema de Arzela-Ascoli. O

Nota. El teorema anterior muestra que la propiedad de ser una familia normal F de C(U) es local, F
es normal en U si y solo si correspondiendo con cada punto zp de U existe un disco abierto A(z,r)
contenido en U tal que las restricciones de los miembros de F' a A constituyen una subfamilia normal de
C(A).

La propiedad de que una subfamilia normal de C(U) estd puntualmente acotada en U se puede hacer
mads fuerte ain. Expondremos dicha propiedad en el siguiente teorema.

Teorema 2.4. Una subfamilia normal F de C(U) estd localmente acotada en U.

Demostracion. Demostraremos este teorema por reduccion al absurdo, es decir supondremos que se
cumple lo contrario a lo que se expone en el enunciado para acabar llegando a una contradiccion.

Supongamos que existe un conjunto compacto K en U en el cual los miembros de F' no estan uni-
formemente acotados. Por lo que para cada entero positivo n podemos elegir una funcién f, en F y un
punto z, de K para el cual se cumple que |f,(z,)| > n. (De no ser asi, n se trataria de una cota uniforme
para los miembros de F en K).
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Por otro lado, la normalidad de F' nos permite extraer de la sucesién f, una subsucesién f,, que
converge normalmente en U. Denotaremos f, por su limite, funcion que pertenece a C(U) por ser el
limite de una sucesién de funciones continuas, que convergen normalmente en U. Aparte, la funcién
continua | f| alcanza un méximo en K, sea m tal valor, esto tltimo se debe al teorema de Weierstrass:

Teorema. Suponer que K es un subconjunto compacto de Cy que f : K — R es una funcion
continua. Existen entonces puntos zo y wo en K tales que f(z0) < f(z) < f(wo) Vz € K; es
decir, la funcion alcanza mdximo y minimo.

Como f,, — f uniformemente en K existe un indice ko verificando la desigualdad |f;, (z) — f(z)| < 1
Vz € K cuando se cumpla que k > kq. Por lo que, para k > ko, podemos utilizar la desigualdad triangular
para llegar a que

nk S ’fﬂk(znk)‘ S ‘fnk(znk) _f(znk)| + |f(Zn;\)’ S 1+m

Lo que constituye una contradiccién, para ny — oo, cuando k — oo. Por lo que llegamos a la conclusién
de que F debe estar localmente acotada en U. O

2.6. Teorema de Montel

Nota. Con el siguiente teorema, abordaremos la esfera de las funciones analiticas, y presentaremos uno
de los principales teoremas relacionados con las familias normales en el campo del andlisis complejo.

Teorema 2.5. Sea F una familia de funciones analiticas en un conjunto abierto U. Suponer que F estd
localmente acotada en U. Se tiene que F es una familia normal en ese conjunto.

Demostracion. Para empezar, notemos que la familia F' estd puntualmente acotada en U, debido a que
F se trata de una familia localmente acotada en U. Gracias al teorema de Arzela-Ascoli, para probar que
F es una subfamilia normal de C(U) nos bastard con comprobar que F es equicontinua en U.

Fijaremos un punto zp en U y estudiaremos la equicontinuidad de F en z. Para este punto, tomamos
un r > 0 cumpliendo que el disco cerrado K = A(zp,2r) C U. Por la hipétesis establecida en el enunciado
del teorema, existe una constante m = m(K) > 0 tal que |f(&)| < m se verifica siempre y cuando f € F
y & eK.

Nota. Recordemos que para poder utilizar la férmula de Cauchy deberemos contar con una funcién
holomorfa f: U — C, f € H(U), y ademés como nuestro disco K = A(zp,2r) C U, tomando el circulo
orientado en sentido antihorario (positivo), podemos escribir entonces nuestra funcién f evaluada en
cualquier punto a € K, de la siguiente manera:

! f(§)ds
J

27i Jie—z|=2r & —a

fla) =

Por lo que para z perteneciente al disco A = A(zp,r) hacemos uso de la férmula integral de Cauchy
para hallar una cota valida para cada miembro f de F:

R f(E)E 1 f(8)dg
(&)= fleo)l = )zm/ga,_zrg—z‘zm/g wi=2r €7

_ 2=l f(S)dE
Z ZO )/é e )(520)’

l2— 2| 1£(&) m  mlz—z
S Tap HISPalar g g g SRl =T

Para la dltima desigualdad hemos utilizado la siguiente acotacién:

|/ s(6)az] < Long,sup ls(€)
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ademds de verificarse que |€ —z| > ry |E — 79| = 2r, debido a que & € K = A(zo,2r) y por otro lado
z € A(zo,r).

Dado un € > 0, definimos § = min{r,re/m}. La anterior estimacién implica que la desigualdad
|f(z) — f(20)] < € es vélida para toda funcién f procedente de la familia F, siempre y cuando el punto z
verifique que |z —zo| < 8. Este razonamiento confirma la equicontinuidad de F en un punto arbitrario z
de U, con lo que hemos demostrado en definitiva que F se trata de una familia normal en U. O

Si bien es cierto que este trabajo no esta centrado en el teorema de Montel, nos parece interesante
ilustrar este teorema con un ejemplo tipico.

Ejemplo. Sea ¢ > 0 una constante, y sea F' la familia que consta de todas las funciones f que son
analiticas en el disco A= A(0, 1) y que verifican que fOZﬂ |f(re®)|d¢ < c, paratodo ren (0, 1). Demostrar
que F es una familia normal en A.

Dado un conjunto compacto K en A, debemos encontrar una constante m = m(K) cumpliendo que
|f(z)| < m paratodo z en K siempre y cuando f pertenezca a F.

Lo primero que haremos serd fijar s en (0,1) tal que K C A(0,s), y posteriormente fijaremos r en
(s,1). Para f en F y z en K obtenemos a partir de la formula integral de Cauchy y del hecho de que
|E —z| > r—s cuando |&| = r, la siguiente cota:

1 f(&) | 2T f(re?)riedg
|f(Z)_‘Z7U/§—r§Zd§‘_‘2m’ 0 rei? —z

127 | f(re'?)|r cr
< /O dé < .

~2n r—s ~2m(r—s)

Con lo que hemos encontrado m = ¢/[27(r — s)| una cota uniforme para los miembros de F en K. A través
del teorema de Montel, ya que se cumplian las condiciones impuestas en €1, hemos podido establecer que
F se trata de una familia normal en A.

Por otra parte, afiadiendo alguna condicién adicional a la acotacién puntual se deduce la normalidad.
Montel descubri6 una serie de resultados en esa direccion. Citaremos uno de ellos, a modo de fin de este
capitulo.

