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Abstract

The main objective of this work is to present a proof of the Riemann’s mapping theorem. To do this,
we will introduce different results of convergent function sequences, we will talk about some types of
convergence for families of functions, but paying special attention to normal convergence.

After the introductory first chapter, the purpose of the second chapter is to give a proof of Montel’s
theorem, a result which will be fundamental in the proof of Riemann’s theorem.

The third chapter focuses on Riemann’s mapping theorem. Throughout the chapter we will work
with simply connected domains. We will say that a set Ω is simply connected if C \Ω has no bounded
components. We will remember the concept of simple connectivity and we will expose some introductory
lemmas that will be very useful in the proof of the theorem.

Riemann’s mapping theorem precisely provides us with a way to establish an equivalence between a
specific type of domain and the unit disk.

Riemann’s mapping theorem states that:
Suppose that D is a simply connected domain in the complex plane, D ̸= C, and z0 is a point of

D. Under these conditions, there exists a unique conformal transformation f : D → ∆ verifying that
f (D) = ∆, f (z0) = 0 and f ′(z0)> 0.

Furthermore, once the Riemann’s mapping theorem has been proved, we will obtain a generalisa-
tion for any pair of simply connected domains in C, none of them the complex plane, which states the
existence of a conformal mapping between them.

Finally, in the last chapter we will discuss the concept of double connectivity. We will say that a set
Ω is doubly connected if Ω has a single bounded component.

We will study a series of related theorems, leading to a final theorem, which will establish the dif-
ferent cases, by means of which we can construct a conformal transformation with a doubly connected
set.

The last theorem states that:
For a doubly connected domain Ω, one of the following three situations is true:

1. Ω = C\{c} for some c ∈ C.

2. Ω is conformally equivalent to ∆(0,1)\{0}.

3. Ω is conformally equivalent to A(r,1) for some r such that 0 < r < 1.
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Capítulo 1

Introducción

El tema del trabajo que presento se sitúa en el campo del análisis matemático, en concreto en el de
la variable compleja. Gira alrededor de la idea de las transformaciones conformes, funciones que son
holomorfas y biyectivas entre abiertos de C. Este tipo de funciones define una relación de equivalencia
entre conjuntos, es decir dos abiertos U,V ⊂C están relacionados si hay alguna ψ : U →V holomorfa y
biyectiva.

Una situación análoga aparece en otros contextos en el mundo de las matemáticas, por ejemplo hemos
estudiado a lo largo del grado: isomorfismos entre espacios vectoriales, homeomorfismos entre espacios
topológicos, difeomorfismos entre abiertos de Rn...

En álgebra lineal, un isomorfismo es una aplicación entre dos espacios vectoriales U ,V ψ : U → V
lineal y biyectiva (con inversa lineal).

En topología, estudiábamos los homeomorfismos, tratándose un homeomorfismo de una función
ψ : U →V continua, biyectiva y con inversa continua.

Por último en el campo de la variable compleja, nos interesaremos por las transformaciones confor-
mes.

Una transformación conforme, es una aplicación ψ : Ω →W , tratándose Ω,W abiertos en C, holo-
morfa y biyectiva (con inversa holomorfa).

Las funciones holomorfas son el principal objeto de estudio del análisis complejo; son aplicaciones
que se definen sobre un subconjunto del plano complejo C y con valores en C, siendo diferenciables en
algún entorno de todo punto de su dominio. Si la función es holomorfa en cada punto de su dominio, se
dice que es holomorfa en su dominio. Esta condición es mucho más fuerte que la diferenciabilidad en
caso real e implica que la función es infinitamente diferenciable y que puede ser descrita mediante su
serie de Taylor.

Cabe destacar que toda función holomorfa en C es analítica y viceversa. Tratándose una función ana-
lítica de aquella que puede expresarse como una serie de potencias convergente en algún disco centrado
en cada punto de su dominio. Por último recordaremos que una función holomorfa sobre todo el plano
complejo se dice función entera.

Una vez presentado el concepto de aplicación conforme, es lógico preguntarse el por qué nos interesa
estudiar este tipo de aplicaciones.

Y bien, las aplicaciones conformes:

Preservan ángulos.

Las propiedades para transformaciones conformes f : W → C, se pueden extender a aplicaciones
conformes g : Ω → C debido a que por composición tenemos que:

g : Ω →W → C

siendo g = f ◦ψ transformación conforme, ya que la composición de funciones holomorfas y
biyectivas (transformaciones conformes), es holomorfa y biyectiva.

Por lo tanto, si existe ψ : Ω →W estos dos subconjuntos tendrán las mismas propiedades.
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2 Capítulo 1. Introducción

Será, en este contexto, natural estudiar si es posible que dados dos abiertos cualesquiera de C exista
alguna transformación conforme entre ellos, es decir, si todos los abiertos son conformemente equiva-
lentes.

Ahora bien, no todos los abiertos Ω ⊆ C son conformemente equivalentes.

Por ejemplo, no existe ninguna transformación conforme ψ : C→ ∆ = ∆(0,1) entre el plano com-
plejo y el disco unidad. (Nota: Definimos el disco de centro z0 y radio r como ∆(z0,r) = {w ∈
C : |w− z0| < r}). Ya que si existiera ψ : C→ ∆ llegaríamos a una contradicción por el teorema
de Liouville, debido a que si una función ψ entera, es acotada en C, entonces dicha aplicación es
constante, por lo que no podrá ser una transformación conforme, al no cumplirse la condición de
ser biyectiva.

Por lo que será interesante descubrir que abiertos son conformemente equivalentes, en este contex-
to es lógico pensar en los abiertos conexos, aquellos que no presentan una separación. No obstante
trabajeremos en especial con los conjuntos simplemente conexos debido a los resultados proceden-
tes del teorema de Riemann y de otros lemas. Exponemos brevemente la definición de conjunto
simplemente conexo:

Nota. Diremos que Ω se trata de un conjunto simplemente conexo si C\Ω no tiene componentes
conexas acotadas.

Precisamente, no es posible hallar una ψ : ∆ → Ω si Ω no es un abierto conexo y simplemente
conexo, distinto de C. Debido al siguiente lema:

Lema. Sea f : D →C una transformación conforme, donde D es un dominio simplemente conexo
en C. Entonces se tiene que D′ = f (D) verifica también tal propiedad.

Que lo volveremos a enunciar y demostrar al inicio del tercer capítulo.

En resumen nos vamos a dedicar a estudiar qué tipo de conjuntos son conformemente equivalentes
y posteriormente descubriremos que el teorema de Riemann da una respuesta muy interesante a nuestra
pregunta:

Todos los Ω simplemente conexos, salvo C, son equivalentes a ∆.
Este resultado nos permite establecer una relación de equivalencia entre conjuntos propios de C

simplemente conexos cualesquiera.
Un paso siguiente será preguntarse qué ocurre con los conjuntos doblemente conexos, que expondre-

mos y estudiaremos en el último capítulo.



Capítulo 2

Teorema de Montel

En este capítulo, nos centraremos en el estudio de las familias normales, para acabar derivando en la
exposición de teoremas como el teorema de Arzelà-Ascoli y el teorema de Montel.

El teorema de Montel constituye el principal resultado de este capítulo, que nos será de gran utilidad
para poder demostrar el teorema de Riemann, del capítulo 3. Así, este capítulo constituirá una prepara-
ción, para poder abordar con detalle el siguiente capítulo de conjuntos simplemente conexos, y contar
con las herramientas suficientes para estudiar el teorema de Riemann.

La referencia principal que hemos empleado en este capítulo es [4].

2.1. Convergencia normal

Lo primero que haremos será definir lo que es la convergencia normal.
Dada una sucesión de funciones bien definida, fn : U →C, que no tienen por qué ser necesariamente

analíticas en un subconjunto abierto U de C, diremos que { fn} converge normalmente en U a una
función f : U → C, si converge puntualmente a f en U y además converge uniformemente en cada
conjunto compacto de U .

Como podemos observar el término de convergencia normal se encuentra entre la convergencia pun-
tual y la convergencia uniforme, exigiendo más condiciones para cumplirse que la primera, pero sin la
necesidad de satisfacer la convergencia uniforme en todo el dominio U , pudiendo verificarse solamente
en los conjuntos compactos de U .

En la práctica, para comprobar si { fn} converge normalmente en U no es necesario mirar si se
cumple la convergencia normal en cada conjunto compacto en U , con demostrar que se verifica en los
discos cerrados en U sería suficiente.

2.2. Familias normales

2.2.1. Subfamilias normales de C(U)

Nota. Por C(U) denotamos el conjunto de funciones continuas en U .

Es importante recordar que toda sucesión acotada de números complejos {zn} siempre posee al me-
nos un punto de acumulación, lo que implica que {zn} tiene subsucesiones convergentes.

En esta sección, consideraremos una situación análoga pero para sucesiones de funciones, en vez de
sucesiones de números complejos.

En concreto nos interesa estudiar que dada una sucesión de funciones { fn} cuyos términos son ana-
líticos en un conjunto abierto U , consideraremos la posibilidad de extraer de { fn} una subsucesión { fnk}
que converge normalmente en U .

Con lo que diremos que una subfamilia F de C(U) es normal en U si cada sucesión { fn} de F tiene
al menos una subsucesión { fnk} que converge normalmente en U .
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4 Capítulo 2. Teorema de Montel

Enfatizamos en que la normalidad de F no requiere que cada función obtenida como el límite de una
sucesión que converge normalmente de F sea a su vez un miembro de F . Una subfamilia normal de C(U)
dotada con esta propiedad extra se conoce como subfamilia compacta de C(U).

Más adelante expondremos un criterio para detectar normalidad en subfamilias de C(U) cuyos miem-
bros son analíticos en U , que nos será de gran utilidad. El principal resultado de esta sección, el teorema
de Montel, da condiciones que aseguran que una familia es normal.

Aparte obtendremos una caracterización útil para una subfamilia normal arbitraria de C(U), gracias
al teorema de Arzelà-Ascoli.

