000127369 001__ 127369 000127369 005__ 20230907110839.0 000127369 037__ $$aTAZ-TFG-2023-2132 000127369 041__ $$aeng 000127369 1001_ $$aSalamero Cebollero, Marina 000127369 24200 $$aBass-Serre Theory 000127369 24500 $$aTeoría de Bass-Serre 000127369 260__ $$aZaragoza$$bUniversidad de Zaragoza$$c2023 000127369 506__ $$aby-nc-sa$$bCreative Commons$$c3.0$$uhttp://creativecommons.org/licenses/by-nc-sa/3.0/ 000127369 520__ $$aA menudo, los grupos son introducidos como el conjunto de automorfismos o simetrías de un objeto dado. Es por tanto natural pensar que, para estudiar las propiedades de un grupo, puede ser más práctico estudiar la manera en que actúa en un objeto, más que el grupo en sí. Por ejemplo, en la Teoría Geométrica de Grupos se estudian propiedades geométricas y topológicas de un espacio conocido en el que el grupo actúa, y luego se traduce esta información geométrica a resultados algebraicos. <br />La teoría de Bass-Serre se ocupa del caso en el que este espacio es un grafo, o más específicamente un grafo simplemente conexo, es decir, un árbol. El espacio cociente bajo la acción del grupo también debe ser un grafo, de modo que se requiere que esta acción sea sin inversión. <br />El objetivo de este trabajo es desarrollar las nociones básicas de esta teoría y demostrar el llamado Teorema de estructura, que proporciona una caracterización completa de los grupos que actúan sobre árboles. Más concretamente, veremos que el grafo cociente y los subgrupos estabilizadores de los vértices y los ejes constituyen toda la información necesaria para caracterizar el grupo. Esto nos permitirá comprender mejor la estructura de este tipo de grupos, obteniendo, por ejemplo, resultados acerca de la forma que tienen sus subgrupos.<br /><br /> 000127369 521__ $$aGraduado en Matemáticas 000127369 540__ $$aDerechos regulados por licencia Creative Commons 000127369 700__ $$aMartínez Pérez, Concepción$$edir. 000127369 7102_ $$aUniversidad de Zaragoza$$bMatemáticas$$cAlgebra 000127369 8560_ $$f797957@unizar.es 000127369 8564_ $$s823623$$uhttps://zaguan.unizar.es/record/127369/files/TAZ-TFG-2023-2132.pdf$$yMemoria (eng) 000127369 909CO $$ooai:zaguan.unizar.es:127369$$pdriver$$ptrabajos-fin-grado 000127369 950__ $$a 000127369 951__ $$adeposita:2023-09-07 000127369 980__ $$aTAZ$$bTFG$$cCIEN 000127369 999__ $$a20230607113150.CREATION_DATE