Teorema 2.6. Sea F una familia de funciones que son analiticas en un abierto conexo D. Supongamos
que existen dos niimeros complejos a 'y b tales que f(z) # ay f(z) # b para todo z en D, y para toda
funcion f de F. Si {f,} es una sucesion de F, entonces o bien se tiene que |f,(z)| — o cuando n — oo
para todo z en D o por el contrario { f,} tiene una subsucesion {f,, } que converge normalmente en D.
En particular, si dicha familia F estd acotada en un punto de D, entonces serd una familia normal D.






Capitulo 3

Teorema de Riemann

3.1. Preparacion para el teorema

Nuestro principal objetivo es enunciar y demostrar el teorema de representacion conforme de Rie-
mann, para lo cual nos basaremos en los resultados procedentes del teorema de Montel, presentado en el
capitulo 2, y en tres lemas preparatorios que expondremos a continuacion.

La referencia principal para la realizacién de este capitulo es [4].

Durante este capitulo, trabajaremos con un tipo en especial de conjuntos, los conjuntos simplemente
conexos, asi que lo primero que haremos serd presentar una definicién de conjunto simplemente conexo:

Sea Q C C un conjunto abierto y conexo, es decir un dominio, diremos que se trata de un conjunto
simplemente conexo si se verifica alguna de las siguientes propiedades equivalentes:

» Todo camino cerrado (o ciclo) en  es homdlogo a cero respecto a Q, es decir, Ind(y,z) =0 Vz ¢ Q

J f(z)dz = 0 Vy camino cerrado (o ciclo) en Q y Vf € H(Q).

Cw \ Q es conexo, o por otra parte si C\ Q no tiene ninguna componente acotada.

Toda f € H(Q) que no se anula tiene logaritmo holomorfo en Q.

Toda f € H(Q) que no se anula tiene raiz cuadrada holomorfa en Q.

Nota. A partir de ahora nos referiremos a que una funcién es C!) si tal funcién es derivable y su derivada
es continua.
Por otra parte la notacion C.. hace referencia a la esfera de Riemann.

También serd conveniente recordar la definicion del indice: sea ¥ un camino cerrado del plano com-
plejo, y zp un punto no perteneciente a la imagen de 7y, se define el indice de y respecto al punto zo

como: 1 d
tnd(y.20) = 5 [
Y

27i Jy 72— 20
Por 1ltimo, recordaremos que se llama transformacién conforme a una funcién f holomorfa y
biyectiva, a parte se deduce que su inversa también serd holomorfa.
Pasamos a enunciar y demostrar el primero de los tres lemas preparatorios que emplearemos mas
adelante en la demostracién del teorema de representacién conforme de Riemann (ya utilizamos este
lema en la introduccién para obtener un resultado):

Lema 3.1. Sea f : D — C una transformacion conforme, donde D es un dominio simplemente conexo
en C. Entonces se tiene que D' = f(D) verifica también tal propiedad.

Nota. Recordamos que una transformacion , definida en un dominio D, se llama conforme si f es anali-
tica en D y su derivada no tiene ceros en D.

11
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Demostracion. Lo primero notar que si D' = C, efectivamente se trata de un conjunto simplemente
conexo.

Por lo tanto asumiremos que D’ # C. Como f es una funcién analitica, no constante, tenemos que D’
es un dominio. Deberemos de probar que Ind(f, w) = 0 considerando un punto w de C\ D’ (que podremos
escoger siempre ya que estamos asumiendo que D’ # C) y siendo ademds f3 un camino cerrado y C 1 a
trozos en D', es decir recurriremos a nuestra definicion anteriormente expuesta de conjunto simplemente
conexo para comprobar que se cumple que al tomar un camino cerrado cualquiera en D’ es homélogo a
cero.

Sean w y B como los hemos definido anteriormente, f3 : [a,b] — C. Defino ¥ : [a,b] — C como
y= f~'oB, por lo que B(r) = f(¥(r)). Entonces 7 se trata de un camino cerrado y C(!) a trozos en
D, ademds como D es simplemente conexo, ¥ es homdélogo a cero en su dominio. Por otro lado al no
pertenecer w a D', la funcién f//(f —w) es analitica en D. Por el teorema de Cauchy podemos llegar a

que
f )dz f t)dt t)dt ac .
0= @ / / B() BC_W—ZﬂzInd(B,w)

lo que afirma que Ind(f, w) =0, como querl’amos demostrar.

Nota. El teorema de Cauchy expone que si tenemos una funcién holomorfa en un dominio simplemente
conexo D, para todo camino cerrado ¥, C!") a trozos en D, se cumple que:

fo-s

Es decir utilizando el teorema de Cauchy, y la definicién de indice, anteriormente expuesta, hemos
podido comprobar que el dominio D’ es simplemente conexo, y se verifica lo citado en el enunciado del
lema. -

El segundo lema preliminar establece que un subdominio propio, (es decir que no sea igual a todo
el plano complejo) simplemente conexo de C, siempre podra ser transformado conformemente a un
dominio que estd contenido en el disco unidad.

Lema 3.2. Sea D un conjunto simplemente conexo en C, D # C, y sea zo un punto de D. Existe una
f : D — C holomorfa e inyectiva con las siguientes propiedades:

1) El dominio f(D) estd contenido en A = A(0, 1).

2)f(20) =0y f'(z0) > 0.

Demostracion. Tenemos que construir una aplicacién que cumpla las propiedades del enunciado del
teorema, para ello compondremos una serie de aplicaciones, que vamos a definir a continuacién. Nuestra
idea serd obtener f = f50 fao f30 f> 0 fi como la composicién de cinco aplicaciones conformes.

Para empezar, escogemos un punto b € C\ D y definimos f; : D — C como fi(z) = z— b. Al tratarse
D de un subdominio propio de C, es posible tomar tal punto b. La aplicacién fj traslada D a un conjunto
simplemente conexo D = f1(D) el cual no contiene al origen.

Para f, tomaremos cualquier rama holomorfa del log(z) en D;. La existencia de dicha rama estd
asegurada por ser Dy = f1(D) un dominio simplemente conexo, debido a que D lo es y f] es una trans-
formacién conforme, ademds de cumplirse que la funcién z no tiene ceros en el dominio D;.

Mas atin, podemos asegurar que f> se trata de una funcién inyectiva, ya que e/¢) = z y aplicando la
definicién de funcién inyectiva se verificaria que efectivamente f; lo es.