2.3. Concepto de equicontinuidad

Un elemento importante para reconocer cuándo una subfamilia F de C(U) es normal en U es el
concepto de equicontinuidad que citamos a continuación:

La familia F se dice equicontinua en un punto z0 si para cada ε > 0 existe δ > 0 cumpliendo que
| f (z)− f (z0)|< ε para cada f ∈ F siempre que se cumpla que |z− z0|< δ ( notar que δ no depende de
la función f , es decir se cumple para cualquier f ∈ F , aunque sí depende del punto z0 elegido).

En el caso de que la familia F sea equicontinua para todo punto de U , la llamaremos equicontinua
en U .

Lo más importante sobre el concepto de equicontinuidad es que se encarga de cerrar la brecha entre
convergencia puntual y convergencia normal. Procedemos a presentar un teorema que nos ayudará a
determinar cuándo una familia es normal:

Teorema 2.1. Sea { fn} una sucesión de una subfamilia equicontinua F de C(U). Supongamos que esta
sucesión converge puntualmente en U; entonces también lo hará normalmente en U.

Demostración. Denotaremos por f el límite puntual de { fn} en U . Sea K un conjunto compacto arbitra-
rio de U .

Tenemos que demostrar que fn → f uniformemente en K. Nos vamos a basar en el enunciado del
siguiente teorema:

Teorema. Supongamos que cada función en una sucesión { fn} está definida en un conjunto
K con valores en C. La sucesión converge uniformemente en K si y solo si es una sucesión
uniforme de Cauchy en K.

Nos bastará entonces con demostrar que { fn} es una sucesión uniforme de Cauchy en K. Lo com-
probaremos por reducción al absurdo.

Si { fn} no es una sucesión de Cauchy en K, deberá existir un ε > 0 (escogemos un ε > 0 y lo
mantenemos fijo durante el resto de la demostración) con respecto al cual la siguiente afirmación es
cierta: no existe ningún entero N cumpliendo que ∀z ∈ K y ∀m,n tales que m > n ≥ N se verifique
| fm(z)− fn(z)|< ε .

De acuerdo a esto, lo que sí podemos asegurar es que para cada entero positivo k van a existir nk y
mk tales que mk > nk ≥ k y un punto zk de K cumpliendo que | fmk(zk)− fnk(zk)| ≥ ε .

Este razonamiento da lugar a una sucesión {zk} en K. Como K es compacto {zk} posee al menos un
punto de acumulación en K, denotamos dicho punto por z0.

Utilizando la equicontinuidad de la familia F en z0, escogemos un δ > 0 que para todo z verificando
que |z− z0|< δ se tiene que

| fn(z)− fn(z0)|< ε/3,∀n.

Por construcción nk → ∞ y mk → ∞ cuando k → ∞ por lo que tenemos que

lı́m
k→∞

| fmk(z0)− fnk(z0)|= | f (z0)− f (z0)|= 0.

Lo anterior nos permite fijar un índice k0 cumpliendo que

| fmk(z0)− fnk(z0)|< ε/3,∀k ≥ k0.
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Además como la sucesión zk tiene un punto de acumulación en z0 podemos escoger un índice k ≥ k0
para el cual |zk − z0|< δ .

Combinando las tres inecuaciones tenemos con la elección de k

ε ≤ | fmk(zk)− fnk(zk)| ≤ | fmk(zk)− fmk(z0)|+| fmk(z0)− fnk(z0)|+| fnk(z0)− fnk(zk)|< ε/3+ε/3+ε/3= ε

Por lo que hemos llegado a una contradicción.
Por el método de reducción al absurdo acabamos de probar que { fn} es una sucesión de Cauchy

uniforme en K, por lo cual fn → f uniformemente en K y como K es un compacto arbitrario de U ,
hemos probado que { fn} converge normalmente en U .

El resultado que queremos demostrar es el siguiente:

Lema 2.2. Sea { fn} una sucesión de una subfamilia equicontinua F de C(U). Suponer que la sucesión
{ fn(ξ )} es convergente para cada ξ perteneciente a algún subconjunto denso S de U. Entonces fn

converge normalmente en U.

Demostración. Por el teorema 2.1 es suficiente con probar que fn converge puntualmente en U . Para
demostrarlo tenemos que comprobar que ∀z ∈U la sucesión { fn(z)} es de Cauchy.

Lo primero que haremos será fijar un punto z y tomar un ε > 0 cualquiera. Lo que pretendemos es
encontrar un entero N tal que | fm(z)− fn(z)|< ε siempre y cuando tengamos que m > n ≥ N. Para ello
utilizaremos que F es equicontinua en el punto z, con lo que escogeremos un δ > 0 tal que

| fn(w)− fn(z)|< ε/3,∀n

siempre que se verifique que |w− z|< δ .
Además el hecho de que el conjunto S es denso en U , nos permite escoger un punto ξ de S satisfa-

ciendo |ξ − z| < δ . Por hipótesis la sucesción fn(ξ ) es convergente. Por lo que se trata de una sucesión
de Cauchy, ya que sucesión convergente implica sucesión de Cauchy.

Con lo que existe un entero N tal que

| fm(ξ )− fn(ξ )|< ε/3 siempre y cuando m > n ≥ N.

Por lo anteriormente expuesto concluimos que

| fm(z)− fn(z)| ≤ | fm(z)− fm(ξ )|+ | fm(ξ )− fn(ξ )|+ | fn(ξ )− fn(z)|< ε/3+ ε/3+ ε/3 = ε

siempre que m > n ≥ N.

De esta forma, acabamos de probar que la sucesión { fn(z)} es de Cauchy. Además se cumple ∀z ∈U
por lo que se verifica la convergencia puntual de { fn} en U . Usando el teorema 2.1 hemos probado la
convergencia normal en U .

2.4. El teorema de Arzelà-Ascoli y el teorema de Montel

2.4.1. Definiciones previas

Expondremos en esta sección dos conceptos relevantes acerca de diferentes tipos de familias de
funciones acotadas.

El primero nos servirá para referirnos a que una familia de funciones F : U → C está puntualmente
acotada en U si para cada punto fijado z de U el conjunto de valores { f (z) : f ∈ F} es un conjunto
acotado de números complejos.

En segundo lugar, llamamos a la familia F como familia localmente acotada en U si sus miembros
son funciones uniformemente acotadas en cada conjunto compacto de U , lo que significa que existe para



6 Capítulo 2. Teorema de Montel

cada subconjunto compacto K de U una constante m = m(K) con la propiedad de que | f (z)| ≤ m para
cada punto z en K y para toda función f de F .

Del mismo modo que para comprobar la convergencia normal, para verificar la acotación local de F
en U es suficiente con asegurar que sus miembros son uniformemente acotados en cada disco cerrado
de U (o incluso menos, serviría con estudiar que cada punto z de U es el centro de algún disco cerrado
en el cual las funciones de F están uniformemente acotadas). La razón por la que podemos realizar este
procedimiento, es que un conjunto arbitrario compacto en U puede ser cubierto por un número finito de
dichos discos.

Nuestro primer teorema de familias normales constituye una caracterización de las subfamilias nor-
males de C(U), haciendo uso de alguna de las definiciones citadas en esta sección.

2.5. Teorema de Arzelà-Ascoli

Nota. Consideraremos posteriormente el subconjunto S0 = {z ∈ U : Rez y Imz son racionales} ya que
se trata de un subconjunto denso de U , un subconjunto numerable, por lo que sus elementos se pueden
ordenar como los términos de una sucesión , en concreto podemos construir una sucesión donde no se
repitan los términos.

Teorema 2.3. Una subfamilia F de C(U) es normal en U si y solo si es a su vez equicontinua y puntual-
mente acotada en este conjunto abierto.

Demostración. Lo primero que asumiremos es que F es equicontinua y puntualmente acotada en U ,
nuestro objetivo será llegar a probar que F es una familia normal en U .

Para ello sea { fn} una sucesión en F ; tendremos que demostrar la existencia de una subsucesión de
{ fn} que converge normalmente . Recordamos que el conjunto S0 = {z ∈U : Rez y Imz son racionales }
es denso en U y numerable.

Sea S0 = {zn} . Comenzaremos una posible construcción utilizando la sucesión de números comple-
jos { fn(z1)}. Debido a que F está puntualmente acotada, se tiene que esta sucesión está acotada.

Gracias al teorema de Bolzano-Weierstrass, { fn(z1)} tiene al menos un punto de acumulación en C.
Escogemos dicho punto y lo denotamos por w1.

Por lo que { fn(z1)} tiene una subsucesión convergente a w1. En otras palabras, es posible seleccionar
una sucesión de índices m1,1 < m1,2 < m1,3... tal que

lı́m
k→∞

fm1,k(z1) = w1

Escribimos la sucesión de índices m1,k para hacer notar que esta sucesión de enteros está asociada al
punto z1 de S0. Para abreviar y adoptar una notación más sencilla de usar, a partir de ahora denotaremos
a fm1,k como f1,k. Ahora { f1,k(z2)}∞

k=1 es otra sucesión acotada de números complejos. Podemos por
lo tanto, seleccionar uno de sus puntos de acumulación, lo llamaremos w2 y extraer una subsucesión
m2,1 < m2,2 < m2,3 < ... procedente de {m1,k} para la cual se tiene (cambiando la notación de la misma
manera) que

lı́m
k→∞

f2,k(z2) = w2

Siguiendo de forma inductiva con este proceso, construiremos correspondiente con cada entero positivo
l, un número complejo wl y una sucesión estrictamente creciente de enteros positivos {m(l)

k } tales que
(con la misma notación)

lı́m
k→∞

fl,k(zl) = wl

teniéndose que {ml+1,k} es una subsucesión de {ml,k}.
Para k ≥ 1 denotamos a nk = mk,k. Por construcción se sigue que n1 < n2 < n3 < .... Como resultado

de este proceso, hemos comprobado que { fnk} es una subsucesión de { fn} .
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Más aún, para un l ≥ 1 fijo, la sucesión { fnk} es, con la posible excepción de sus primeros l − 1
términos, una subsucesión de { fl,k}. Esta observación tiene como consecuencia que lı́mk→∞ fnk(zl) = wl
∀l, que es lo mismo que decir que { fnk(ξ )} tiene límite para todo punto ξ del conjunto S0.

