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Abstract
In this paper, we study the solution of the quadratic equation T Y 2 − Y + I = 0 where
T is a linear and bounded operator on a Banach space X . We describe the spectrum
set and the resolvent operator of Y in terms of the ones of T . In the case that 4T is a
power-bounded operator, we show that a solution (namedCatalan generating function)
of the above equation is given by the Taylor series

C(T ) :=
∞∑

n=0

CnT n,

where the sequence (Cn)n≥0 is thewell-knownCatalan numbers sequence.We express
C(T ) by means of an integral representation which involves the resolvent operator
(λT )−1. Some particular examples to illustrate our results are given, in particular an
iterative method defined for square matrices T which involves Catalan numbers.
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1 Introduction

The well-known Catalan numbers (Cn)n≥0 given by the formula

Cn = 1

n + 1

(
2n

n

)
, n ≥ 0,

appear in a wide range of problems. For instance, the Catalan number Cn counts the
number of ways to triangulate a regular polygon with n + 2 sides, or the number of
ways that 2n people seat around a circular table are simultaneously shaking hands with
another person at the table in such a way that none of the arms cross each other, see for
example [24, 25]. Theyhave been studied in depth inmanypapers andmonographs (see
for example [3, 18, 23, 25]) and the Catalan sequence is probably the most frequently
encountered sequence.

The generating function of the Catalan sequence c = (Cn)n≥0 is defined by

C(z) :=
∞∑

n=0

Cnzn = 1 − √
1 − 4z

2z
, z ∈ D

(
0,

1

4

)
:=

{
z ∈ C | |z| <

1

4

}
,

(1.1)

see, for example, [25, Section 1.3]. This function satisfies the quadratic equation
zy2 − y + 1 = 0. The main object of this paper is to consider this quadratic equation
in the set of linear and bounded operators, B(X) on a Banach space X , i.e.,

T Y 2 − Y + I = 0, (1.2)

where I is the identity on the Banach space, and T , Y ∈ B(X). Formally, some
solutions of this vector-valued quadratic equations are expressed by

Y = 1 ± √
1 − 4T

2T
,

which involves the (non-trivial) problems of the square root of operator 1 − 4T and
the inverse of operator T .

In general, the Eq. (1.2) may have no solution, one, several or infinite solutions,
see examples in Sect. 6. Note that the study of quadratic equations in Banach space X
with dim(X) ≥ 2 is more complicated than in the scalar case. For example, there are
infinite symmetric square roots of I2 ∈ R

2×2 given by

(
1 0
0 1

)
,

(−1 0
0 −1

)
,

(
a ±√

1 − a2

±√
1 − a2 −a

)

with a ∈ [−1, 1].
As far as we are aware, no useful necessary and sufficient conditions for the exis-

tence of solutions of quadratic equations in Banach spaces are known, even in the
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classical case of square roots in finite-dimensional spaces. To find some easily appli-
cable conditions is of interest, in part because these equations are frequently used in
the study of, for example, physical or biological phenomena, see for instance [4, 5,
13, 21].

In 1952, Newton’s method was generalized to Banach spaces by Kantorovich.
Kantorovich’s theorem asserts that the iterative method of Newton, applied to a most
general system of nonlinear equations P(x) = 0, converges to a solution x∗ near some
given point x0, provided the Jacobian of the system satisfies a Lipschitz condition near
x0 and its inverse at x0 satisfies certain boundedness conditions. The theorem also gives
computable error bounds for the iterates. From here, a large theory has been developed
to obtain sharp iterative methods to approximate solutions of non-linear equations (see
for example [11, 14, 17]) and in particular quadratic matrix equations [10, 13].

The paper is organized as follows—in Sect. 2, we show new results about the
well-known Catalan numbers sequence (Cn)n≥0. In Theorem 2.4, we prove that the
following technical identity holds

∫ ∞

0

√
t

(t + 1)(t + z) j+1 dt = π

2
√

z(z − 1) j

∞∑

k= j

Ck

(
z − 1

4z

)k

, �(z) ≥ 1

2
,

for j ≥ 1. A nice result about solutions of quadratic equations

xy2 − y + 1 = 0, −xz2 − z + 1 = 0,

is given inTheorem2.1: the arithmeticmean y+z
2 is solution of the biquadratic equation

4x2w4 − w2 + 1 = 0.
We consider the sequence c = (Cn)n≥0 as an element in the Banach algebra

�1(N0, 1
4n ) in Sect. 3. We describe the spectrum set σ(c) in Proposition 3.2 and the

resolvent element (λ − c)−1 in Theorem 3.4.
In Sect. 4, we study spectral properties of the solution of quadratic equation (1.2)

with T ∈ B(X). We prove several results connecting σ(T ) and σ(Y ) where σ(·)
denotes the spectrum set of a given bounded operator T . Moreover, we express (λ −
Y )−1 in terms of the resolvent of operator T in Theorem 4.4.

For operators T which 4T are power-bounded, we define the generating Catalan
function

C(T ) :=
∑

n≥0

CnT n .