Fijaremos un punto wy en el dominio D, = f>(D;), con un radio r > 0 para el cual el disco cerrado
K(wo, r) C D,. Definiendo Wy = wo + 27i, observamos que Z(Wo, r) y D, tienen que ser necesariamente
disjuntos. De lo contrario, existirfa un punto w € A(W, ) N Dy, por lo que W serfa de la forma w = f5(2)
para algin Z en D, mientras que por otro lado podriamos representar w como w = w + 27i para algtin
w € A(wo, r). También seria cierto que w = f>(z) siendo z un punto de Dy, lo que implica que

Z — efz(f) — evT/ — ew+271’i — eW — efz(z) =7
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Con lo que tendriamos que w = f>(z) = f2(Z) = W = w+ 2, lo que nos lleva a una contradiccion.
Por lo tanto A(Wp,r) N D, = 0. Segtin esto ultimo, se cumple que |z — Wy| > r Vz € D;. Por lo que la

imagen D3 = f3(D;) de D; bajo la transformacién de Mobius va 7 €sun subconjunto de A.

Nota. Una transformacién de Mobius es una aplicacion de la forma :

flz)= ‘C‘ﬁiz donde a,b,c,d son nimeros complejos que verifican ad — bc # 0

La funcién f3 o f, o f1 proporciona una transformacién conforme cuyo rango estd contenido en A
debido a lo anteriormente expuesto.
Lo siguiente que haremos serd definir ¢ = f3 o f, o fi(z0). Ya que por el siguiente teorema :

Teorema. Las funciones que llevan el disco unidad A(0, 1) conformemente hacia si mismo
son de la siguiente forma:

__ ,i0 z+c
flz)=e"£%

donde 0 es un niimero real y ¢ un niimero complejo con |c| < 1
Se tiene que la funcién f4 : A — A dada por f(z) = (z—c¢)/(1 —¢z) lleva A conformemente hacia si
mismo. Esta funcién traslada el punto ¢ al origen. En resumen, la transformacion fso f30 f; o f] lleva
conformemente nuestro conjunto simplemente conexo D hacia un subconjunto de A y transforma el punto
z0 al origen.
Para finalizar la demostracién, notar que d = (f10 f30 f20 f1) (z0) # 0 esto dltimo se debe al resultado
procedente del siguiente teorema:

Teorema. Sea f una funcion analitica en un dominio D. Si f es inyectiva en D, se tiene que

f'(z) #0Vze D

Sea u = e~'Ad y definiendo f5 en A como f5(z) = uz. Entonces f50 fyo f3 0 f> o f; proporciona una

transformacién conforme de D hacia un subdominio de A, cumpliendo f(zo) =0y f'(z0) = fi(0)(fao f30
f2011) (z0) =ud = |d| > 0, por lo que acabamos de construir una aplicacién que cumple las propiedades
del enunciado del lema. 0

Procedemos a enunciar y demostrar el dltimo de los lemas introductorios, que sirven como base para
la demostracion del teorema de representacion conforme de Riemann.

Lema 3.3. Supongamos que D es un dominio simplemente conexo en el plano complejo, D # C, 7
un punto de D'y que f : D — C es una transformacion conforme que verifica las propiedades 1) y 2)
del lema 3.2. Asumiendo que f(D) # A, entonces existe una transformacion conforme g : D — C que
también cumple las propiedades mencionadas, pero ademds verifica que g'(zo) > f'(z0).

Demostracion. Denotamos Dy = f(D). Al igual que en la demostracién anterior obtendremos g como la
composicion g = gz o gy o gy o f, donde las aplicaciones g1, g» y g3 estdn definidas como mostraremos a
continuacion.

Lo primero, tomaremos un punto b € A\ Dy. Como 0 = f(z9) es un elemento de Dy, b # 0, podemos
elegir tal punto b debido a que en el enunciado hemos impuesto la condicién de que f(D) # A.

La transformacién de Moebius definida por g1 (z) = (z—b)/(1 — bz) transforma conformemente A en
si mismo, por este motivo lleva el dominio simplemente conexo Dy C A a otro subdominio D; = g1 (Do)
de A. Aparte notar que el dominio D no contiene el origen ya que no podemos realizar la imagen de
b, g1(b), puesto que hemos definido g; : Dy — D1 y b ¢ Dy por construccién, pero por otra parte si
que contiene el punto —b = g;(0) (ver la figura donde quedan representados todos los dominios de la
demostracion).

Derivando la funcién g; y evaluando su derivada en 0 llegamos a que g} (0) = 1 — |b|>.

Por el mismo razonamiento que en la demostracién anterior, estd asegurada la existencia de una rama
holomorfa del log(z) en Dy, ya que 0 ¢ D;.

Por lo tanto escogeremos una rama y la llamamos L. Mds atn, existe una rama g, asociada a L de la
funcidn raiz cuadrada en Dy, que denotaremos por g»(z) = exp[L(z)/2].
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Nota. Ya que estamos trabajando con dominios simplemente conexos, por ser Dy = f(D) la imagen de
un dominio simplemente conexo tratdndose f de una aplicacién conforme, se sigue del resultado del
Lema 3.1 que los conjuntos Dy y D; son simplemente conexos y por este motivo existird una rama de la
funcién raiz cuadrada.

Se tiene entonces que |g2(z)| = \/m < 1 Vz € Dy, aparte de tratarse g, de una funcién inyectiva en
D;, ya que suponiendo que g(z) = g2(Z), de necesidad z = [g2(z)]? = [g2(2)]* = Z. En otras palabras, g,
es una transformacion conforme de D; en otro dominio simplemente conexo D, = g>(D;) contenido en
A (ver figura ). Sea ¢ = g»(—b) un punto de D,, observamos que g5(—b) = 1/[2g2(—b)] = 1/(2¢).

Por udltimo, construiremos una aplicacién conforme g3 : A — A definida por g3(z) = u(z—c)/(1 —¢z),
siendo u = expli Argc|. El dominio D3 = g3(D) estd contenido en A, debido a la forma en que hemos
definido tal aplicacion, el origen pertenece a D3, ya que podemos evaluar el punto ¢, como g3(c) = 0, por
dltimo realizando la derivada de la funcién g3 y evaludndola en ¢ obtenemos que g5(c) = u/(1 — |c|?).