Como este conjunto es denso, el lema 2.2 demuestra que la subsucesión { fnk} de { fn} converge
normalmente en U . Con lo que acabamos de probar la normalidad de F en U .

Hemos visto que F equicontinua y puntualmente acotada ⇒ F normal.
Demostremos ahora la otra implicación, es decir asumiremos que F es normal en U . Sea z0 un punto

de U . Si F no fuera equicontinua en z0, debería existir un ε > 0 (escogemos uno y lo fijamos durante
el resto de la demostración) respecto al cual no exista ningún δ > 0 cumpliendo la condición impuesta
por la definición de equicontinuidad en z0: la desigualdad | f (z)− f (z0)|< ε se cumple ∀ f ∈ F y ∀z ∈U
satisfaciendo que |z− z0| < δ . En particular, esta condición tampoco se da con la elección de δ = n−1,
siendo n un entero positivo.

Por lo tanto podemos seleccionar para cada n una función fn de F y un punto zn de U tales que |zn −
z0|< n−1, pero cumpliendo que | fn(zn)− fn(z0)| ≥ ε . Por hipótesis, la sucesión fn tiene una subsucesión
{ fnk} que converge normalmente en U , llamemos a la función límite f . Se tiene por el siguiente teorema
que f es continua en U .

Teorema. Suponer que toda función en una sucesión { fn} es continua en un conjunto abier-
to de U y que la sucesión converge normalmente en U a una función límite f . Entonces f es
continua en U.

La continuidad de f en z0 nos permite escoger un δ > 0 tal que el disco cerrado K = ∆(z0,δ ) está
contenido en U y tal que | f (z)− f (z0)| < ε/3 siempre y cuando z ∈ K. Como fnk → f uniformemente
en K y además znk → z0, podemos tomar un índice k con la propiedad de que | fnk(z)− f (z)| < ε/3 se
satisface para todo z en K y siendo znk un elemento de K. Para este k llegamos a la conclusión de que

ε ≤ | fnk(znk)− fnk(z0)| ≤ | fnk(znk)− f (znk)|+ | f (znk)− f (z0)|+ | f (z0)− fnk(z0)|< ε/3+ε/3+ε/3 = ε

Hemos llegado a una contradicción, por lo que rechazamos la hipótesis de que la familia F no es
equicontinua en el punto z0, con lo que F debe ser una subfamilia equicontinua de C(U).

Para finalizar, si F no estuviera puntualmente acotada en U , existiría un punto z0 de U y una suce-
sión { fn} de F , tal que | fn(z0)| → ∞ cuando n → ∞. Tal sucesión no podría tener una subsucesión que
convergiese normalmente en U , lo que contradiría la hipótesis de que F es una familia normal en U .

En resumen, acabamos de ver que una subfamilia normal de C(U) tiene que ser a la vez equicontinua
y puntualmente acotada en U .

De este modo hemos verificado el si y solo si, expuesto en el enunciado y hemos demostrado el
teorema de Arzelà-Ascoli.

Nota. El teorema anterior muestra que la propiedad de ser una familia normal F de C(U) es local, F
es normal en U si y solo si correspondiendo con cada punto z0 de U existe un disco abierto ∆(z0,r)
contenido en U tal que las restricciones de los miembros de F a ∆ constituyen una subfamilia normal de
C(∆).

La propiedad de que una subfamilia normal de C(U) está puntualmente acotada en U se puede hacer
más fuerte aún. Expondremos dicha propiedad en el siguiente teorema.

Teorema 2.4. Una subfamilia normal F de C(U) está localmente acotada en U.

Demostración. Demostraremos este teorema por reducción al absurdo, es decir supondremos que se
cumple lo contrario a lo que se expone en el enunciado para acabar llegando a una contradicción.

Supongamos que existe un conjunto compacto K en U en el cual los miembros de F no están uni-
formemente acotados. Por lo que para cada entero positivo n podemos elegir una función fn en F y un
punto zn de K para el cual se cumple que | fn(zn)| ≥ n. (De no ser así, n se trataría de una cota uniforme
para los miembros de F en K).
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Por otro lado, la normalidad de F nos permite extraer de la sucesión fn una subsucesión fnk que
converge normalmente en U . Denotaremos f , por su límite, función que pertenece a C(U) por ser el
límite de una sucesión de funciones continuas, que convergen normalmente en U . Aparte, la función
continua | f | alcanza un máximo en K, sea m tal valor, esto último se debe al teorema de Weierstrass:

Teorema. Suponer que K es un subconjunto compacto de C y que f : K →R es una función
continua. Existen entonces puntos z0 y w0 en K tales que f (z0) ≤ f (z) ≤ f (w0) ∀z ∈ K; es
decir, la función alcanza máximo y mínimo.

Como fnk → f uniformemente en K existe un índice k0 verificando la desigualdad | fnk(z)− f (z)| < 1
∀z ∈ K cuando se cumpla que k ≥ k0. Por lo que, para k ≥ k0, podemos utilizar la desigualdad triangular
para llegar a que

nk ≤ | fnk(znk)| ≤ | fnk(znk)− f (znk)|+ | f (znk)| ≤ 1+m.

Lo que constituye una contradicción, para nk → ∞, cuando k → ∞. Por lo que llegamos a la conclusión
de que F debe estar localmente acotada en U .

2.6. Teorema de Montel

Nota. Con el siguiente teorema, abordaremos la esfera de las funciones analíticas, y presentaremos uno
de los principales teoremas relacionados con las familias normales en el campo del análisis complejo.

Teorema 2.5. Sea F una familia de funciones analíticas en un conjunto abierto U. Suponer que F está
localmente acotada en U. Se tiene que F es una familia normal en ese conjunto.

Demostración. Para empezar, notemos que la familia F está puntualmente acotada en U , debido a que
F se trata de una familia localmente acotada en U . Gracias al teorema de Arzelà-Ascoli, para probar que
F es una subfamilia normal de C(U) nos bastará con comprobar que F es equicontinua en U .

Fijaremos un punto z0 en U y estudiaremos la equicontinuidad de F en z0. Para este punto, tomamos
un r > 0 cumpliendo que el disco cerrado K = ∆(z0,2r)⊂U . Por la hipótesis establecida en el enunciado
del teorema, existe una constante m = m(K)> 0 tal que | f (ξ )| ≤ m se verifica siempre y cuando f ∈ F
y ξ ∈ K.

Nota. Recordemos que para poder utilizar la fórmula de Cauchy deberemos contar con una función
holomorfa f : U → C, f ∈ H(U), y además como nuestro disco K = ∆(z0,2r) ⊂ U , tomando el círculo
orientado en sentido antihorario (positivo), podemos escribir entonces nuestra función f evaluada en
cualquier punto a ∈ K, de la siguiente manera:

f (a) =
1

2πi

∫
|ξ−z0|=2r

f (ξ )dξ

ξ −a

Por lo que para z perteneciente al disco ∆ = ∆(z0,r) hacemos uso de la fórmula integral de Cauchy
para hallar una cota válida para cada miembro f de F :

| f (z)− f (z0)|=
∣∣∣ 1
2πi

∫
|ξ−z0|=2r

f (ξ )dξ

ξ − z
− 1

2πi

∫
|ξ−z0|=2r

f (ξ )dξ

ξ − z0

∣∣∣
=

|z− z0|
2π

∣∣∣∫
|ξ−z0|=2r

f (ξ )dξ

(ξ − z)(ξ − z0)

∣∣∣
≤ |z− z0|

2π
·2π ·2r sup|ξ−z0|=2r

| f (ξ )
|ξ − z||ξ − z0|

≤ |z− z0| ·2r · m
2r · r

=
m|z− z0|

r
.

Para la última desigualdad hemos utilizado la siguiente acotación:∣∣∣∫
γ

g(ξ )dξ

∣∣∣≤ Longγ ·supξ∈γ |g(ξ )|
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además de verificarse que |ξ − z| ≥ r y |ξ − z0| = 2r, debido a que ξ ∈ K = ∆(z0,2r) y por otro lado
z ∈ ∆(z0,r).

Dado un ε > 0, definimos δ = mı́n{r,rε/m}. La anterior estimación implica que la desigualdad
| f (z)− f (z0)|< ε es válida para toda función f procedente de la familia F , siempre y cuando el punto z
verifique que |z− z0|< δ . Este razonamiento confirma la equicontinuidad de F en un punto arbitrario z0
de U , con lo que hemos demostrado en definitiva que F se trata de una familia normal en U .

Si bien es cierto que este trabajo no está centrado en el teorema de Montel, nos parece interesante
ilustrar este teorema con un ejemplo típico.

Ejemplo. Sea c > 0 una constante, y sea F la familia que consta de todas las funciones f que son
analíticas en el disco ∆=∆(0,1) y que verifican que

∫ 2π

0 | f (reiφ )|dφ ≤ c, para todo r en (0,1). Demostrar
que F es una familia normal en ∆.

Dado un conjunto compacto K en ∆, debemos encontrar una constante m = m(K) cumpliendo que
| f (z)| ≤ m para todo z en K siempre y cuando f pertenezca a F .

Lo primero que haremos será fijar s en (0,1) tal que K ⊆ ∆(0,s), y posteriormente fijaremos r en
(s,1). Para f en F y z en K obtenemos a partir de la formula integral de Cauchy y del hecho de que
|ξ − z| ≥ r− s cuando |ξ |= r, la siguiente cota:

| f (z)|=
∣∣∣ 1
2πi

∫
|ξ |=r

f (ξ )
ξ − z

dξ

∣∣∣= ∣∣∣ 1
2πi

∫ 2π

0

f (reiφ )rieiφ dφ

reiφ − z

∣∣∣
≤ 1

2π

∫ 2π

0

| f (reiφ )|r
r− s

dφ ≤ cr
2π(r− s)

.