This operator solves the quadratic equation (1.2) and has interesting properties con-
nected with T , see Theorem 5.1; in particular the following integral representation
holds,

C(T )x = 1

π

∫ ∞
1
4

√
λ − 1

4

λ
(λT )−1xdλ, x ∈ X .
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In the last section, we illustrate our results with some examples of operators T in
the Eq. (1.2). We consider the Euclidean space C2 and matrices

T = λI2,

(
0 λ

λ 0

)
,

(
0 λ

0 0

)
.

We solve the Eq. (1.2) and calculate C(T ) for these matrices. We also check C(a) for
some particular values of a ∈ �1(N0, 1

4n ). Finally, we present an iterative method for
matrices Rn×n which are defined using Catalan numbers.

2 Some news results about Catalan numbers

The Catalan numbers may be defined recursively by C0 = 1 and

Cn =
n−1∑

i=0

Ci Cn−1−i , n ≥ 1, (2.1)

and first terms in this sequence are 1, 1, 2, 5, 14, 42, 132, . . . . The generating
function of the Catalan sequence c = (Cn)n≥0 is given in (1.1). This function satisfies
the quadratic equation

zC(z)2 − C(z) + 1 = 0, z ∈ D

(
0,

1

4

)
, (2.2)

see for example [25, Section 1.3]. The second solution of this quadratic equation is
given by

1

zC(z)
= 1 + √

1 − 4z

2z
, z ∈ D

(
0,

1

4

)
\{0}.

The following theorem shows that the arithmetic mean of two solutions of these
quadratic equations is also solution of a biquadratic equation, closer to the previous
ones.

Theorem 2.1 Let A be a commutative algebra over R or C with x ∈ A. If y and z are
solutions of the quadratic equations

xy2 − y + 1 = 0, −xz2 − z + 1 = 0,

then w = y+z
2 is a solution of the biquadratic equation 4x2w4 − w2 + 1 = 0.

Proof Note that it is enough to show x2(y + z)4 − (y + z)2 + 4 = 0. We write for a
while

P := (xy2 − y + 1)(xy2 + 4xyz + 3xz2),
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Q := (−xz2 − z + 1)(−xz2 − 4xyz − 3xy2),

P + Q = x2(y + z)4 − xy3 − xy2z − 2xy2 + xz3 + xz2y + 2xz2

= x2(y + z)4 − xy2(y + z + 2) + xz2(z + y + 2)

= x2(y + z)4 + (y + z + 2)(xz2 − xy2).

Since y and z are solutions of these quadratic equations,wehave xz2−xy2 = 2−(y+z)
and

0 = P + Q = x2(y + z)4 + (y + z + 2)(2 − (y + z)) = x2(y + z)4 − (y + z)2 + 4,

and we conclude the proof. �	

Remark 2.2 The sum of both equations xy2 − y + 1 = 0 and −xz2 − z + 1 = 0 gives

y + z

2
− 1 = 1

2
x(y2 − z2) = 2x

(
y − z

2

)(
y + z

2

)
,

and we may obtain y−z
2 in terms of y+z

2 whenever the inverse of 2x y+z
2 exists in the

algebra A, i.e.,

y − z

2
=

(
y + z

2
− 1

) (
2x

y + z

2

)−1

.

As a direct application of Abel’s theorem to (1.1), we obtain

∞∑

n=0

Cn

4n
= lim

z→ 1
4

C(z) = 2,
∞∑

n=0

Cn

(−4)n
= lim

z→− 1
4

C(z) = 2(
√
2 − 1), (2.3)

[25, Exercise A.66]. In fact, one has

Cn ∼ 4n

√
πn

3
2

, n → ∞,

[25, Exercise A.64].
A straightforward consequence of the generating formula (1.1) and Theorem 2.1

is the following proposition, where we consider the odd and even parts of function
C(z),

Co(z) := C(z) + C(−z)

2
, Ce(z) := C(z) − C(−z)

2
, |z| <

1

4
.

The proof is left to the reader.



   69 Page 6 of 21 P. J. Miana and N. Romero

Proposition 2.3 Let c = (Cn)n≥0 be the Catalan sequence. Then

Ce(z) :=
∞∑

n=0

C2nz2n =
√
1 + 4z − √

1 − 4z

4z
,

Co(z) :=
∞∑

n=0

C2n+1z2n+1 = 2 − √
1 + 4z − √

1 − 4z

4z
,

for |z| ≤ 1
4 . In particular, 4z2Ce(z)4 − Ce(z)2 + 1 = 0, Ce(z)2 = C(4z2), Co(z) =

Ce(z)−1
2zCe(z)

for |z| ≤ 1
4 and

∞∑

n=0

C2n

42n
= √

2,
∞∑

n=0

C2n+1

42n+1 = 2 − √
2.

Catalan numbers have several integral representations, for example,

Cn = 1

2π

∫ 4

0
tn

√
4 − t

t
dt = 22n+1

π
β

(
3

2
, n + 1

2

)
,

where the function β is the well-known Euler Beta function, β(u, v) := ∫ 1
0 tu−1(1 −

t)v−1dt for u, v > 0, see the monography [25] and the survey [20]. In the next
theorem, we present a new result which involves the Taylor polynomials of the Catalan
generating function C(z).