Una vez habiendo definido las funciones g1, g2 y g3, podemos componerlas entre si y con f para ob-
tener g = g3 0 g7 0g; o f transformacién conforme de D en D3, la cual envia zg al origen, y que utilizando
todo lo mencionado anteriormente y la regla de la cadena, obtenemos que:

u c 2
¢ an) = 5006 07 @) = (=1 ) (50 ) 1= 0 o = (5E ) o) > )

ya que
» u/c=1/|c

, debido a que ¢ = |c|u siendo u = exp[i Argc]
» |c|? = |g2(—b)|* = |b|, por definicién del punto ¢ = g2(—b)

» y 14|c|?> > 2|c| que se sigue de la identidad notable (14 |c[)?> > 0
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3.2. Teorema de la representacion conforme de Riemann

Procederemos a enunciar y demostrar el teorema de la representaciéon conforme de Riemann. En esta
seccién expondremos dos teoremas, en el primero de ellos, presentaremos el resultado exigiendo que
en nuestra aplicacion construida, el disco A = A(0, 1) sea la imagen del dominio de la transformacion
conforme, cuya existencia ya la hemos probado en la seccién anterior.

Por otra parte, en el segundo teorema estableceremos una situacion mas general que la expuesta en
el primero, al construir una aplicacién conforme entre dos dominios propios y simplemente conexos de
C, con las unicas condiciones de fijar un punto y su correspondiente imagen, y que el argumento de la
derivada del punto fijado (Arg(f’(z0)) quede determinado, de esta manera aseguraremos la existencia de
una Unica aplicacién conforme que relaciona ambos conjuntos simplemente conexos.

Teorema de la representacion conforme de Riemann. Supongamos que D es un dominio propio sim-
plemente conexo en el plano complejo, D # C y que zo es un punto de D. Bajo estas condiciones, existe
una tnica representacion conforme f : D — A verificando que (D) = A, f(z0) =0y f'(z0) > 0.

Demostracion. Denotaremos por F la familia de funciones f : D — C que cumplen las siguientes condi-
ciones: f es una representacion conforme de D hacia un subdominio de A y ademads verifica que f(z9) =0
y f'(z0) > 0. Haciendo uso del lema 3.3, podemos asegurar que esta familia de funciones, F, no es vacia.
Suponer que escogiendo un r > 0, se tiene que A(zg,r) C D.

Utilizando la cota de Cauchy ( una consecuencia del teorema de Cauchy para las derivadas):

Teorema. Sea f una funcion analitica en el disco abierto A(zp,r), teniéndose a su vez que
|f(2)] <mVz € Alzo,r), siendo m una constante. Se cumple entonces, que para cada entero

positivo k la cota :
k'mr

(r— |z —zo )1

es vdlida vz € A(zo,r). En particular, | f*(zo)| < klmr*.

@) <

Por lo que tomando k = 1, al cumplirse las condiciones de este teorema, podemos asegurar que f(zo) =
|f'(z0)| < r~! se verifica para todo f miembro de F, ya que en nuestro caso se tiene que |f(z)| < 1
Vz € A. Por este razonamiento tenemos que {f’(zo) : f € F} es un conjunto acotado de nimeros reales
positivos. Debido a esto, este conjunto tiene un supremo, que denotaremos por /.

Para cualquier entero positivo n podemos escoger una funcién f, en F para la cual es cierto que
I —n~' < fl(z0) <1, ya que por definicién el supremo es la menor de las cotas superiores, y como lo
hemos denotado por /, de necesidad / —n~! no es una cota superior, por lo tanto existira una funcién f,
verificando que [ —n~! < f(zo).

Al tratarse la familia F' de una familia localmente acotada, el teorema de Montel (teorema 2.5) nos
permite extraer de la sucesion f, una subsucesioén f,, que converge normalmente en D a una funcion
/- Esta funcién limite es analitica en D. Ademds, se cumple que f(zo) = lim_,e f5, (z0) =0y f'(20) =
Iimy o0 f,’lk (zo) =1 > 0. En particular, f es no constante en D, y por el siguiente teorema estableceremos
que se trata de una funcion inyectiva:
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Teorema. Supongamos que cada funcion en una sucesion f, es analitica e inyectiva en
un dominio D y que f, — f normalmente en D. Entonces o bien f es inyectiva en D, o es
constante en dicho dominio.

Al no tratarse f de una funcién constante, debido a su construccién, por el teorema anterior f se
tratard de una funcion inyectiva. Ademds gracias a la cota de Cauchy, hemos visto que | f(z)| < 1Vz € D,
luego f(D) C A.

Haciendo uso del teorema de la aplicacion abierta se verifica que f(D) es un conjunto abierto y por
lo tanto un subconjunto de A.

Teorema. Si D es un subconjunto abierto y conexo, del plano complejo Cy f: D — C es
una funcion holomorfa no constante, entonces f es una aplicacion abierta (es decir, envia
subconjuntos abiertos de D a los subconjuntos abiertos de C).

Por lo tanto, la funcién f es un miembro de la familia F', por lo que si podemos comprobar que f(D) = A,
la parte de la demostracion de la existencia de tal funcidn, ya estaria completada.

De ser cierto que f(D) # A, el lema 3.3 nos permitiria escoger un miembro de F cuya derivada
en el punto 7o excederia a la de f'(z9) = [. Dado que [ se trata del supremo, esto no seria posible, por
lo tanto f debe transformar D conformemente en A. Para demostrar la unicidad, asumiremos que g es
otra transformacién conforme de D hacia A cumpliendo que g(zo) =0y g'(z0) > 0. Tomamos la funcién
v:A— A, y=gof! Estafuncién proporciona una transformacién conforme de A en si mismo, fijando
el origen y satisfaciendo que y'(0) = g’(z0)/f"(z0) > 0. Notar que las tnicas aplicaciones conformes y
de A en si mismo, cumpliendo que y(0) = 0, son las rotaciones en torno al origen. Ademads la tnica
rotacién en torno al origen verificando que y/(0) > 0 es la rotacién dada por y(z) = z, es decir la
identidad.

Con lo que hemos visto que g(z) = y(f(z)) = f(z) se satisface para todo z en D. Y hemos probado
la existencia y unicidad de tal funcién f.

O

Nota. La importancia del teorema de la representacién conforme de Riemann radica en que nos permite
transformar conformemente cualquier subonjunto propio simplemente conexo D de C en otro dominio
con esas caracteristicas. Ademds, la aplicacion es tnica siempre y cuando f(z0) y Arg[f’(z0)] estén
determinados para algin punto zg de D.

Procederemos a comprobar esta afirmacién con el siguiente teorema.

Teorema 3.4. Sean D y D' dominios propios simplemente conexos en C. Fijados un punto zo € D,
7y € D', y @y en (—m, | entonces existe una vinica transformacion conforme f : D — D' cumpliendo las
condiciones f(zo) =z, y Arg[f'(z0)] = Po.