Con lo que hemos encontrado m= c/[2π(r−s)] una cota uniforme para los miembros de F en K. A través
del teorema de Montel, ya que se cumplían las condiciones impuestas en él, hemos podido establecer que
F se trata de una familia normal en ∆.

Por otra parte, añadiendo alguna condición adicional a la acotación puntual se deduce la normalidad.
Montel descubrió una serie de resultados en esa dirección. Citaremos uno de ellos, a modo de fin de este
capítulo.

Teorema 2.6. Sea F una familia de funciones que son analíticas en un abierto conexo D. Supongamos
que existen dos números complejos a y b tales que f (z) ̸= a y f (z) ̸= b para todo z en D, y para toda
función f de F. Si { fn} es una sucesión de F, entonces o bien se tiene que | fn(z)| → ∞ cuando n → ∞

para todo z en D o por el contrario { fn} tiene una subsucesión { fnk} que converge normalmente en D.
En particular, si dicha familia F está acotada en un punto de D, entonces será una familia normal D.





Capítulo 3

Teorema de Riemann

3.1. Preparación para el teorema

Nuestro principal objetivo es enunciar y demostrar el teorema de representación conforme de Rie-
mann, para lo cual nos basaremos en los resultados procedentes del teorema de Montel, presentado en el
capítulo 2, y en tres lemas preparatorios que expondremos a continuación.

La referencia principal para la realización de este capítulo es [4].
Durante este capítulo, trabajaremos con un tipo en especial de conjuntos, los conjuntos simplemente

conexos, así que lo primero que haremos será presentar una definición de conjunto simplemente conexo:
Sea Ω ⊆ C un conjunto abierto y conexo, es decir un dominio, diremos que se trata de un conjunto

simplemente conexo si se verifica alguna de las siguientes propiedades equivalentes:

Todo camino cerrado (o ciclo) en Ω es homólogo a cero respecto a Ω, es decir, Ind(γ,z) = 0 ∀z /∈Ω∫
γ

f (z)dz = 0 ∀γ camino cerrado (o ciclo) en Ω y ∀ f ∈ H(Ω).

C∞ \Ω es conexo, o por otra parte si C\Ω no tiene ninguna componente acotada.

Toda f ∈ H(Ω) que no se anula tiene logaritmo holomorfo en Ω.

Toda f ∈ H(Ω) que no se anula tiene raíz cuadrada holomorfa en Ω.

Nota. A partir de ahora nos referiremos a que una función es C(1) si tal función es derivable y su derivada
es continua.

Por otra parte la notación C∞ hace referencia a la esfera de Riemann.

También será conveniente recordar la definición del índice: sea γ un camino cerrado del plano com-
plejo, y z0 un punto no perteneciente a la imagen de γ , se define el índice de γ respecto al punto z0
como:

Ind(γ,z0) =
1

2πi

∫
γ

dz
z− z0

Por último, recordaremos que se llama transformación conforme a una función f holomorfa y
biyectiva, a parte se deduce que su inversa también será holomorfa.

Pasamos a enunciar y demostrar el primero de los tres lemas preparatorios que emplearemos más
adelante en la demostración del teorema de representación conforme de Riemann (ya utilizamos este
lema en la introducción para obtener un resultado):

Lema 3.1. Sea f : D → C una transformación conforme, donde D es un dominio simplemente conexo
en C. Entonces se tiene que D′ = f (D) verifica también tal propiedad.

Nota. Recordamos que una transformación , definida en un dominio D, se llama conforme si f es analí-
tica en D y su derivada no tiene ceros en D.

11
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Demostración. Lo primero notar que si D′ = C, efectivamente se trata de un conjunto simplemente
conexo.

Por lo tanto asumiremos que D′ ̸=C. Como f es una función analítica, no constante, tenemos que D′

es un dominio. Deberemos de probar que Ind(β ,w)= 0 considerando un punto w de C\D′ (que podremos
escoger siempre ya que estamos asumiendo que D′ ̸= C) y siendo además β un camino cerrado y C(1) a
trozos en D′, es decir recurriremos a nuestra definición anteriormente expuesta de conjunto simplemente
conexo para comprobar que se cumple que al tomar un camino cerrado cualquiera en D′ es homólogo a
cero.

Sean w y β como los hemos definido anteriormente, β : [a,b] → C. Defino γ : [a,b] → C como
γ = f−1 ◦ β , por lo que β (t) = f (γ(t)). Entonces γ se trata de un camino cerrado y C(1) a trozos en
D, además como D es simplemente conexo, γ es homólogo a cero en su dominio. Por otro lado al no
pertenecer w a D′, la función f ′/( f −w) es analítica en D. Por el teorema de Cauchy podemos llegar a
que

0 =
∫

γ

f ′(z)dz
f (z)−w

=
∫ b

a

f ′(γ(t))γ ′(t)dt
f (γ(t))−w

=
∫ b

a

β ′(t)dt
β (t)−w

=
∫

β

dζ

ζ −w
= 2πi Ind(β ,w)

lo que afirma que Ind(β ,w) = 0, como queríamos demostrar.

Nota. El teorema de Cauchy expone que si tenemos una función holomorfa en un dominio simplemente
conexo D, para todo camino cerrado γ , C(1) a trozos en D, se cumple que:∫

γ

f = 0

Es decir utilizando el teorema de Cauchy, y la definición de índice, anteriormente expuesta, hemos
podido comprobar que el dominio D′ es simplemente conexo, y se verifica lo citado en el enunciado del
lema.

El segundo lema preliminar establece que un subdominio propio, (es decir que no sea igual a todo
el plano complejo) simplemente conexo de C, siempre podrá ser transformado conformemente a un
dominio que está contenido en el disco unidad.

Lema 3.2. Sea D un conjunto simplemente conexo en C, D ̸= C, y sea z0 un punto de D. Existe una
f : D → C holomorfa e inyectiva con las siguientes propiedades:

1) El dominio f (D) está contenido en ∆ = ∆(0,1).
2) f (z0) = 0 y f ′(z0)> 0.

Demostración. Tenemos que construir una aplicación que cumpla las propiedades del enunciado del
teorema, para ello compondremos una serie de aplicaciones, que vamos a definir a continuación. Nuestra
idea será obtener f = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 como la composición de cinco aplicaciones conformes.

Para empezar, escogemos un punto b ∈C\D y definimos f1 : D →C como f1(z) = z−b. Al tratarse
D de un subdominio propio de C, es posible tomar tal punto b. La aplicación f1 traslada D a un conjunto
simplemente conexo D1 = f1(D) el cual no contiene al origen.

Para f2 tomaremos cualquier rama holomorfa del log(z) en D1. La existencia de dicha rama está
asegurada por ser D1 = f1(D) un dominio simplemente conexo, debido a que D lo es y f1 es una trans-
formación conforme, además de cumplirse que la función z no tiene ceros en el dominio D1.

Mas aún, podemos asegurar que f2 se trata de una función inyectiva, ya que e f (z) = z y aplicando la
definición de función inyectiva se verificaría que efectivamente f2 lo es.

Fijaremos un punto w0 en el dominio D2 = f2(D1), con un radio r > 0 para el cual el disco cerrado
∆(w0,r)⊆ D2. Definiendo w̃0 = w0 +2πi, observamos que ∆(w̃0,r) y D2 tienen que ser necesariamente
disjuntos. De lo contrario, existiría un punto w̃ ∈ ∆(w̃0,r)∩D2, por lo que w̃ sería de la forma w̃ = f2(z̃)
para algún z̃ en D1, mientras que por otro lado podriamos representar w̃ como w̃ = w+ 2πi para algún
w ∈ ∆(w0,r). También sería cierto que w = f2(z) siendo z un punto de D1, lo que implica que

z̃ = e f2(z̃) = ew̃ = ew+2πi = ew = e f2(z) = z.
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Con lo que tendríamos que w = f2(z) = f2(z̃) = w̃ = w+2πi, lo que nos lleva a una contradicción.
Por lo tanto ∆(w̃0,r)∩D2 = /0. Según esto último, se cumple que |z− w̃0| > r ∀z ∈ D2. Por lo que la
imagen D3 = f3(D2) de D2 bajo la transformación de Möbius r

z−w̃0
es un subconjunto de ∆.

Nota. Una transformación de Möbius es una aplicación de la forma :
f (z) = az+b

cz+d donde a,b,c,d son números complejos que verifican ad −bc ̸= 0

La función f3 ◦ f2 ◦ f1 proporciona una transformación conforme cuyo rango está contenido en ∆

debido a lo anteriormente expuesto.
Lo siguiente que haremos será definir c = f3 ◦ f2 ◦ f1(z0). Ya que por el siguiente teorema :

Teorema. Las funciones que llevan el disco unidad ∆(0,1) conformemente hacía sí mismo
son de la siguiente forma:
f (z) = eiθ z+c

1+cz
donde θ es un número real y c un número complejo con |c|< 1

Se tiene que la función f4 : ∆ → ∆ dada por f (z) = (z− c)/(1− cz) lleva ∆ conformemente hacia sí
mismo. Esta función traslada el punto c al origen. En resumen, la transformación f4 ◦ f3 ◦ f2 ◦ f1 lleva
conformemente nuestro conjunto simplemente conexo D hacia un subconjunto de ∆ y transforma el punto
z0 al origen.

Para finalizar la demostración, notar que d =( f4◦ f3◦ f2◦ f1)
′(z0) ̸= 0 esto último se debe al resultado

procedente del siguiente teorema:

Teorema. Sea f una función analítica en un dominio D. Si f es inyectiva en D, se tiene que
f ′(z) ̸= 0 ∀z ∈ D

Sea u = e−iArgd y definiendo f5 en ∆ como f5(z) = uz. Entonces f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 proporciona una
transformación conforme de D hacia un subdominio de ∆, cumpliendo f (z0)= 0 y f ′(z0)= f ′5(0)( f4◦ f3◦
f2 ◦ f1)

′(z0) = ud = |d|> 0, por lo que acabamos de construir una aplicación que cumple las propiedades
del enunciado del lema.