Theorem 2.4 Given 1 
= z ∈ C
+ := {z ∈ C; �z > 0}, then

∫ ∞

0

√
t

(t + 1)(t + z)
dt = π

z − 1

(√
z − 1

)
,

∫ ∞

0

√
t

(t + 1)(t + z) j+1 dt = π

(z − 1) j+1

⎛

⎝√
z − 1 − z − 1

2
√

z

j−1∑

k=0

Ck

(
z − 1

4z

)k
⎞

⎠

= π

2
√

z(z − 1) j

∞∑

k= j

Ck

(
z − 1

4z

)k

,

for j ≥ 1 and where the last equality holds for �(z) ≥ 1
2 .

Proof The first integral is a easy exercise of elemental calculus. To do the second one,
note

√
t

(t + 1)(t + z) j+1 = 1

z − 1

( √
t

(t + 1)(t + z) j
−

√
t

(t + z) j+1

)
,
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and then

∫ ∞

0

√
t

(t + 1)(t + z) j+1 dt = 1

z − 1

(∫ ∞

0

√
t

(t + 1)(t + z) j
dt − β( 32 , j − 1

2 )

z j− 1
2

)

= 1

z − 1

(∫ ∞

0

√
t

(t + 1)(t + z) j
dt − πC j−1

2
√

z(4z) j−1

)
,

for j ≥ 1. We iterate this formula to get the final expression. �	
Remark 2.5 By holomorphicity, Theorem 2.4 holds for z ∈ C\(−∞, 0]. Moreover for
z = 1,

∫ ∞

0

√
t

(t + 1) j+2 = πC j

22 j+1 = π lim
z→1

⎛

⎜⎝

√
z − 1 − z−1

2
√

z

∑ j−1
k=0 Ck

(
z−1
4z

)k

(z − 1) j+1

⎞

⎟⎠ ,

for j ≥ 1. Finally, when j → ∞, we recover the generating formula

∞∑

k=0

Ck

(
z − 1

4z

)k

= 2
√

z√
z + 1

,

∣∣∣∣
z − 1

z

∣∣∣∣ ≤ 1.

3 The sequence of Catalan numbers

We may interpret the equality (2.3) in terms of norm in the weight Banach algebra
�1(N0, 1

4n ). This algebra is formed by sequences a = (an)n≥0 such that

‖a‖1, 1
4n

:=
∞∑

n=0

|an|
4n

< ∞,

and the product is the usual convolution ∗ defined by

(a ∗ b)n =
n∑

j=0

an− j b j , a, b ∈ �1
(
N
0,

1

4n

)
.

The canonical base {δ j } j≥0 is formed by sequences such that (δ j )n = δ j,n is the
known delta Kronecker. Note that δ∗n

1 = δ1 . . .n δ1 = δn for n ∈ N. This Banach

algebra has identity element, δ0, its spectrum set is the closed disk D(0, 1
4 ) and its

Gelfand transform is given by the Z -transform

Z(a)(z) :=
∞∑

n=0

anzn, z ∈ D

(
0,

1

4

)
.
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It is straightforward to check Z(δn)(z) = zn for n ≥ 0 (see, for example, [15]).
In the next proposition, we collect some properties of the Catalan sequence c in the

language of the Banach algebra �1(N0, 1
4n ). In particular, identities (2.1) and (2.2) are

both equivalent to the item (iii).

Proposition 3.1 Take c = (Cn)n≥0. Then

(i) ‖c‖1, 1
4n

= 2.

(ii) C(z) = Z(c)(z) for z ∈ D(0, 1
4 ).

(iii) δ1 ∗ c∗2 − c + δ0 = 0.

We recall that the resolvent set of a ∈ �1(N∗, 1
4n ), denoted as ρ(a), is defined by

ρ(a) :=
{
λ ∈ C : (λδ0 − a)−1 ∈ �1

(
N
0,

1

4n

)}
,

and the spectrum set of a is denoted by σ(a) and given by σ(a) := C\ρ(a).

Proposition 3.2 The spectrum of the Catalan sequence c = (Cn)n≥0 is given by

σ(c) = C(D(0, 1
4 )) and its boundary by

∂(σ (c)) =
{
2e−iθ

(
1 −

√

2

∣∣∣∣ sin
(

θ

2

)∣∣∣∣e
i(π−θ)

4

)
: θ ∈ (−π, π ]

}
.

Proof As the algebra �1(N0, 1
4n ) has identity, we apply [15, Theorem 3.4.1] to get the

equality set σ(c) = C(D(0, 1
4 )).

We write T := {eiθ : θ ∈ (−π, π ]}. Since the function C(·) is univalent on

D(0, 1
4 ), then ∂(σ (c)) = C( 14T). Take z ∈ ∂(σ (c)) and

z = 2e−iθ

(
1 −

√

2i sin

(
θ

2

)
e

−iθ
2

)
= 2e−iθ

(
1 −

√

2| sin
(

θ

2

)
|e i(π−θ)

4

)
,

for θ ∈ (−π, π ]. �	
Remark 3.3 In the Fig. 1, we plot the set ∂(σ (c)).