Demostracion. Sea g la transformacion conforme de D hacia A = A(0, 1) verificando que g(zp) =0y
g'(z0) > 0, y sea h la correspondiente aplicacion asociada al par D'y z;. Entonces la funcién f : D — D'
definida por f(z) = h~![e/®0g(z)] nos proporciona una transformacién conforme de D en D' para la cual
se tiene que f(z0) = 24y f'(z0) = €"®°g/(z0) /I (z}) (utilizando la regla de la cadena). Como g'(z9) >0y
I (zy) > 0, Arg[f’(z0)] = Py. Para establecer la unicidad de f, tomaremos una transformacién conforme
arbitraria fy de D en D’ con las caracteristicas anteriormente mencionadas. Entonces y = go f~lo fyog™!
es una transformacién conforme de A en si mismo cumpliendo que: y(0) =0y
! L folzo) _ |fo(z0)]

7 PO g T ) T 1)

>0

V' (0) = ¢'(z0) -

ya que Arg[fo(z0)] = Arg[f"(20)]-

Asi razonando igual que en la demostracion del teorema de la representacion conforme de Riemann,
llegamos a que y(z) =z Vz € A, debido a que la aplicacién y estd definida como y : A — A cumpliendo
que (0) = 0 (dnica rotacién en torno al origen verificando que ¥'(0) > 0 es la identidad), por lo que al
tratarse la funcién y de la identidad, concluimos que fy(z) = f(z) Vz € D.

O



Capitulo 4

Conjuntos doblemente conexos

4.1. Introduccion

En el capitulo anterior, mediante el teorema de Riemann, pudimos establecer una transformacion
conforme entre cualquier conjunto simplemente conexo distinto de C y el disco unidad.

Nuestra intencion en este capitulo serd ampliar el estudio de dichos conjuntos, en este caso presenta-
remos los doblemente conexos, con los cuales podremos construir una transformacién conforme, aunque
no sea precisamente con el disco unidad.

Asi como caracterizibamos a los conjuntos simplemente conexos como aquellos conjuntos Q C C
tales que C. \ Q es conexo, otra posible caracterizaciéon que podriamos utilizar es que C\ Q no tiene
componentes acotadas.

De acuerdo con la definicién de conjunto simplemente conexo, nos referiremos a que un conjunto
es doblemente conexo si C\ Q tiene exactamente una componente acotada.

Intuitivamente, viene a decir que el conjunto L tiene un agujero.

Asi como en el capitulo 3 utilizamos en especial los discos A(zp,), en este capitulo un conjunto
doblemente conexo con el que trabajaremos a menudo serd la corona circular A(r,R) = {z€ C:r < |z| <
R}.

Expondremos una serie de teoremas, para acabar llegando a un dltimo teorema que nos enunciaré los
posibles casos que se presentan cuando estudiamos la existencia de una transformacién conforme con un
conjunto doblemente conexo.

La principal referencia para este capitulo es [1].

Teorema 4.1. Sea 0 <r <R <o, A={z€ C:r<|z| <R}y, I ciclos C\V) a trozos. Entonces
1. Indy(0) Jr f = Indr(0) [, f, Vf : A — C funcién holomorfa.

2. Si Indr(0) # 0, f holomorfa en A libre de ceros y Inds.r(0) = 0, entonces f tiene logaritmo
holomorfo.

3. Si f es holomorfa en A, f(A) C Ay Indsr(0) # 0, entonces o bien f(z) = cz o f(z) = ¢/z para
alguna constante c.

Demostracion. 1. Indy y Indr ambos se anulan idénticamente en C\ A(0,R) y en A(0,r) toman los
valores constantes Ind,(0), Indr(0) respectivamente. Por lo que

Indy(0) Indr — Indr(0) Indy

se anula en A(0,7) U [C\ A(0,R)] = C\ A. Con lo que 1 se sigue del teorema general de Cauchy, que
enunciaremos a continuacion:

17
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Teorema. Sea U un subconjunto abierto de C, yi,..., % ciclos c) a trozos en U, n,..ng €7
tales que

k
Y nilnd, =0
i=1

en C\ U. Entonces para cada f holomorfa en U se satisface

2. Lo primero notar que

2m1ndfor(0):/(f;zl;)/ :/(f;or) .r/:/rl;

Por hipétesis Ind.r = 0, con lo que escribiendo f'/ f en lugar de f en 1 tenemos que

m@@A?:0

Ademds, también por hipétesis Indr(0) # 0, por lo que concluimos con que

[

Como 7 se trata de un ciclo C(V) a trozos cualquiera en A, se sigue del siguiente teorema la existencia
de una primitiva F en A de la funcién f'/f.

Teorema. Sea Q un abierto, conexo y f una funcion continua en S verificando fy f=0

para todo ciclo CV) a trozos en Q. Entonces existe una funcién holomorfa F en  tal que
F'=f.

Con lo que f = e ~¢ para alguna constante ¢, y acabamos de demostrar la existencia de logaritmo holo-
morfo de la funcién f.

Nota. Nos referiremos a C(w, r) por la circunferencia de centro w y radio r recorrida en sentido positivo.
Seré habitual que tomemos C(0,+v/Rr) , ya que v/ Rr se trata de la media geométrica de los radios R
y r, por lo tanto es un nimero comprendido entre Ry r.

3. Sea y = C(0,v/Rr). Se sigue de 1 que

o f
Ind,(0) /r 7 = Indr(0) /Y 7

Haciendo uso de la anterior igualdad 27iIndfor(0) = - ?, la cual también se verifica tomando el ciclo
7. en lugar de I', llegamos a que

Indy(0) Ind for(0) = Indr(0) Ind ro,(0)
ademads como Ind,(0) = 1, tenemos que
Indfor(()) = Indr(O) Ind‘foy(O).

Como la parte izquierda de la anterior igualdad es distinta de O por hipdtesis, deducimos que n =
Indf.y(0) # 0y por el siguiente resultado f es de la forma enunciada en el apartado 3.
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Teorema. Sea 0 <rj <Rj <o, A;j={z€C:rj<|z]<R;} (j=12), r=+Riry
Y= C(0,r), siendo r; < r < Ry. Supongamos que f : Ay — A, es holomorfa y siendo n =
Indyoy(0). Entonces

log(Ry /7
1 Il < iR

2. Si se cumple la igualdad en 1, entonces f(z) = cz" para alguna constante c.

En nuestro caso tomando ry =, = r, R; = R, = R, tendriamos la igualdad en 1 siendo Indf.y(0) =1, 0
—1,y f seria de la forma buscada. O

Corolario 4.2. Sea 0 <rj <Rj <o, Aj={z€C:rj< |z <R;} (j=1,2)y f una transformacion
conforme de Ay en A,. Entonces f tiene la forma f(z) = cz o f(z) = ¢/z para alguna constante c. En
particular Ry /r, = Ry /ry.

