000127593 001__ 127593
000127593 005__ 20240711085513.0
000127593 0247_ $$2doi$$a10.1002/cnm.3751
000127593 0248_ $$2sideral$$a134554
000127593 037__ $$aART-2023-134554
000127593 041__ $$aeng
000127593 100__ $$0(orcid)0000-0002-1386-5543$$aMurillo, Javier$$uUniversidad de Zaragoza
000127593 245__ $$aNumerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short-term transient and stationary hemodynamic simulation of postural changes
000127593 260__ $$c2023
000127593 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127593 5203_ $$aWhen modeling complex fluid networks using one‐dimensional (1D) approaches, boundary conditions can be imposed using zero‐dimensional (0D) models. An application case is the modeling of the entire human circulation using closed‐loop models. These models can be considered as a tool to investigate short‐term transient and stationary hemodynamic responses to postural changes. The first shortcoming of existing 1D modeling methods in simulating these sudden maneuvers is their inability to deal with rapid variations in flow conditions, as they are limited to the subsonic case. On the other hand, numerical modeling of 0D models representing microvascular beds, venous valves or heart chambers is also currently modeled assuming subsonic flow conditions in 1D connecting vessels, failing when transonic and supersonic flow conditions appear. Therefore, if numerical simulation of sudden maneuvers is a goal in closed‐loop models, it is necessary to reformulate the current methodologies used when coupling 0D and 1D models, allowing the correct handling of flow evolution for both subsonic and transonic conditions. This work focuses on the extension of the general methodology for the Junction Riemann Problem (JRP) when coupling 0D and 1D models. As an example of application, the short‐term transient response to head‐up tilt (HUT) from supine to upright position of a closed‐loop model is shown, demonstrating the potential, capability and necessity of the presented numerical models when dealing with sudden maneuvers.
000127593 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E24-17R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T32-20R
000127593 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127593 592__ $$a0.573$$b2023
000127593 593__ $$aApplied Mathematics$$c2023$$dQ2
000127593 593__ $$aBiomedical Engineering$$c2023$$dQ2
000127593 593__ $$aSoftware$$c2023$$dQ2
000127593 593__ $$aModeling and Simulation$$c2023$$dQ2
000127593 593__ $$aComputational Theory and Mathematics$$c2023$$dQ2
000127593 593__ $$aMolecular Biology$$c2023$$dQ3
000127593 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127593 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000127593 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000127593 773__ $$g39, 11 (2023), e3751 [66 pp.]$$tInternational Journal for Numerical Methods in Biomedical Engineering$$x2040-7939
000127593 8564_ $$s20376504$$uhttps://zaguan.unizar.es/record/127593/files/texto_completo.pdf$$yVersión publicada
000127593 8564_ $$s2064433$$uhttps://zaguan.unizar.es/record/127593/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127593 909CO $$ooai:zaguan.unizar.es:127593$$particulos$$pdriver
000127593 951__ $$a2024-07-11-08:52:30
000127593 980__ $$aARTICLE