Given λ ∈ C, we consider the geometric progression pλ := ( 1
λn )n≥0. Note pλ ∈

�1(N0, 1
4n ) if and only if |λ| > 1

4 . Moreover,

(λ − δ1)
−1 = 1

λ
pλ, |λ| >

1

4
,

and Z((λ − δ1)
−1)(z) = (λz)−1 for z ∈ D(0, 1

4 ) and |λ| > 1
4 . Note

Cn = 1

π

∫ ∞
1
4

√
λ − 1

4

λ2+n
dλ = 1

π

∫ ∞
1
4

√
λ − 1

4

λ2
pλ(n)dλ, n ≥ 0, (3.1)
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Fig. 1 The set ∂(σ (c))

see, for example [20, Section 4.7].
In the next theorem, we express (λ−c)−1 in terms of pλ and c for 0 
= λ ∈ C\σ(c).

Theorem 3.4 The inverse of the Catalan sequence c is given by c−1 = δ0 − δ1 ∗ c and

(λ − c)−1 = δ0

λ
+ 1

λ(λ − 1)
p λ−1

λ2
+ 1

λ2
c − 1

λ2
c ∗ p λ−1

λ2
, 0 
= λ ∈ C\σ(c).

Proof By Proposition 3.1(iii), (δ0−δ1∗c)∗c = δ0 and we conclude c−1 = δ0−δ1∗c.
Now we introduce the following open set,

� :=
{
λ ∈ C :

∣∣∣∣
λ − 1

λ2

∣∣∣∣ >
1

4

}
.

For λ ∈ �, we apply the Zeta transform to get

Z

(
δ0

λ
+ 1

λ(λ − 1)
p λ−1

λ2

)
(z) = 1

λ

(
1 + 1

λ − 1 − zλ2

)
= zλ − 1

zλ2 − λ + 1
,

Z

(
1

λ2
c − 1

λ2
c ∗ p λ−1

λ2

)
(z) = C(z)

λ2

(
1 − λ − 1

λ − 1 − zλ2

)
= zC(z)

zλ2 − λ + 1
,

for z ∈ D(0, 1
4 ). To conclude the equality, we check

(λC(z))

(
zλ − 1 + zC(z)

zλ2 − λ + 1

)
= zλ2 − λ + C(z) − zC(z)2

zλ2 − λ + 1
= 1,

where we have applied the quadratic identity (2.2).
Since ρ(c) = C\σ(c) is connected (see Fig. 2) and the mapping λ �→ (λ − c)−1

is holomorphic in ρ(c), it follows by the uniqueness of analytic continuation that the
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Fig. 2 The set ∂(�) in blue and ∂(σ (c)) in red (color figure online)

resolvent of c is given by

(λ − c)−1 = δ0

λ
+ 1

λ(λ − 1)
p λ−1

λ2
+ 1

λ2
c − 1

λ2
c ∗ p λ−1

λ2
, 0 
= λ ∈ C\σ(c),

and we conclude the proof. �	

Remark 3.5 Note that the set � is strictly contained in ρ(c) and the boundary of σ(c)

is contained in the boundary of �, i.e., ∂(σ (c)) ⊂ ∂(�) = {λ ∈ C :
∣∣∣λ−1

λ2

∣∣∣ = 1
4 }. In

the Fig. 2, we plot both sets, ∂(�) in blue and ∂(σ (c)) in red.
A nice consequence of Theorem 3.4 is that the sequence

(
1

λ − 1
δ0 − 1

λ
c

)
∗ p λ−1

λ2

belongs to �1(N0, 1
4n ) for all 0 
= λ ∈ ρ(c), even though p λ−1

λ2
/∈ �1(N0, 1

4n ) for λ /∈ �.
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4 Inverse spectral mapping theorem of the quadratic Catalan
equation

Now we consider (X , ‖ ‖) a Banach space and B(X) the set of linear and bounded
operators on X . Given T ∈ B(X), as usual we write ρ(T ) the resolvent set given
λ ∈ C such that (λT )−1 ∈ B(X) and σ(T ) := C\ρ(T ). The spectrum of an operator
is a non-empty closed set such that σ(T ) ⊂ D(0, ‖T ‖) [22].

In this section, we study spectral properties of the solution of quadratic equation
(1.2) with T ∈ B(X). We say that Y ∈ B(X) is a solution of (1.2) when the equality
holds. Depending on T , the Eq. (1.2), has no solution, one, two or infinite solutions,
see Sect. 6.1.

The proof of the following lemma is a direct consequence of the equality (1.2).

Lemma 4.1 Given T ∈ B(X) and Y a solution of (1.2). Then Y has left-inverse and
Y −1

l = I − T Y .

Theorem 4.2 Given T ∈ B(X) and Y a solution of (1.2). Then the following are
equivalent—

(i) 0 ∈ ρ(Y ).