Demostracion. Reemplazando f por (r/r)f, podemos suponer que r; = r,. De un modo parecido,
tomando f~!, en lugar de f en caso de ser necesario, podremos suponer que R, < Ry, lo que asegura que
f transforma A; en Ap C Aj.

Notemos ademads, que f no posee logaritmo holomorfo. Ya que en caso de tener, se cumpliria que
existe g € H(A,) y f = €%, por lo que el hecho de que z = f(f~'(z)) = €8 ') vz € A, contradirfa el
siguiente resultado:

Teorema. La funcion identidad, y en general para cualquier funcion h: C(0,1) — C\ {0}
continua y verificando h(—z) = —h(z) Vz, entonces se cumple que no tiene logaritmo conti-
nuo.

Se sigue, por lo tanto del apartado 2 del teorema 4.1 que Indf.y(0) # 0, siendo y = C(0,\/r1R;) y
consecuentemente por el apartado 3 al cumplirse también que f(A) C A, se deduce que f tiene la forma
deseada.

Por dltimo notar que la relacién Ry/r, = Ry/r; es cierta debido a que si la funcién f: A} — A
presenta la forma f(z) = cz, se tiene que si z € A; , z verifica que r; < |z| < Ry, entonces como f(z) = ¢z,
f(z) € Ay, siendo A, la corona circular de radio r, = |c|r; y Ry = |¢|R;, cumpliendo que |c|r; < |f(2)| <
|c|R1, se obtiene la relacién entre los radios. El mismo razomaniento seria vélido en caso de estar en el
otro caso, f(z) =c/z.

O

Nota. Entenderemos en el siguiente teorema por el conjunto U':
1
U = {f: A — C holomorfas, f acotada, ? acotada }

y denotaremos por [E el subconjunto formado por las funciones que poseen raices enésimas holomorfas
para cada entero positivo n. [E estd formado por 0 y las exponenciales de funciones holomorfas en A
cuyas partes reales estdn acotadas.

Teorema 4.3. Sea 0 < r < R <o, A=A(r,R). Sea || f|| = sup|f(A)| para una f holomorfa y acotada en
A. Entonces tenemos que

inf 1/f] =R
felg\EllfIIH /fll=R/r

Demostracion. Por el mismo razonamiento que hemos empleado en el teorema anterior la funcién
f1(z) = z no tiene raiz cuadrada holomorfa, por lo que f; € U \ E y se cumple que

inf 1 < 1 =R
[t IANZAT< DA/ Al =R/r
Ahora consideramos cualquier f € U \ E. Probaremos por reduccién al absurdo que

LI/l <R/
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es imposible. Para demostrarlo supondremos que es cierto. Podemos considerar una funcién f que veri-
fique ||f|| <Ry ||1/f]| < 1/r. Cambiando f por A f para alguna constante A > 0, no es dificil ver que
podemos suponer que || f|| <Ry ||1/f]| < R/r.Condiciones por las cuales f va de la corona A(r,R) = A
a ella misma. Estableciendo y = C(0,+/Rr), ademds hemos tomado f ¢ E y por el apartado 2 del teorema
4.1 obtenemos que

Ind;.(0) # 0.

Debido a esto y utilizando por dltimo, el apartado 3 del teorema 4.1 se tiene que o bien f(z) = cz 0
f(2) = ¢/z. En cualquiera de ambos casos, no se cumplen las condiciones supuestas al principio, es decir
ninguna de estas dos funciones cumple que

AL/l < R/r

Por lo que hemos llegado a un absurdo suponiendo que era cierta dicha desigualdad, para cualquier
funcién f € U \ E, y acabamos de demostrar por lo tanto que

inf 1/f| =R/r.
felll}\Ellfllll [fl =R/r

4.2. Dominios doblemente conexos

En esta seccidn nos centraremos en estudiar de una manera general los dominios doblemente cone-
X0s, sin tener por qué tratarse en particular de coronas circulares, culminando en una clasificacion de los
conjuntos doblemente conexos, a modo de teorema final.

Teorema 4.4. Sea Q un abierto, conexo tal que C\ Q no es un punto aislado pero es compacto y
conexo. Entonces Q es conformemente equivalente a A(0,1)\ {0} y existe una transformacion conforme
F:A(0,1)\ {0} = Qde laforma F(z) =c/z+ Y _ocn"

Demostracion. Podemos asumir, después de realizar una traslacién, que 0 € K = C\ Q. Consideramos
entonces la aplicacién @ : C\ {0} — C\ {0} dada por ®(z) = 1/z. Por el teorema de la aplicacién abierta
se tiene que P (€2) es un conjunto abierto, aparte P(Q) es conexo, debido a que la aplicacién que hemos
definido, @, es una aplicacién holomorfa.

Si elegimos 0 < r < o tal que K C A(0,r), entonces A(0,1/r)\ {0} C &(Q). Por lo tanto, se sigue
que Qo = {0} UP(Q) es abierto y conexo.

Mas ain C.. \ Qp = ®(K) se trata de un conjunto conexo (K es conexo) y debido a esto  es un con-
junto simplemente conexo. Lo que implica segtin el teorema de Riemann, que existe una transformacién
conforme f de A = A(0,1) hacia Q. Precediendo f con la correspondiente transformacién conforme
que lleve A en si mismo, podemos suponer que f(0) = 0.

Entonces F = ®o f = 1/ f transforma A\ {0} conformemente en . Como f tiene un cero de primer
orden en 0 y no presenta mds ceros en A, tenemos que f(z) = zg(z), siendo g una funcién holomorfa y
libre de ceros en A, por lo que en el conjunto A\ {0}, F(z) = 1/f(z) = h(z)/z donde h es una funcién
holomorfa y libre de ceros en A. Esto prueba que F' tiene la forma del enunciado. O

Lema 4.5. Sea Q un abierto, conexo tal que C\ Q tiene una tinica componente acotada C (Q es un
conjunto doblemente conexo). Tomemos zp € C y sea E(w) = zo+ ¢€",w € C. Entonces se tiene que
E~Y(Q) es conexo.

Demostracion. No perderemos generalidad suponiendo que zo = 0. Sea I' : [0, 1] — Q un ciclo C (1) a
trozos tal que
Indr(0) =1 4.1
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Tenemos entonces, que como 0 ¢ I"(]0,1]), la funcién I' tiene logaritmo continuo, es decir, hay una
funcién continua ® tal que I' = ¢®.

