000127521 001__ 127521
000127521 005__ 20230907110844.0
000127521 037__ $$aTAZ-TFG-2022-4364
000127521 041__ $$aspa
000127521 1001_ $$aAldea Cebollo, Roberto
000127521 24200 $$aGesture and voice recognition by using machine learning on an embedded processor.
000127521 24500 $$aReconocimiento de gestos y voz mediante inteligencia artificial incorporada en un microcontrolador.
000127521 260__ $$aZaragoza$$bUniversidad de Zaragoza$$c2022
000127521 506__ $$aby-nc-sa$$bCreative Commons$$c3.0$$uhttp://creativecommons.org/licenses/by-nc-sa/3.0/
000127521 520__ $$aEn la actualidad, la inteligencia artificial se puede encontrar cada vez en un mayor número de dispositivos sin que los usuarios sean conscientes de ello, un ejemplo es el uso de una palabra para activar un dispositivo y ejecutar acciones más complejas, tal como realizan ‘Oye Siri’ o ‘Alexa’.En este trabajo, por un lado, se estudia la implementación de algoritmos de inteligencia artificial en un dispositivo basado en un microcontrolador estándar de bajo coste y recursos de procesamiento limitados. En concreto se va a utilizar la placa Arduino Nano 33 BLE, desarrollada específicamente para este tipo de aplicaciones, la cual incluye diversos sensores de voz y movimiento. El objetivo es explorar nuevas posibilidades de interacción humano-computador, haciendo uso de un dispositivo de interacción para reconocer comandos de voz y / o movimientos gestuales. A modo de demostrador, este proyecto se ha centrado en realizar los controles más básicos a la hora de llevar a cabo una presentación usando un programa de presentaciones tipo Microsoft PowerPoint o similar. Como segundo objetivo, se plantea el estudio y uso de la plataforma online Edge Impulse para el desarrollo del proyecto completo, desde la captura de datos y generación del dataset, extracción de características, desarrollo de modelos de aprendizaje automático, entrenamiento, evaluación e implementación en el microcontrolador. El proceso completo de desarrollo de sistemas inteligentes basados en microcontroladores se realiza desde dicha plataforma de forma totalmente online, desde un navegador de internet. Como conclusiones podemos destacar que uno de los aspectos más importantes a la hora de crear un modelo de inteligencia artificial es tener una base de datos lo suficientemente amplia para entrenar adecuadamente el clasificador, en nuestro caso, hemos desarrollado nuestras propias bases de datos. Por otro lado, comprobamos que el tipo de extracción de características que se realice sobre los datos puede ser más importante que el modelo clasificador concreto para obtener los mejores resultados.<br />
000127521 521__ $$aGraduado en Ingeniería Electrónica y Automática
000127521 540__ $$aDerechos regulados por licencia Creative Commons
000127521 700__ $$aMartín del Brío, Bonifacio$$edir.
000127521 7102_ $$aUniversidad de Zaragoza$$bIngeniería Electrónica y Comunicaciones$$cTecnología Electrónica
000127521 8560_ $$f735057@unizar.es
000127521 8564_ $$s3104904$$uhttps://zaguan.unizar.es/record/127521/files/TAZ-TFG-2022-4364.pdf$$yMemoria (spa)
000127521 909CO $$ooai:zaguan.unizar.es:127521$$pdriver$$ptrabajos-fin-grado
000127521 950__ $$a
000127521 951__ $$adeposita:2023-09-07
000127521 980__ $$aTAZ$$bTFG$$cEINA
000127521 999__ $$a20221121094420.CREATION_DATE