(ii) T = Y −1 − Y −2.

(iii) T and Y commute.
(iv) T Y 2 = Y T Y .

Proof (i) As 0 ∈ ρ(Y ), we obtain item (ii) from (1.2). The expression of T in (ii)
implies that T and Y commute. Now, if T and Y commute, then the equality T Y 2 −
Y T Y = 0 holds. Finally, we show that item (iv) implies (i). By Lemma 4.1, we have
that I − T Y is a left-inverse of Y and it is enough to check if is a right-inverse

Y (I − T Y ) = Y − Y T Y = Y − T Y 2 = I ,

where we have applied (iv) and the Eq. (1.2). �	
In the case that dim(X) < ∞, to be left-invertible implies to be invertible and the

conditions of Theorem 4.2 hold.

Corollary 4.3 Let X be a Banach space with dim(X) < ∞, T ∈ B(X) and Y a
solution of (1.2). Then Y is invertible, T and Y commute and T = Y −1 − Y −2.

In the next theorem, we give the expression of (λ−Y )−1 which extends the equality
Y −1 = I − T Y given in Lemma 4.1.

Theorem 4.4 Given T ∈ B(X) and Y a solution of (1.2) such that 0 ∈ ρ(Y ).

(i) Given λ ∈ C such that λ−1
λ2

∈ ρ(T ) then λ ∈ ρ(Y ) and

(λ − Y )−1 = 1

λ
+ 1

λ3

(
λ − 1

λ2
− T

)−1

+ Y

λ2
− (λ − 1)Y

λ4

(
λ − 1

λ2
− T

)−1

,

= λT − 1 − Y T

λ2T − λ + 1
.
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(ii) Given λ ∈ ρ(Y ) such that λ
λ−1 ∈ ρ(Y ) then λ−1

λ2
∈ ρ(T ) and

(
λ − 1

λ2
− T

)−1

= λ4

λ − 1

(
λ

λ − 1
− Y

)−1 (
(λ − Y )−1 − λ + Y

λ2

)
,

= (λ − 1)Y 2 − λ2T Y 2

(λ − (λ − 1)Y ) (λ − Y )
.

Proof By Theorem 4.2, operators T and Y commute and we check that their inverse
operators are right-inverse.

(i) For λ−1
λ2

∈ ρ(T ), we have

1

λ
+ 1

λ3

(
λ − 1

λ2
− T

)−1

= 1

λ

(
1 + 1

λ − 1 − λ2T

)
= λT − 1

λ2T − λ + 1
,

Y

λ2
− (λ − 1)Y

λ4

(
λ − 1

λ2
− T

)−1

= Y

λ2

(
1 − λ − 1

λ − 1 − λ2T

)
= Y T

λ2T − λ + 1
.

To conclude the equality, we check

(λ − Y )

(
λT − 1 + Y T

λ2T − λ + 1

)
= λ2T − λ + Y − T Y 2

λ2T − λ + 1
= 1,

where we have applied the quadratic equation (1.2).
(ii) Take λ ∈ ρ(Y ) such that λ−1

λ
∈ ρ(Y ).

λ4

λ − 1
(

λ

λ − 1
− Y )−1

(
(λ − Y )−1 − λ + Y

λ2

)
= λ2Y 2

(λ − (λ − 1)Y )(λ − Y )
.

Now we check

(
λ − 1

λ2
− T

)
λ2Y 2

(λ − (λ − 1)Y )(λ − Y )
= (λ − 1)Y 2 − λ2T Y 2

(λ − (λ − 1)Y )(λ − Y )
= 1,

where we have applied the quadratic equation (1.2) in the last equality. �	
Remark 4.5 The part (i) of Theorem 4.4 may be considered as an inverse spectral
mapping theorem: given λ ∈ σ(Y ) then λ−1

λ2
∈ σ(T ), in fact, T = Y−1

Y 2 , see
Theorem 4.2(ii).

5 Catalan generating functions for bounded operators

In this section, we consider the particular case that T is a linear and bounded operator
on the Banach space X , T ∈ B(X), such that

sup
n≥0

‖4nT n‖ := M < ∞, (5.1)
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i.e., 4T is a power-bounded operator. In this case, σ(T ) ⊂ D(0, 1
4 ). Under the

condition (5.1), we may define the following bounded operator,

C(T ) :=
∑

n≥0

CnT n, (5.2)

as a direct consequence of (2.3).Moreover, the bounded operatorC(T )may be consid-
ered as the image of the Catalan sequence c = (Cn)n≥0 in the algebra homomorphism
� : �1(N0, 1

4n ) → B(X) where

�(a)x :=
∑

n≥0

anT n(x), a = (an)n≥0 ∈ �1
(
N
0,

1

4n

)
, x ∈ X ,

i.e., �(c) = C(T ). The � algebra homomorphism (also called functional calculus)
has been considered in several papers, two of them are [7, Section 2] andmore recently
[8, Section 5.2]. In particular, the map � allows to define the following operators

�(δn) = T n, n ≥ 0,

�

(
1

λ
pλ

)
= (λT )−1, |λ| >

1

4
,

√
1 − 4T =

∑

n≥0

(−4)n
( 1

2
n

)
T n,

where we have applied the “generalized binomial formula”, (1+ z)α = ∑
n≥0

(
α
n

)
zn ,

for |z| < 1 and
(
α
n

) = α(α−1)···(α−n+1)
n! for α > 0. Remind that

(
α
n

) ∼ 1
n1+α when

n → ∞ and α /∈ N.