Procedemos a enunciar y demostrar el último de los lemas introductorios, que sirven como base para
la demostración del teorema de representación conforme de Riemann.

Lema 3.3. Supongamos que D es un dominio simplemente conexo en el plano complejo, D ̸= C, z0
un punto de D y que f : D → C es una transformación conforme que verifica las propiedades 1) y 2)
del lema 3.2. Asumiendo que f (D) ̸= ∆, entonces existe una transformación conforme g : D → C que
también cumple las propiedades mencionadas, pero además verifica que g′(z0)> f ′(z0).

Demostración. Denotamos D0 = f (D). Al igual que en la demostración anterior obtendremos g como la
composición g = g3 ◦g2 ◦g1 ◦ f , donde las aplicaciones g1,g2 y g3 están definidas como mostraremos a
continuación.

Lo primero, tomaremos un punto b ∈ ∆\D0. Como 0 = f (z0) es un elemento de D0, b ̸= 0, podemos
elegir tal punto b debido a que en el enunciado hemos impuesto la condición de que f (D) ̸= ∆.

La transformación de Möebius definida por g1(z) = (z−b)/(1−bz) transforma conformemente ∆ en
sí mismo, por este motivo lleva el dominio simplemente conexo D0 ⊂ ∆ a otro subdominio D1 = g1(D0)
de ∆. Aparte notar que el dominio D1 no contiene el origen ya que no podemos realizar la imagen de
b, g1(b), puesto que hemos definido g1 : D0 → D1 y b /∈ D0 por construcción, pero por otra parte sí
que contiene el punto −b = g1(0) (ver la figura donde quedan representados todos los dominios de la
demostración).

Derivando la función g1 y evaluando su derivada en 0 llegamos a que g′1(0) = 1−|b|2.
Por el mismo razonamiento que en la demostración anterior, está asegurada la existencia de una rama

holomorfa del log(z) en D1, ya que 0 /∈ D1.
Por lo tanto escogeremos una rama y la llamamos L. Más aún, existe una rama g2 asociada a L de la

función raíz cuadrada en D1, que denotaremos por g2(z) = exp[L(z)/2].
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0

bD0 = f (D)
g3 ◦g2 ◦g1

0

−uc

D3

g1 g3

0

−b
D1

g2 0

c
D2

Nota. Ya que estamos trabajando con dominios simplemente conexos, por ser D0 = f (D) la imagen de
un dominio simplemente conexo tratándose f de una aplicación conforme, se sigue del resultado del
Lema 3.1 que los conjuntos D0 y D1 son simplemente conexos y por este motivo existirá una rama de la
función raíz cuadrada.

Se tiene entonces que |g2(z)| =
√
|z| < 1 ∀z ∈ D1, aparte de tratarse g2 de una función inyectiva en

D1, ya que suponiendo que g2(z) = g2(z̃), de necesidad z = [g2(z)]2 = [g2(z̃)]2 = z̃. En otras palabras, g2
es una transformación conforme de D1 en otro dominio simplemente conexo D2 = g2(D1) contenido en
∆ ( ver figura ). Sea c = g2(−b) un punto de D2, observamos que g′2(−b) = 1/[2g2(−b)] = 1/(2c).

Por último, construiremos una aplicación conforme g3 : ∆→∆ definida por g3(z) = u(z−c)/(1−cz),
siendo u = exp[iArgc]. El dominio D3 = g3(D2) está contenido en ∆, debido a la forma en que hemos
definido tal aplicación, el origen pertenece a D3, ya que podemos evaluar el punto c, como g3(c) = 0, por
último realizando la derivada de la función g3 y evaluándola en c obtenemos que g′3(c) = u/(1−|c|2).

Una vez habiendo definido las funciones g1, g2 y g3, podemos componerlas entre sí y con f para ob-
tener g = g3 ◦g2 ◦g1 ◦ f transformación conforme de D en D3, la cual envía z0 al origen, y que utilizando
todo lo mencionado anteriormente y la regla de la cadena, obtenemos que:

g′(z0) = g′3(c)g
′
2(−b)g′1(0) f ′(z0) =

(
u

1−|c|2

)(
1
2c

)
(1−|b|2) f ′(z0) =

(
1+ |c|2

2|c|

)
f ′(z0)> f ′(z0)

ya que

u/c = 1/|c|, debido a que c = |c|u siendo u = exp[iArgc]

|c|2 = |g2(−b)|2 = |b|, por definición del punto c = g2(−b)

y 1+ |c|2 > 2|c| que se sigue de la identidad notable (1+ |c|)2 > 0
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3.2. Teorema de la representación conforme de Riemann

Procederemos a enunciar y demostrar el teorema de la representación conforme de Riemann. En esta
sección expondremos dos teoremas, en el primero de ellos, presentaremos el resultado exigiendo que
en nuestra aplicación construida, el disco ∆ = ∆(0,1) sea la imagen del dominio de la transformación
conforme, cuya existencia ya la hemos probado en la sección anterior.

Por otra parte, en el segundo teorema estableceremos una situación más general que la expuesta en
el primero, al construir una aplicación conforme entre dos dominios propios y simplemente conexos de
C, con las únicas condiciones de fijar un punto y su correspondiente imagen, y que el argumento de la
derivada del punto fijado (Arg( f ′(z0)) quede determinado, de esta manera aseguraremos la existencia de
una única aplicación conforme que relaciona ambos conjuntos simplemente conexos.

z0

D
f

0

∆

Teorema de la representación conforme de Riemann. Supongamos que D es un dominio propio sim-
plemente conexo en el plano complejo, D ̸= C y que z0 es un punto de D. Bajo estas condiciones, existe
una única representación conforme f : D → ∆ verificando que f (D) = ∆, f (z0) = 0 y f ′(z0)> 0.

Demostración. Denotaremos por F la familia de funciones f : D →C que cumplen las siguientes condi-
ciones: f es una representación conforme de D hacia un subdominio de ∆ y además verifica que f (z0) = 0
y f ′(z0)> 0. Haciendo uso del lema 3.3, podemos asegurar que esta familia de funciones, F , no es vacía.
Suponer que escogiendo un r > 0 , se tiene que ∆(z0,r)⊂ D.

Utilizando la cota de Cauchy ( una consecuencia del teorema de Cauchy para las derivadas):

Teorema. Sea f una función analítica en el disco abierto ∆(z0,r), teniéndose a su vez que
| f (z)| ≤ m ∀z ∈ ∆(z0,r), siendo m una constante. Se cumple entonces, que para cada entero
positivo k la cota :

| f k(z)| ≤ k!mr
(r−|z− z0|)k+1

es válida ∀z ∈ ∆(z0,r). En particular, | f k(z0)| ≤ k!mr−k.

Por lo que tomando k = 1, al cumplirse las condiciones de este teorema, podemos asegurar que f ′(z0) =
| f ′(z0)| ≤ r−1 se verifica para todo f miembro de F , ya que en nuestro caso se tiene que | f (z)| ≤ 1
∀z ∈ ∆. Por este razonamiento tenemos que { f ′(z0) : f ∈ F} es un conjunto acotado de números reales
positivos. Debido a esto, este conjunto tiene un supremo, que denotaremos por l.

Para cualquier entero positivo n podemos escoger una función fn en F para la cual es cierto que
l − n−1 ≤ f ′n(z0) ≤ l, ya que por definición el supremo es la menor de las cotas superiores, y como lo
hemos denotado por l, de necesidad l −n−1 no es una cota superior, por lo tanto existirá una función fn

verificando que l −n−1 ≤ f ′n(z0).
Al tratarse la familia F de una familia localmente acotada, el teorema de Montel (teorema 2.5) nos

permite extraer de la sucesión fn una subsucesión fnk que converge normalmente en D a una función
f . Esta función limite es analítica en D. Además, se cumple que f (z0) = lı́mk→∞ fnk(z0) = 0 y f ′(z0) =
lı́mk→∞ f ′nk

(z0) = l > 0. En particular, f es no constante en D, y por el siguiente teorema estableceremos
que se trata de una función inyectiva:
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Teorema. Supongamos que cada función en una sucesión fn es analítica e inyectiva en
un dominio D y que fn → f normalmente en D. Entonces o bien f es inyectiva en D, o es
constante en dicho dominio.

Al no tratarse f de una función constante, debido a su construcción, por el teorema anterior f se
tratará de una función inyectiva. Además gracias a la cota de Cauchy, hemos visto que | f (z)| ≤ 1 ∀z ∈ D,
luego f (D)⊆ ∆.

Haciendo uso del teorema de la aplicación abierta se verifica que f (D) es un conjunto abierto y por
lo tanto un subconjunto de ∆.

Teorema. Si D es un subconjunto abierto y conexo, del plano complejo C y f : D → C es
una función holomorfa no constante, entonces f es una aplicación abierta (es decir, envía
subconjuntos abiertos de D a los subconjuntos abiertos de C).

Por lo tanto, la función f es un miembro de la familia F , por lo que si podemos comprobar que f (D) = ∆,
la parte de la demostración de la existencia de tal función, ya estaría completada.

De ser cierto que f (D) ̸= ∆, el lema 3.3 nos permitiría escoger un miembro de F cuya derivada
en el punto z0 excedería a la de f ′(z0) = l. Dado que l se trata del supremo, esto no sería posible, por
lo tanto f debe transformar D conformemente en ∆. Para demostrar la unicidad, asumiremos que g es
otra transformación conforme de D hacia ∆ cumpliendo que g(z0) = 0 y g′(z0)> 0. Tomamos la función
ψ : ∆→∆, ψ = g◦ f−1. Esta función proporciona una transformación conforme de ∆ en sí mismo, fijando
el origen y satisfaciendo que ψ ′(0) = g′(z0)/ f ′(z0)> 0. Notar que las únicas aplicaciones conformes ψ

de ∆ en sí mismo, cumpliendo que ψ(0) = 0 , son las rotaciones en torno al origen. Además la única
rotación en torno al origen verificando que ψ ′(0) > 0 es la rotación dada por ψ(z) = z, es decir la
identidad.