Recordemos que el indice de un ciclo y: [a,b] — C con respecto de un punto z, no perteneciente a
v se puede definir como [®(b) — ®(a)]/2mi para cualquier logaritmo continuo P en [a,b] de la funcién
Y — z. Por lo tanto,

27i = 27i - Indp(0) = (1) — D(0). 4.2)

Para cada z € Q sea ¥, : [0,1] — Q una curva desde I'(0) hasta z. Por el mismo razonamiento de antes
existe una funcién continua &, : [0,1] — C tal que e® = I',. Afiadiendo un entero apropiado, miltiplo
de 2mi a &,, podemos asumir que se cumple que

®,(0) = ®(0). (4.3)
Ahora considerando cualquier w € E~'(Q) y siendo z = E(w) = ¢, tenemos que

¢ =T.(1) = )

por lo que
w—®,(1) =2min (4.4)
para algtn entero n.
Construimos la curva
(<1>(t) 0<r<1

Pt —1)+2mi 1<t<2

P(t—n+1)+2miln—1) n—1<t<n
P (t —n)+2min n<t<n+l.

Por lo visto anteriormente, utilizando las ecuaciones (4.2) y (4.3), W estd bien definida, luego es continua.

Consideramos ahora
@) = (1) 0<r<1

D =T(r—1) 1<r<2

e®(t=n+1) =I(t—n+1) n—1<t<n
eq)Z(l_”):Fz(tfn) n§t§n+1-

\

Se tiene que ¥ € Q, Vt € [0,n+ 1], por lo que ¥(t) € E-1(Q), Vt € [0,n+ 1]. Como ¥(0) = ®(0)
y ¥(n+1) = ®,(1) 4+ 27min = w por la ecuacién (4.4), esto muestra que cualquier punto w de E~'(Q)
puede ser unido por una curva en E~'(Q) al punto fijo ®(0), probando que E~'(Q) es conexo, ya que
cualquier curva es conexa. O

Lema 4.6. Sea C un subconjunto compacto 'y conexo de A= A(0,1), con 0 € C. Sea E(w) = " (w € C).
Entonces E~'(A\ C) es simplemente conexo.

Demostracion. Recordamos lo primero que un conjunto Q es simplemente conexo si C\ Q no tiene
componentes acotadas.

Observar que C\ E~'((A\C)) =E~1(C\ (A\C)) =E(C\A)UE~(C).

Ademis se cumple que E-'(C\A) = {w: |¢”| > 1} = {w: Rew > 0} es un conjunto conexo no
acotado.

Por lo tanto, serd suficiente con probar que E~!(C) no tiene componentes acotadas. Supondremos
que se cumple lo contario, es decir que E~'(C) tiene una componente acotada, entonces existird un
subconjunto compacto y relativamente abierto K de E~!(C) conteniendo a dicha componente.
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Si U es un subconjunto abierto de C tal que K = U NE~!(C), se tiene que E(K) = E(U)NC. Al
tratarse E de una aplicacidn abierta, por ser holomorfa y no constante, el conjunto E(U) es abierto, por
lo que E(U)NC es relativamente abierto en C. Esto es, E(K) es relativamente abierto en C.

Pero como K es compacto, E(K) también lo es. En resumen E(K) es un subconjunto no vacio, propio
(0€C,0¢E(K)), compacto de C y relativamente abierto en C, una contradiccion teniendo en cuenta
que C se trata de un conjunto conexo. O

4.3. Teorema de clasificacion de conjuntos doblemente conexos

Teorema 4.7. Para cualquier dominio doblemente conexo Q se verifica una de las tres siguientes situa-
ciones:

1. Q=C\{c} para algiin c € C.
2. Q es conformemente equivalente a A(0,1) \ {0}.
3. Q es conformemente equivalente a la corona A(r,1), para un r tal que 0 < r < 1.

Demostracion. Sea C la tinica componente acotada de C\ Q. El caso en el cual C = C\ Q y es un tinico
punto, es 1.
Si C = C\ Q pero no es un punto aislado, se trata de un caso ya estudiado en el teorema 4.4 y
corresponde al apartado 2.
Por lo que supondremos que
QUC #C.

Al tratarse C de la tinica componente acotada de un conjunto doblemente conexo se verifica que QUC #
C es abierto y simplemente conexo, por lo que gracias al teorema de Riemann existird una transformacion
conforme de QU C en el disco unidad, A(0, 1). Sin pérdida de generalidad, podemos entonces suponer
que QUC = A(0,1). Y componiendo con una transformacién conforme del disco en él mismo (una
transformacién de Moebius) podemos suponer también que

0 € C compacto, conexo C Ay Q =A\C.

Sea E : C — C\ {0} la aplicacién exponencial, E(w) = e". Gracias a los dos ultimos lemas vistos
podemos asegurar que

E! (Q) es abierto, conexo y simplemente conexo.

Evidentemente es un subconjunto propio de C, por lo que podemos encontrar una transformacion
conforme f de E~'(Q) en H =R x (0, ).

La traslacién T : E~1(Q) — E~1(Q) definida por T (w) = w+ 27 no deja ningiin punto fijo. Entonces
® = foT o f ! esunaaplicacién conforme de H en H la cual no fija ningiin punto. Las transformaciones
conformes de H en H son de la forma y(z) = ﬁiz, donde a,b,c,d € Ry ad —bc > 0. Se puede demostrar
(aunque no es inmediato) que si ¥ es una transformacién conforme de H en H sin puntos fijos, entonces
hay una transformacién conforme I" de H en H tal que se tiene que:

y(®(y () =z+B VzeH
o bien

v(@(y(2)=0az VzeH.

para B € R, o en el otro caso para ¢ > 0.
Defino por lo tanto F = y o f, una transformacién conforme de E~!(Q) en H.
Como FoToF ! =yo®oy™! setiene que o bien V8 € R
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F(T(F'(2))) = z+B,Vz € H (caso 1)

o para algin o > 0

F(T(F~'(z))) = az,Vz € H (caso 2).

Abordaremos el caso 1 con detalle. Notar que 3 # 0, ya que ® no fija ningtin punto. Defino
A={¥"P  yweH)}.

De este modo A se trata de A\ {0} (si § > 0) o lo conformemente equivalente (bajo z — 1/z) C\ A (si
B < 0), es decir en ambas situaciones podemos suponer que nuestro conjunto A es equivalente a A\ {0}.
Demostraremos que €2 es conformemente equivalente a A.

Definimos una funcién 4 de la manera siguiente: dado z € Q, tomo v € E~!(Q), tal que ¢” =z y sea
h(z) = EQ2miF (v)/B).