Theorem 5.1 Given T ∈ B(X) such that 4T is power-bounded and c = (Cn)n≥0 the
Catalan sequence. Then

(i) The operator C(T ) defined by (5.2) is well-defined, T and C(T ) commute, and
C(T ) is a solution of the quadratic equation (1.2).

(ii) The following integral representation holds

C(T )x = 1

π

∫ ∞
1
4

√
λ − 1

4

λ
(λT )−1xdλ, x ∈ X .

(iii) The following equality holds

T C(T ) = I

2
−

√
1

4
− T .
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(iv) The spectral mapping theorem holds for C(T ), i.e., σ (C(T )) = C(σ (T )) and

σ(C(T )) ⊂ C

(
D

(
0,

1

4

))
= σ(c).

(v) Given λ ∈ C such that λ−1
λ2

∈ ρ(T ), then λ ∈ ρ(C(T )) and

(λC(T ))−1 = 1

λ
+ 1

λ3

(
λ − 1

λ2
− T

)−1

+ C(T )

λ2
− (λ − 1)C(T )

λ4

(
λ − 1

λ2
− T

)−1

.

Proof (i) From (2.3), C(T ) ∈ B(X) as we have commented. It is clear that T
and C(T ) commute. We apply the algebra homomorphism to the equality given in
Proposition 3.1(iii) to get

0 = �(δ1 ∗ c∗2 − c + δ0) = �(δ1)(�(c))2 − �(c) + �(δ0) = T (C(T ))2 − C(T ) + I .

(ii) As the homomorphism � is continuous, we apply the formula (3.1) to get

C(T )x = �

⎛

⎝ 1

π

∫ ∞
1
4

√
λ − 1

4

λ2
pλdλ

⎞

⎠ x = 1

π

∫ ∞
1
4

√
λ − 1

4

λ
(λT )−1xdλ,

for x ∈ X .
(iii) Note

I

2
−

√
1

4
− T = −1

2

∑

n≥0

(−4)n+1
( 1

2
n + 1

)
T n+1 = T C(T ),

since Cn = − 1
2 (−4)n+1

( 1
2

n+1

)
for n ≥ 0.

(iv) Since 4T is power-bounded, the spectral mapping theorem for C(T ) may be

found in [7, Theorem 2.1]. As σ(T ) ⊂ D(0, 1
4 ), we apply Proposition 3.2 to conclude

σ(C(T )) ⊂ C(D(0, 1
4 )) = σ(c).

(v) As C(T ) is a solution of (1.2) such that 0 ∈ ρ(C(T )), the item (v) is a particular
case of Theorem 4.4(i). An alternative proof may be obtained using Theorem 3.4 and
the algebra homomorphism � for λ ∈ �\{0}. �	
Remark 5.2 In the case that σ(T ) ⊂ D(0, 1

4 ), the generating function C(z) given
in (1.1) is a holomorphic function in a neighborhood of σ(T ). Then the Dunford
functional calculus, defined by the integral Cauchy formula,

f (T )x :=
∫

�

f (z)(z − T )−1xdz, x ∈ X ,

allows to defined C(T ), [26, Section VIII.7] which, of course, coincides with the
expression gives in (5.2). As usual, the path � rounds the spectrum set σ(T ).
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6 Examples, applications, and final comments

In this section, we present some particular examples of operators T for which we
solve the Eq. (1.2). In the Sect. 6.1, we consider the Euclidean space C2 and matrices

T = λI2, λ

(
0 1
1 0

)
, λ

(
0 1
0 0

)
where λ ∈ C. Note that we have to solve a system of four

quadratic equations. We also calculate C(T ) for these matrices. In Sect. 6.2, we check
C(a) for some a ∈ �1(N0, 1

4n ). Finally, we present an iterative method for matrices
R

n×n which are defined using Catalan numbers in Sect. 6.3.

6.1 Matrices onC2

We consider the Euclidean space C2 and the operator T = λI2 with 0 
= λ ∈ C. Then
all solutions of (1.2) are given by

Y =
(

1±√
1−4λ(1+λbc)

2λ b

c 1∓√
1−4λ(1+λbc)

2λ

)
,

for |c| + |b| > 0 where the allowed signs are (−,+) and (+,−). For c = b = 0, the
solutions are given by

Y =
(

1±√
1−4λ
2λ 0

0 1±√
1−4λ
2λ

)
,

where the allowed signs are all four combinations. In both cases, note that σ(Y ) ⊂
{C(λ), 1

λC(λ)
} and σ(T ) = {λ}, compare with Theorem 4.4. In the case that |λ| ≤ 1

4 .