Con lo que hemos visto que g(z) = ψ( f (z)) = f (z) se satisface para todo z en D. Y hemos probado
la existencia y unicidad de tal función f .

Nota. La importancia del teorema de la representación conforme de Riemann radica en que nos permite
transformar conformemente cualquier subonjunto propio simplemente conexo D de C en otro dominio
con esas características. Además, la aplicación es única siempre y cuando f (z0) y Arg[ f ′(z0)] estén
determinados para algún punto z0 de D.

Procederemos a comprobar esta afirmación con el siguiente teorema.

Teorema 3.4. Sean D y D′ dominios propios simplemente conexos en C. Fijados un punto z0 ∈ D,
z′0 ∈ D′, y Φ0 en (−π,π] entonces existe una única transformación conforme f : D → D′ cumpliendo las
condiciones f (z0) = z′0 y Arg[ f ′(z0)] = Φ0.

Demostración. Sea g la transformación conforme de D hacia ∆ = ∆(0,1) verificando que g(z0) = 0 y
g′(z0)> 0, y sea h la correspondiente aplicación asociada al par D′ y z′0. Entonces la función f : D → D′

definida por f (z) = h−1[eiΦ0g(z)] nos proporciona una transformación conforme de D en D′ para la cual
se tiene que f (z0) = z′0 y f ′(z0) = eiΦ0g′(z0)/h′(z′0) (utilizando la regla de la cadena). Como g′(z0)> 0 y
h′(z′0)> 0, Arg[ f ′(z0)] = Φ0. Para establecer la unicidad de f , tomaremos una transformación conforme
arbitraria f0 de D en D′ con las características anteriormente mencionadas. Entonces ψ = g◦ f−1◦ f0◦g−1

es una transformación conforme de ∆ en sí mismo cumpliendo que: ψ(0) = 0 y

ψ
′(0) = g′(z0) ·

1
f ′(z0)

· f ′0(z0) ·
1

g′(z0)
=

f ′0(z0)

f ′(z0)
=

| f ′0(z0)|
| f ′(z0)|

> 0

ya que Arg[ f ′0(z0)] = Arg[ f ′(z0)].
Así razonando igual que en la demostración del teorema de la representación conforme de Riemann,

llegamos a que ψ(z) = z ∀z ∈ ∆, debido a que la aplicación ψ está definida como ψ : ∆ → ∆ cumpliendo
que ψ(0) = 0 (única rotación en torno al origen verificando que ψ ′(0)> 0 es la identidad), por lo que al
tratarse la función ψ de la identidad, concluimos que f0(z) = f (z) ∀z ∈ D.



Capítulo 4

Conjuntos doblemente conexos

4.1. Introducción

En el capítulo anterior, mediante el teorema de Riemann, pudimos establecer una transformación
conforme entre cualquier conjunto simplemente conexo distinto de C y el disco unidad.

Nuestra intención en este capítulo será ampliar el estudio de dichos conjuntos, en este caso presenta-
remos los doblemente conexos, con los cuales podremos construir una transformación conforme, aunque
no sea precisamente con el disco unidad.

Así como caracterizábamos a los conjuntos simplemente conexos como aquellos conjuntos Ω ⊆ C
tales que C∞ \Ω es conexo, otra posible caracterización que podríamos utilizar es que C \Ω no tiene
componentes acotadas.

De acuerdo con la definición de conjunto simplemente conexo, nos referiremos a que un conjunto Ω

es doblemente conexo si C\Ω tiene exactamente una componente acotada.
Intuitivamente, viene a decir que el conjunto Ω tiene un agujero.
Así como en el capítulo 3 utilizamos en especial los discos ∆(z0,r), en este capítulo un conjunto

doblemente conexo con el que trabajaremos a menudo será la corona circular A(r,R) = {z ∈C : r < |z|<
R}.

Expondremos una serie de teoremas, para acabar llegando a un último teorema que nos enunciará los
posibles casos que se presentan cuando estudiamos la existencia de una transformación conforme con un
conjunto doblemente conexo.

La principal referencia para este capítulo es [1].

Teorema 4.1. Sea 0 < r < R < ∞, A = {z ∈ C : r < |z|< R},γ , Γ ciclos C(1) a trozos. Entonces

1. Indγ(0)
∫

Γ
f = IndΓ(0)

∫
γ

f , ∀ f : A → C función holomorfa.

2. Si IndΓ(0) ̸= 0, f holomorfa en A libre de ceros y Ind f◦Γ(0) = 0, entonces f tiene logaritmo
holomorfo.

3. Si f es holomorfa en A, f (A) ⊂ A y Ind f◦Γ(0) ̸= 0, entonces o bien f (z) = cz o f (z) = c/z para
alguna constante c.

Demostración. 1. Indγ y IndΓ ambos se anulan idénticamente en C \ ∆(0,R) y en ∆(0,r) toman los
valores constantes Indγ(0), IndΓ(0) respectivamente. Por lo que

Indγ(0) IndΓ− IndΓ(0) Indγ

se anula en ∆(0,r) ∪ [C \∆(0,R)] = C \A. Con lo que 1 se sigue del teorema general de Cauchy, que
enunciaremos a continuación:

17
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Teorema. Sea U un subconjunto abierto de C, γ1,...,γk ciclos C(1) a trozos en U, n1,..,nk ∈Z
tales que

k

∑
i=1

ni Indγi = 0

en C\U. Entonces para cada f holomorfa en U se satisface

k

∑
i=1

ni

∫
γi

f = 0.

2. Lo primero notar que

2πi Ind f◦Γ(0) =
∫

( f ◦Γ)′

f ◦Γ
=

∫ (
f ′

f
◦Γ

)
·Γ′ =

∫
Γ

f ′

f

Por hipótesis Ind f◦Γ = 0, con lo que escribiendo f ′/ f en lugar de f en 1 tenemos que

IndΓ(0)
∫

γ

f ′

f
= 0.

Además, también por hipótesis IndΓ(0) ̸= 0, por lo que concluimos con que

∫
γ

f ′

f
= 0.

Como γ se trata de un ciclo C(1) a trozos cualquiera en A, se sigue del siguiente teorema la existencia
de una primitiva F en A de la función f ′/ f .

Teorema. Sea Ω un abierto, conexo y f una función continua en Ω verificando
∫

γ
f = 0

para todo ciclo C(1) a trozos en Ω. Entonces existe una función holomorfa F en Ω tal que
F ′ = f .

Con lo que f = eF−c para alguna constante c, y acabamos de demostrar la existencia de logaritmo holo-
morfo de la función f .

Nota. Nos referiremos a C(w,r) por la circunferencia de centro w y radio r recorrida en sentido positivo.
Será habitual que tomemos C(0,

√
Rr) , ya que

√
Rr se trata de la media geométrica de los radios R

y r, por lo tanto es un número comprendido entre R y r.

3. Sea γ =C(0,
√

Rr). Se sigue de 1 que

Indγ(0)
∫

Γ

f ′

f
= IndΓ(0)

∫
γ

f ′

f
.

Haciendo uso de la anterior igualdad 2πi Ind f◦Γ(0) =
∫

Γ

f ′
f , la cual también se verifica tomando el ciclo

γ , en lugar de Γ, llegamos a que

Indγ(0) Ind f◦Γ(0) = IndΓ(0) Ind f◦γ(0)

además como Indγ(0) = 1, tenemos que

Ind f◦Γ(0) = IndΓ(0) Ind f◦γ(0).

Como la parte izquierda de la anterior igualdad es distinta de 0 por hipótesis, deducimos que n =
Ind f◦γ(0) ̸= 0 y por el siguiente resultado f es de la forma enunciada en el apartado 3.
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Teorema. Sea 0 < r j < R j < ∞, A j = {z ∈ C : r j < |z| < R j} ( j = 1,2), r =
√

R1r1 y
γ = C(0,r), siendo r1 < r < R1. Supongamos que f : A1 → A2 es holomorfa y siendo n =
Ind f◦γ(0). Entonces

1. |n| ≤ log(R2/r2)
log(R1/r1)

2. Si se cumple la igualdad en 1, entonces f (z) = czn para alguna constante c.

En nuestro caso tomando r1 = r2 = r, R1 = R2 = R, tendríamos la igualdad en 1 siendo Ind f◦γ(0) = 1, o
−1, y f sería de la forma buscada.

Corolario 4.2. Sea 0 < r j < R j < ∞, A j = {z ∈ C : r j < |z| < R j} ( j = 1,2) y f una transformación
conforme de A1 en A2. Entonces f tiene la forma f (z) = cz o f (z) = c/z para alguna constante c. En
particular R2/r2 = R1/r1.

Demostración. Reemplazando f por (r1/r2) f , podemos suponer que r1 = r2. De un modo parecido,
tomando f−1, en lugar de f en caso de ser necesario, podremos suponer que R2 ≤ R1, lo que asegura que
f transforma A1 en A2 ⊂ A1.

Notemos además, que f no posee logaritmo holomorfo. Ya que en caso de tener, se cumpliría que
existe g ∈ H(A1) y f = eg, por lo que el hecho de que z = f ( f−1(z)) = eg( f−1(z)) ∀z ∈ A2 contradiría el
siguiente resultado:

Teorema. La función identidad, y en general para cualquier función h : C(0,1)→ C\{0}
continua y verificando h(−z) =−h(z) ∀z, entonces se cumple que no tiene logaritmo conti-
nuo.

