000127573 001__ 127573
000127573 005__ 20241125101143.0
000127573 0247_ $$2doi$$a10.1016/j.geomphys.2023.104899
000127573 0248_ $$2sideral$$a134568
000127573 037__ $$aART-2023-134568
000127573 041__ $$aeng
000127573 100__ $$aDe Lucas, Javier
000127573 245__ $$aOn k-polycosymplectic Marsden–Weinstein reductions
000127573 260__ $$c2023
000127573 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127573 5203_ $$aWe review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for k-polysymplectic momentum maps, removing the necessity of their co-adjoint equivariance. Then, we focus on the analysis of a particular case of k-polysymplectic manifolds, the so-called fibred ones, and we study their k-polysymplectic Marsden–Weinstein reductions. Previous results allow us to devise a k-polycosymplectic Marsden–Weinstein reduction theory, which represents one of our main results. Our findings are applied to study coupled vibrating strings and, more generally, k-polycosymplectic Hamiltonian systems with field symmetries. We show that k-polycosymplectic geometry can be understood as a particular type of k-polysymplectic geometry. Finally, a k-cosymplectic to ℓ-cosymplectic geometric reduction theory is presented, which reduces, geometrically, the space-time variables in a k-cosymplectic framework. An application of this latter result to a vibrating membrane with symmetries is given.
000127573 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E48-20R$$9info:eu-repo/grantAgreement/ES/DGA/E48-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-125515NB-C22
000127573 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127573 590__ $$a1.6$$b2023
000127573 592__ $$a0.617$$b2023
000127573 591__ $$aMATHEMATICS$$b50 / 490 = 0.102$$c2023$$dQ1$$eT1
000127573 593__ $$aGeometry and Topology$$c2023$$dQ2
000127573 591__ $$aPHYSICS, MATHEMATICAL$$b25 / 60 = 0.417$$c2023$$dQ2$$eT2
000127573 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ2
000127573 593__ $$aMathematical Physics$$c2023$$dQ2
000127573 594__ $$a2.9$$b2023
000127573 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127573 700__ $$aRivas, Xavier
000127573 700__ $$0(orcid)0000-0003-0404-1427$$aVilariño, Silvia$$uUniversidad de Zaragoza
000127573 700__ $$aZawora, Bartosz M.
000127573 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000127573 773__ $$g191 (2023), 104899 [36 pp.]$$pJ. geom. phys.$$tJOURNAL OF GEOMETRY AND PHYSICS$$x0393-0440
000127573 8564_ $$s885245$$uhttps://zaguan.unizar.es/record/127573/files/texto_completo.pdf$$yVersión publicada
000127573 8564_ $$s1900985$$uhttps://zaguan.unizar.es/record/127573/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127573 909CO $$ooai:zaguan.unizar.es:127573$$particulos$$pdriver
000127573 951__ $$a2024-11-22-12:03:30
000127573 980__ $$aARTICLE