C(T ) =
(

C(λ) 0
0 C(λ)

)
.

Now we study the case T =
(
0 λ

λ 0

)
with λ ∈ C\{0}. All the solutions of (1.2) are

given by

Y =
(

a a−1
2λa

a−1
2λa a

)
,

where a is a solution of the biquadratic equation 4λ2a4 − a2 + 1 = 0. In the case that
|λ| ≤ 1

4 , we get

C(T ) =
(

Ce(λ) Co(λ)

Co(λ) Ce(λ)

)
,

where functions Ce and Co are defined in Proposition 2.3
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Finally, take now T =
(
0 λ

0 0

)
with λ ∈ C. The only solution of (1.2) is given by

Y =
(
1 λ

0 1

)
= C0 I2 + C1T ; note that T n = 0 for n ≥ 2.

6.2 Catalan operators on �p

We consider the space of sequences �p(N0, 1
4n ) where

‖a‖p, 1
4n

:=
( ∞∑

n=0

|an|p

4np

) 1
p

< ∞,

for 1 ≤ p < ∞ and �∞(N0, 1
4n ) the space of sequences endowed with the norm

‖a‖∞, 1
4n

:= sup
n≥0

|an|
4n

< ∞.

Note that �1(N0, 1
4n ) ↪→ �p(N0, 1

4n ) ↪→ �∞(N0, 1
4n ).

Now we consider c = (Cn)n≥0 the Catalan sequence and the convolution operator
C( f ) := c∗ f for f ∈ �p(N0, 1

4n )with 1 ≤ p ≤ ∞. Since C( f ) = ∑
n≥0 cnδn( f ) =∑

n≥0 cn(δ1)
n( f ), we apply Theorem 5.1(iv) to get

σ(C) = C(σ (δ1)) = C

(
D

(
0,

1

4

))
,

i.e., it is independent on p and coincides with the spectrum of the Catalan sequence c
in �1(N0, 1

4n ) (Proposition 3.2).
We consider the spaces �p(Z) for 1 ≤ p ≤ ∞ defined in the usual way. The element

a = δ1 − δ0 defines the classical backward difference operator

(a ∗ f )(n) := f (n − 1) − f (n), f ∈ �p(Z),

for n ∈ Z. Note that ‖a‖ = 2, and

(λδ0 + a)−1 =
∑

j≥0

δ j

(1 + λ) j+1 , 1 < |1 + λ|,

see [9, Theorem 3.3 (4)]. Now we need to consider a
8 and the associated Catalan

generating operator defined by (5.2). By Theorem 5.1(ii), weget
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C
(a

8

)
= 8

π

∫ ∞
1
4

√
λ − 1

4

λ
(8λδ0 + a)−1dλ

= 4

π

∑

j≥0

δ j

2 j+1

∫ ∞

0

√
t

(t + 1)(t + 3
2 )

j+1
dt

= (2
√
6 − 4)δ0 +

∞∑

j=1

⎛

⎝
√
6

3

∞∑

k= j

Ck

12k

⎞

⎠ δ j ,

where we have applied Fubini’s Theorem and Theorem 2.4 for z = 3
2 .

Similar results hold for the forward difference operator defined by� f (n) := f (n+
1) − f (n), [9, Theorem 3.2],

C

(
�

8

)
= (2

√
6 − 4)δ0 +

∞∑

j=1

⎛

⎝
√
6

3

∞∑

k= j

Ck

12k

⎞

⎠ δ− j .

6.3 Iterative methods onRm×m applied to quasi-birth–death processes

The quadratic matrix equation:

Q(Y ) := T Y 2 − Y + I = 0, (6.1)

is related to the particularMarkov chain characterized by its transitionmatrix P , which
is an infinite block tridiagonal matrix of the form:

P =

⎛

⎜⎜⎜⎝

D1 D2 0
I 0 T

I 0 T

0
. . .

. . .
. . .

⎞

⎟⎟⎟⎠ ,

where I is the identitymatrix and the blocks D1, D2, T arem×m nonnegativematrices
such that D1+D2 and I +T are row stochastic.Adiscrete-timeMarkov chain represent
a quasi-birth-death stochastic process. In fact, a quasi-birth–death stochastic process
is a Discrete-time Markov chain having infinitely states [16]. Thus, a nonnegative
solution of quadratic matrix equation (6.1) is necessary to describe probabilistically
the behavior of that Markov chain.

In [4, 5, 12], the author demonstrated the usefulness of Newton’smethod for solving
the quadratic matrix equation. There are many papers containing algorithmic method-
ologies and acceleration techniques related to quadratic matrix equations, see for
instance [4, 5, 11, 13, 21].