Se sigue, por lo tanto del apartado 2 del teorema 4.1 que Ind f◦γ(0) ̸= 0, siendo γ = C(0,
√

r1R1) y
consecuentemente por el apartado 3 al cumplirse también que f (A)⊂ A, se deduce que f tiene la forma
deseada.

Por último notar que la relación R2/r2 = R1/r1 es cierta debido a que si la función f : A1 → A2
presenta la forma f (z) = cz, se tiene que si z ∈ A1 , z verifica que r1 < |z|< R1, entonces como f (z) = cz,
f (z) ∈ A2, siendo A2 la corona circular de radio r2 = |c|r1 y R2 = |c|R1, cumpliendo que |c|r1 < | f (z)|<
|c|R1, se obtiene la relación entre los radios. El mismo razomaniento sería válido en caso de estar en el
otro caso, f (z) = c/z.

Nota. Entenderemos en el siguiente teorema por el conjunto U :

U = { f : A → C holomorfas, f acotada,
1
f

acotada }

y denotaremos por E el subconjunto formado por las funciones que poseen raíces enésimas holomorfas
para cada entero positivo n. E está formado por 0 y las exponenciales de funciones holomorfas en A
cuyas partes reales están acotadas.

Teorema 4.3. Sea 0 < r < R < ∞, A = A(r,R). Sea ∥ f∥= sup| f (A)| para una f holomorfa y acotada en
A. Entonces tenemos que

ı́nf
f∈U\E

∥ f∥∥1/ f∥= R/r

Demostración. Por el mismo razonamiento que hemos empleado en el teorema anterior la función
f1(z) = z no tiene raíz cuadrada holomorfa, por lo que f1 ∈U \E y se cumple que

ı́nf
f∈U\E

∥ f∥∥1/ f∥ ≤ ∥ f1∥∥1/ f1∥= R/r

Ahora consideramos cualquier f ∈U \E. Probaremos por reducción al absurdo que

∥ f∥∥1/ f∥< R/r
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es imposible. Para demostrarlo supondremos que es cierto. Podemos considerar una función f que veri-
fique ∥ f∥ < R y ∥1/ f∥ < 1/r. Cambiando f por λ f para alguna constante λ > 0, no es difícil ver que
podemos suponer que ∥ f∥< R y ∥1/ f∥< R/r. Condiciones por las cuales f va de la corona A(r,R) = A
a ella misma. Estableciendo γ =C(0,

√
Rr), además hemos tomado f /∈E y por el apartado 2 del teorema

4.1 obtenemos que

Ind f◦γ(0) ̸= 0.

Debido a esto y utilizando por último, el apartado 3 del teorema 4.1 se tiene que o bien f (z) = cz o
f (z) = c/z. En cualquiera de ambos casos, no se cumplen las condiciones supuestas al principio, es decir
ninguna de estas dos funciones cumple que

∥ f∥∥1/ f∥< R/r.

Por lo que hemos llegado a un absurdo suponiendo que era cierta dicha desigualdad, para cualquier
función f ∈U \E, y acabamos de demostrar por lo tanto que

ı́nf
f∈U\E

∥ f∥∥1/ f∥= R/r.

4.2. Dominios doblemente conexos

En esta sección nos centraremos en estudiar de una manera general los dominios doblemente cone-
xos, sin tener por qué tratarse en particular de coronas circulares, culminando en una clasificación de los
conjuntos doblemente conexos, a modo de teorema final.

Teorema 4.4. Sea Ω un abierto, conexo tal que C \ Ω no es un punto aislado pero es compacto y
conexo. Entonces Ω es conformemente equivalente a ∆(0,1)\{0} y existe una transformación conforme
F : ∆(0,1)\{0}→ Ω de la forma F(z) = c/z+∑

∞
n=0 cnzn.

Demostración. Podemos asumir, después de realizar una traslación, que 0 ∈ K = C \Ω. Consideramos
entonces la aplicación Φ : C\{0}→C\{0} dada por Φ(z) = 1/z. Por el teorema de la aplicación abierta
se tiene que Φ(Ω) es un conjunto abierto, aparte Φ(Ω) es conexo, debido a que la aplicación que hemos
definido, Φ, es una aplicación holomorfa.

Si elegimos 0 < r < ∞ tal que K ⊂ ∆(0,r), entonces ∆(0,1/r) \ {0} ⊂ Φ(Ω). Por lo tanto, se sigue
que Ω0 = {0}∪Φ(Ω) es abierto y conexo.

Mas aún C∞ \Ω0 = Φ(K) se trata de un conjunto conexo (K es conexo) y debido a esto Ω0 es un con-
junto simplemente conexo. Lo que implica según el teorema de Riemann, que existe una transformación
conforme f de ∆ = ∆(0,1) hacia Ω0. Precediendo f con la correspondiente transformación conforme
que lleve ∆ en sí mismo, podemos suponer que f (0) = 0.

Entonces F = Φ◦ f = 1/ f transforma ∆\{0} conformemente en Ω. Como f tiene un cero de primer
orden en 0 y no presenta más ceros en ∆, tenemos que f (z) = zg(z), siendo g una función holomorfa y
libre de ceros en ∆, por lo que en el conjunto ∆ \ {0}, F(z) = 1/ f (z) = h(z)/z donde h es una función
holomorfa y libre de ceros en ∆. Esto prueba que F tiene la forma del enunciado.

Lema 4.5. Sea Ω un abierto, conexo tal que C \Ω tiene una única componente acotada C (Ω es un
conjunto doblemente conexo). Tomemos z0 ∈ C y sea E(w) = z0 + ew,w ∈ C. Entonces se tiene que
E−1(Ω) es conexo.

Demostración. No perderemos generalidad suponiendo que z0 = 0. Sea Γ : [0,1] → Ω un ciclo C(1) a
trozos tal que

IndΓ(0) = 1 (4.1)
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Tenemos entonces, que como 0 /∈ Γ([0,1]), la función Γ tiene logaritmo continuo, es decir, hay una
función continua Φ tal que Γ = eΦ.

Recordemos que el índice de un ciclo γ : [a,b]→ C con respecto de un punto z, no perteneciente a
γ se puede definir como [Φ(b)−Φ(a)]/2πi para cualquier logaritmo continuo Φ en [a,b] de la función
γ − z. Por lo tanto,

2πi = 2πi · IndΓ(0) = Φ(1)−Φ(0). (4.2)

Para cada z ∈ Ω sea γz : [0,1] → Ω una curva desde Γ(0) hasta z. Por el mismo razonamiento de antes
existe una función continua Φz : [0,1]→ C tal que eΦz = Γz. Añadiendo un entero apropiado, múltiplo
de 2πi a Φz, podemos asumir que se cumple que

Φz(0) = Φ(0). (4.3)

Ahora considerando cualquier w ∈ E−1(Ω) y siendo z = E(w) = ew, tenemos que

ew = Γz(1) = eΦz(1)

por lo que
w−Φz(1) = 2πin (4.4)

para algún entero n.
Construimos la curva

Ψ(t) =



Φ(t) 0 ≤ t ≤ 1
Φ(t −1)+2πi 1 ≤ t ≤ 2
...
Φ(t −n+1)+2πi(n−1) n−1 ≤ t ≤ n
Φz(t −n)+2πin n ≤ t ≤ n+1.

Por lo visto anteriormente, utilizando las ecuaciones (4.2) y (4.3), Ψ está bien definida, luego es continua.
Consideramos ahora

eΨ(t) =



eΦ(t) = Γ(t) 0 ≤ t ≤ 1
eΦ(t−1) = Γ(t −1) 1 ≤ t ≤ 2
...
eΦ(t−n+1) = Γ(t −n+1) n−1 ≤ t ≤ n
eΦz(t−n) = Γz(t −n) n ≤ t ≤ n+1.

Se tiene que eΨ(t) ∈ Ω, ∀t ∈ [0,n+ 1], por lo que Ψ(t) ∈ E−1(Ω), ∀t ∈ [0,n+ 1]. Como Ψ(0) = Φ(0)
y Ψ(n+ 1) = Φz(1)+ 2πin = w por la ecuación (4.4), esto muestra que cualquier punto w de E−1(Ω)
puede ser unido por una curva en E−1(Ω) al punto fijo Φ(0), probando que E−1(Ω) es conexo, ya que
cualquier curva es conexa.

Lema 4.6. Sea C un subconjunto compacto y conexo de ∆ = ∆(0,1), con 0 ∈C. Sea E(w) = ew(w ∈C).
Entonces E−1(∆\C) es simplemente conexo.

Demostración. Recordamos lo primero que un conjunto Ω es simplemente conexo si C \Ω no tiene
componentes acotadas.

Observar que C\E−1((∆\C)) = E−1(C\ (∆\C)) = E−1(C\∆)∪E−1(C).
Además se cumple que E−1(C \∆) = {w : |ew| ≥ 1} = {w : Rew ≥ 0} es un conjunto conexo no

acotado.
Por lo tanto, será suficiente con probar que E−1(C) no tiene componentes acotadas. Supondremos

que se cumple lo contario, es decir que E−1(C) tiene una componente acotada, entonces existirá un
subconjunto compacto y relativamente abierto K de E−1(C) conteniendo a dicha componente.
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Si U es un subconjunto abierto de C tal que K = U ∩E−1(C), se tiene que E(K) = E(U)∩C. Al
tratarse E de una aplicación abierta, por ser holomorfa y no constante, el conjunto E(U) es abierto, por
lo que E(U)∩C es relativamente abierto en C. Esto es, E(K) es relativamente abierto en C.

Pero como K es compacto, E(K) también lo es. En resumen E(K) es un subconjunto no vacío, propio
(0 ∈ C, 0 /∈ E(K)), compacto de C y relativamente abierto en C, una contradicción teniendo en cuenta
que C se trata de un conjunto conexo.

4.3. Teorema de clasificación de conjuntos doblemente conexos

Teorema 4.7. Para cualquier dominio doblemente conexo Ω se verifica una de las tres siguientes situa-
ciones:

1. Ω = C\{c} para algún c ∈ C.