Lo primero que haremos serd probar que 4 estd bien definida. Por lo que supondremos que vy, v, €
E~!(z). Entonces

e’ = e & vy = vy + 2min para un entero n. Cambiando los papeles de v; y v, en caso de ser
necesario, podemos suponer que n > 0. En ese caso

Vi =va+27in = Tl (v2), donde T es 1a enésima iteracion de T. Se verifica entonces que:

F(v)) =F(T"(»)) = (FoTM o F~Y)(F(v)) = (FoT o F )(F (1)) = F(v2) +np

ya que nos encontramos en el caso 1, definido anteriormente.

Por lo que tenemos que
E(sz( )> E(sz( )>
—F(vy) | = —F(vy) ).
B B

Luego hemos probado que / estd bien definida. Ademds se tiene que i : Q — A, ya que F transforma
E~!(Q) en H. La demostracién de que & es inyectiva es similar al proceso que acabamos de realizar, en
cambio para probar que /4 es holomorfa podemos hacerlo de una manera local, es decir, cada punto de Q
pertenece a un entorno N en el cual existe un logaritmo holomorfo, tratdndose de una funcién L sobre N
tal que /% =z ¥z € N. Razén por la cual L(N) C E~'(Q) y para cada z € N podemos usar v = L(z) en
la definicién de A:

2mi

M@zE(ﬁF@@O.

Lo que muestra que podemos escribir 4 como composicién de funciones holomorfas en el entorno N.

Con lo que acabamos de probar que existe una aplicacion biyectiva y holomorfa i : Q — A, y asi nos
encontramos en el apartado 2 del teorema.

El caso 2 no es muy diferente. Dejaremos un esquema de cémo abordar la demostracion, plasmando
los detalles mds relevantes. Denotamos por L la rama principal del logaritmo en C\ (—eo,0]. Por lo que
en (0,00) , L toma valores reales, de hecho se trata del logaritmo natural. Como 7 no tiene puntos fijos,
de necesidad o # 1. Por lo tanto si definimos S =R x (0,7) y A = {2™"/L(®) : € S}, se trata A de una
corona circular, que podemos transformarla, en caso de que fuese necesario, en A(r,1) con 0 < r < 1.

Construyendo # de la siguiente forma:

h(z) = EQ2miL(F (v))/L(a))

para cualquier v € E~!(z), se puede ver de manera andloga al caso anterior que 4 estd bien definida y
transforma conformemente Q en A.

Por lo que a través del estudio del caso 2, hemos comprobado que nuestro conjunto Q es conforme-
mente equivalente a A(r, 1). O
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Nota. Asi para cualquier conjunto © doblemente conexo se cumplird al menos uno de los tres casos
expuestos en el enunciado del teorema.

Ahora bien, ;Se trata de casos mutuamente excluyentes? Veremos que efectivamente si, a través del
siguiente razonamiento.

Proposicion 4.8. Las tres condiciones del teorema anterior son mutuamente excluyentes.
Demostracion. Los tres casos que se presentan en el teorema anterior son los siguientes:
1. Q=C\{c} paraalgin c € C.
2. Q es conformemente equivalente a A(0, 1)\ {0}.
3. Q es conformemente equivalente a la corona A(r, 1), para un r tal que 0 < r < 1.

Comenzaremos viendo que 2 y 3 son mutuamente excluyentes.

Suponer que efectivamente existe una transformacioén conforme f: A\ {0} — A(r, 1), y llegaremos a
una contradiccion.

Haremos uso de dos resultados especificos para probar que tal aplicacién no puede existir.

Lo primero que tendremos en cuenta serd que al tratarse A de un subconjunto abierto de C y f una
funcién holomorfa en A\ {0}. Como f es una funcién acotada alrededor de 0, ya que 0 € A, se trata f de
la restriccién a A\ {0} de una F funcién holomorfa en A.

Aparte, se verifica que cualquier funcion holomorfa libre de ceros en un simplemente conexo de C
tiene un logaritmo holomorfo en dicho conjunto. Notar que, en nuestro caso, el conjunto Acon 0 < r < 1
se trata de un simplemente conexo, por lo que nuestra aplicacién f tendrd un logaritmo holomorfo en A.

Con lo que tenemos que f = e8 para alguna g € H(A), razonando como en la demostracién del
corolario 4.2 llegarfamos a una contradiccién, ya que el hecho de que z = f(f1(z)) = €8V @) vz €
A(r, 1) implicaria que la funcién identidad tendrfa un logaritmo continuo en A(r, 1).

Una vez comprobado que los casos 2 y 3 son mutuamente excluyentes, estudiaremos si 1 lo es con 2
y 3.

Probaremos de la misma manera que 1y 2 son excluyentes.

Suponer que existe 2 : C\ {c} — A\ {0} holomorfa y biyectiva.

La funcién & presenta en el punto ¢, una singularidad aislada, ;serd polo, evitable o esencial?

= No puede tratarse de un polo , ya que por definicién deberia darse que

i) ==

Pero h estd acotada, |h(z)| < 1, por lo que no es posible que sea un polo.

= No puede ser esencial, ya que 2(C\ {c}) tendria que ser denso en C, segtin el teorema de Casorati-
Weierstrass. No obstante, #(C\ {c}) C A.

Por lo tanto deberi ser evitable, en dicho caso podemos extender 4 a i : C — A definida de la siguiente
manera:
h(z) z#c

w=Ilimh(z) z=c
Z—cC

h(z) =

ya que como |A(z)| < 1, se tiene que |w| < 1, siendo & funcién holomortfa.

Con lo que /1 : C — A acotada y entera, por el teorema de Liouville deberia ser constante, y al ser una
extension de i, ésta también deberia ser una funcién constante y hemos llegado a una contradiccién, al
tratarse & de una aplicacién biyectiva.

Resumiendo, acabamos de ver que 1 y 2 son casos mutuamente excluyentes.

Para demostrar que 1 y 3 son casos excluyentes, razonarifamos de manera similar a como acabamos
de proceder.
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Ya que al suponer que existe 4 : C\ {c} — A(r,1) solo utilizaremos, al igual que antes, la condicién
de que el conjunto de llegada es acotado, por lo que no podra existir ninguna singularidad aislada del tipo
polo, o esencial. Y en caso de ser evitable, llegarfamos a la misma contradiccién utilizando de nuevo el
teorema de Liouville. O

Nota. Gracias a la demostracién de esta proposiciéon hemos visto que los tres casos del dltimo teore-
ma son mutuamente excluyentes, de esta manera si tenemos un conjunto Q doblemente conexo, serd
equivalente a uno de los tres conjuntos citados.
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