Our purpose in this section is to show experimentally the benefits of a higher-order
iterative method to approximate the nonnegative solution of Eq. (6.1) which uses the
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Catalan numbers, C j :

{
Y0 given,

Yn+1 = Yn + ∑
j≥0 Hj (Yn), n ≥ 0,

(6.2)

where

H j (Y ) = −C j

2 j
L Q(Y ) j [Q′(Y )]−1Q(Y ), L Q(Y ) = [Q′(Y )]−1Q′′(Y )[Q′(Y )]−1Q(Y )

and L Q(Y ) j denotes the composition of L Q(Y ), j times.
Notice that, the first Fréchet derivative at a matrix Y is a linear map Q′(Y ) :

R
m×m → R

m×m such that

Q′(Y )E = (T Y − I )E + T EY , (6.3)

and the second derivative at Y , Q′′(Y ) : Rm×m × R
m×m → R

m×m is given by

Q′′(Y )E1E2 = T (E1E2 + E2E1), (6.4)

is a bilinear constant operator.
Method (6.2) has infinite convergence order (or equivalently infinite convergence

speed) to approximate a solution of Eq. (6.1), see [10]. That is, the solution is obtained
using one iteration. However, to apply this method carries on computing the square
root of the matrix (I − 4T ). To avoid this, we can truncate the series, thus obtaining a
high-order method of convergence. High-order iterative schemes require more com-
putational cost than other simpler iterative schemes, which makes them unfavorable.
However, the use of the high-order iterative schemes in the case of quadratic equations
is justified in terms of efficiency [6]. Therefore, this type of iterative schemes is of
great interest.

As shown below, to approximate a solution of Eq. (6.1) by truncating the series of
(6.2) is reduced to solve Sylvester equations. The standard Sylvester equation has the
form:

AY + Y B = D, (6.5)

where A ∈ R
m×m , B ∈ R

m×m , D ∈ R
m×m , and X ∈ R

m×m is the sought after solu-
tion. The existence and the uniqueness of the solution X of (6.5) are determined by
�(A) and �(B), the spectra of the corresponding matrices. Sylvester equations have
numerous applications in control theory, signal processing, filtering, model reduc-
tion, image restoration, decoupling techniques for ordinary and partial differential
equations, implementation of implicit numerical methods for ordinary differential
equations, and block diagonalization of matrices (see, e.g., [1, 2, 13, 19]).

In fact, fixed j = q, q ∈ N, iterativemethod (6.2) is reduced to solve q+1 Sylvester
equations with the same matrix system and different independent terms,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 given,

(T Yn − I )H0(Yn) + T H0(Yn)Yn = −(T Y 2
n − Yn + I ),

(T Yn − I )H1(Yn) + T H1(Yn)Yn = −C1
C0

T (H0(Yn)H0(Yn)),

... = ...

(T Yn − I )Hq(Yn) + T Hq(Yn)Yn = − C j
2C j−1

T (H0(Yn)Hq−1(Yn)

+Hq−1(Yn)H0(Yn)),

Yn+1 = Yn + ∑q
j=0 Hj (Yn),

(6.6)

which greatly reduces the operational cost. The Bartels–Stewart algorithm is ideally
suited to the sequential solution of Sylvester equation (6.5) with the same matrix
system ( [1]).

Notice that, the most commonly used iterative method, Newton’s method, is
obtained fixed j = 0:

⎧
⎪⎨

⎪⎩

Y0 given,

(T Yn − I )H0(Yn) + T H0(Yn)Yn = −(T Y 2
n − Yn + I ),

Yn+1 = Yn + H0(Yn)

or equivalently:

(T Yn − I )Yn+1 + T Yn+1Yn = T Y 2
n − I ,

which has a quadratic convergence speed ( [4, 5]). Moreover, fixed j = 1, method
(6.2) has forth order of converge:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y0 given,

(T Yn − I )H0(Yn) + T H0(Yn)Yn = −(T Y 2
n − Yn + I ),

(T Yn − I )H1(Yn) + T H1(Yn)Yn = −T H0(Yn)H0(Yn),

Yn+1 = Yn + H0(Yn) + H1(Yn).

(6.7)

Taking into account that we double the convergence speed of Newton’smethod, just by
adding one single Sylvester equation,method (6.7) is a good alternative to approximate
a solution of quadratic equation (6.1) as shownnumerically in the following example—

We choose T as an ill-conditioned matrix and we approximate numerically the
nonnegative solution of Eq. (6.1) using themethod (6.7) with high accuracy. To do that,
we take T = (tii ) a diagonal matrix 100 × 100 with entries tii = 10−1, i = 1 . . . , 99
and t100,100 = 10−10. Method (6.7) is implemented in Mathematica Version 10.0,
with stopping criterion ‖ Q(Yn)‖∞ < 10−20. We choose the starting matrix Y0 = T .

We show the number of iterations necessary to achieve the required precision. The
numerical results are reported in Table 1.
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Table 1 Residuals for Newton’s
method and method (6.7), with
stopping criteria
‖ Q(Yn)‖∞ < 10−20

n Newton’s method Method (6.7)

1 8.45274 . . . × 10−2 1.03079 . . . × 10−2

2 1.12729 . . . × 10−3 3.01635 . . . × 10−8

3 2.11638 . . . × 10−7 7.62333 . . . × 10−25

4 7.46507 . . . × 10−15

5 9.28789 . . . × 10−30
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