2. Ω es conformemente equivalente a ∆(0,1)\{0}.

3. Ω es conformemente equivalente a la corona A(r,1), para un r tal que 0 < r < 1.

Demostración. Sea C la única componente acotada de C\Ω. El caso en el cual C =C\Ω y es un único
punto, es 1.

Si C = C \Ω pero no es un punto aislado, se trata de un caso ya estudiado en el teorema 4.4 y
corresponde al apartado 2.

Por lo que supondremos que
Ω∪C ̸= C.

Al tratarse C de la única componente acotada de un conjunto doblemente conexo se verifica que Ω∪C ̸=
C es abierto y simplemente conexo, por lo que gracias al teorema de Riemann existirá una transformación
conforme de Ω∪C en el disco unidad, ∆(0,1). Sin pérdida de generalidad, podemos entonces suponer
que Ω∪C = ∆(0,1). Y componiendo con una transformación conforme del disco en él mismo (una
transformación de Möebius) podemos suponer también que

0 ∈C compacto, conexo ⊂ ∆ y Ω = ∆\C.

Sea E : C → C \ {0} la aplicación exponencial, E(w) = ew. Gracias a los dos últimos lemas vistos
podemos asegurar que

E−1(Ω) es abierto, conexo y simplemente conexo.

Evidentemente es un subconjunto propio de C, por lo que podemos encontrar una transformación
conforme f de E−1(Ω) en H = R× (0,∞).

La traslación T : E−1(Ω)→E−1(Ω) definida por T (w)=w+2πi no deja ningún punto fijo. Entonces
Φ = f ◦T ◦ f−1 es una aplicación conforme de H en H la cual no fija ningún punto. Las transformaciones
conformes de H en H son de la forma γ(z) = az+b

cz+d , donde a,b,c,d ∈R y ad−bc > 0. Se puede demostrar
(aunque no es inmediato) que si ψ es una transformación conforme de H en H sin puntos fijos, entonces
hay una transformación conforme Γ de H en H tal que se tiene que:

ψ(Φ(ψ−1(z))) = z+β ∀z ∈ H
o bien

ψ(Φ(ψ−1(z))) = αz ∀z ∈ H.

para β ∈ R, o en el otro caso para α > 0.
Defino por lo tanto F = ψ ◦ f , una transformación conforme de E−1(Ω) en H.
Como F ◦T ◦F−1 = ψ ◦Φ◦ψ−1, se tiene que o bien ∀β ∈ R
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F(T (F−1(z))) = z+β ,∀z ∈ H (caso 1)

o para algún α > 0

F(T (F−1(z))) = αz,∀z ∈ H (caso 2).

Abordaremos el caso 1 con detalle. Notar que β ̸= 0, ya que Φ no fija ningún punto. Defino

A = {e2πiw/β : w ∈ H}.

De este modo A se trata de ∆\{0} (si β > 0) o lo conformemente equivalente (bajo z→ 1/z)C\∆ (si
β < 0), es decir en ambas situaciones podemos suponer que nuestro conjunto A es equivalente a ∆\{0}.
Demostraremos que Ω es conformemente equivalente a A.

Definimos una función h de la manera siguiente: dado z ∈ Ω, tomo v ∈ E−1(Ω), tal que ev = z y sea
h(z) = E(2πiF(v)/β ).

Lo primero que haremos será probar que h está bien definida. Por lo que supondremos que v1,v2 ∈
E−1(z). Entonces

ev1 = ev2 ⇔ v1 = v2 + 2πin para un entero n. Cambiando los papeles de v1 y v2, en caso de ser
necesario, podemos suponer que n ≥ 0. En ese caso

v1 = v2 +2πin = T [n](v2), donde T [n] es la enésima iteración de T . Se verifica entonces que:

F(v1) = F(T [n](v2)) = (F ◦T [n] ◦F−1)(F(v2)) = (F ◦T ◦F−1)[n](F(v2)) = F(v2)+nβ

ya que nos encontramos en el caso 1, definido anteriormente.
Por lo que tenemos que

E
(

2πi
β

F(v1)

)
= E

(
2πi
β

F(v2)

)
.

Luego hemos probado que h está bien definida. Además se tiene que h : Ω → A, ya que F transforma
E−1(Ω) en H. La demostración de que h es inyectiva es similar al proceso que acabamos de realizar, en
cambio para probar que h es holomorfa podemos hacerlo de una manera local, es decir, cada punto de Ω

pertenece a un entorno N en el cual existe un logaritmo holomorfo, tratándose de una función L sobre N
tal que eL(z) = z ,∀z ∈ N. Razón por la cual L(N)⊂ E−1(Ω) y para cada z ∈ N podemos usar v = L(z) en
la definición de h:

h(z) = E
(

2πi
β

F(L(z))
)
.

Lo que muestra que podemos escribir h como composición de funciones holomorfas en el entorno N.
Con lo que acabamos de probar que existe una aplicación biyectiva y holomorfa h : Ω → A, y así nos

encontramos en el apartado 2 del teorema.
El caso 2 no es muy diferente. Dejaremos un esquema de cómo abordar la demostración, plasmando

los detalles más relevantes. Denotamos por L la rama principal del logaritmo en C\ (−∞,0]. Por lo que
en (0,∞) , L toma valores reales, de hecho se trata del logaritmo natural. Como T no tiene puntos fijos,
de necesidad α ̸= 1. Por lo tanto si definimos S =R× (0,π) y A = {e2πiw/L(α) : w ∈ S}, se trata A de una
corona circular, que podemos transformarla, en caso de que fuese necesario, en A(r,1) con 0 < r < 1.

Construyendo h de la siguiente forma:

h(z) = E(2πiL(F(v))/L(α))

para cualquier v ∈ E−1(z), se puede ver de manera análoga al caso anterior que h está bien definida y
transforma conformemente Ω en A.

Por lo que a través del estudio del caso 2, hemos comprobado que nuestro conjunto Ω es conforme-
mente equivalente a A(r,1).
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Nota. Así para cualquier conjunto Ω doblemente conexo se cumplirá al menos uno de los tres casos
expuestos en el enunciado del teorema.

Ahora bien, ¿Se trata de casos mutuamente excluyentes? Veremos que efectivamente sí, a través del
siguiente razonamiento.

Proposición 4.8. Las tres condiciones del teorema anterior son mutuamente excluyentes.

Demostración. Los tres casos que se presentan en el teorema anterior son los siguientes:

1. Ω = C\{c} para algún c ∈ C.

2. Ω es conformemente equivalente a ∆(0,1)\{0}.

3. Ω es conformemente equivalente a la corona A(r,1), para un r tal que 0 < r < 1.

Comenzaremos viendo que 2 y 3 son mutuamente excluyentes.
Suponer que efectivamente existe una transformación conforme f : ∆\{0}→ A(r,1), y llegaremos a

una contradicción.
Haremos uso de dos resultados específicos para probar que tal aplicación no puede existir.
Lo primero que tendremos en cuenta será que al tratarse ∆ de un subconjunto abierto de C y f una

función holomorfa en ∆\{0}. Como f es una función acotada alrededor de 0, ya que 0 ∈ ∆, se trata f de
la restricción a ∆\{0} de una F función holomorfa en ∆.

Aparte, se verifica que cualquier función holomorfa libre de ceros en un simplemente conexo de C
tiene un logaritmo holomorfo en dicho conjunto. Notar que, en nuestro caso, el conjunto ∆ con 0 < r < 1
se trata de un simplemente conexo, por lo que nuestra aplicación f tendrá un logaritmo holomorfo en ∆.

Con lo que tenemos que f = eg para alguna g ∈ H(∆), razonando como en la demostración del
corolario 4.2 llegaríamos a una contradicción, ya que el hecho de que z = f ( f−1(z)) = eg( f−1(z)) ∀z ∈
A(r,1) implicaría que la función identidad tendría un logaritmo continuo en A(r,1).

Una vez comprobado que los casos 2 y 3 son mutuamente excluyentes, estudiaremos si 1 lo es con 2
y 3.

Probaremos de la misma manera que 1 y 2 son excluyentes.
Suponer que existe h : C\{c}→ ∆\{0} holomorfa y biyectiva.
La función h presenta en el punto c, una singularidad aislada, ¿será polo, evitable o esencial?

No puede tratarse de un polo , ya que por definición debería darse que

lı́m
z→c

h(z) = ∞

Pero h está acotada, |h(z)| ≤ 1, por lo que no es posible que sea un polo.

No puede ser esencial, ya que h(C\{c}) tendría que ser denso en C, según el teorema de Casorati-
Weierstrass. No obstante, h(C\{c})⊂ ∆.

Por lo tanto deberá ser evitable, en dicho caso podemos extender h a h : C→ ∆ definida de la siguiente
manera:

h(z) =

{
h(z) z ̸= c
w = lı́m

z→c
h(z) z = c

ya que como |h(z)|< 1, se tiene que |w| ≤ 1, siendo h función holomorfa.
Con lo que h : C→ ∆ acotada y entera, por el teorema de Liouville debería ser constante, y al ser una

extensión de h, ésta también debería ser una función constante y hemos llegado a una contradicción, al
tratarse h de una aplicación biyectiva.

Resumiendo, acabamos de ver que 1 y 2 son casos mutuamente excluyentes.
Para demostrar que 1 y 3 son casos excluyentes, razonaríamos de manera similar a como acabamos

de proceder.
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Ya que al suponer que existe h : C\{c} → A(r,1) solo utilizaremos, al igual que antes, la condición
de que el conjunto de llegada es acotado, por lo que no podrá existir ninguna singularidad aislada del tipo
polo, o esencial. Y en caso de ser evitable, llegaríamos a la misma contradicción utilizando de nuevo el
teorema de Liouville.

Nota. Gracias a la demostración de esta proposición hemos visto que los tres casos del último teore-
ma son mutuamente excluyentes, de esta manera si tenemos un conjunto Ω doblemente conexo, será
equivalente a uno de los tres conjuntos citados.
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