000127602 001__ 127602
000127602 005__ 20241125101158.0
000127602 0247_ $$2doi$$a10.1016/j.jtice.2023.105063
000127602 0248_ $$2sideral$$a134643
000127602 037__ $$aART-2023-134643
000127602 041__ $$aeng
000127602 100__ $$aEsteras-Saz, Javier$$uUniversidad de Zaragoza
000127602 245__ $$aMicrofluidic preparation of thin film composite hollow fiber membrane modules for water nanofiltration: Up-scaling, reproducibility and MOF based layers
000127602 260__ $$c2023
000127602 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127602 5203_ $$aBackground
The commercialization of thin film composite (TFC) hollow fiber (HF) membranes remains challenging owing to issues associated with membrane manufacturing.

Methods
TFC membranes were synthesized by microfluidic interfacial polymerization of polyamide (PA) on polysulfone hollow fiber (HF) membrane modules. A total of 33 HF membrane modules were prepared with different number of HFs (from 1 to 25) and different lengths (from 10 to 50 cm). They were evaluated in a nanofiltration operation in terms of water permeance and rose Bengal (RB) and MgSO4 rejections.

Significant findings
Among the 33 modules, 73% showed RB rejections higher than 95%, while 36% of the modules reached rejections above 99%. During the membrane synthesis, different parameters, such as PA monomer concentration, residence time and reaction time, were studied. As a result, the amount of monomer was reduced by ca. 80%. The versatility of microfluidics allowed incorporating hydrophilic metal-organic framework (MOF) ZIF-93 to produce HF modules with PA/MOF bilayered membranes (a continuous layer of MOF between the support and the PA film) which led to an important enhancement of the water permeance from 1.3 (bare PA membrane) to 5.3 L·m−2·h−1·bar−1 (PA/ZIF-93 HF membrane), maintaining RB rejection above 95%.
000127602 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/EC/H2020/862330/EU/Open Innovation Test Bed for nano-enabled Membranes/INNOMEM$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862330-INNOMEM$$9info:eu-repo/grantAgreement/ES/MINECO-AEI/PID2019-104009RB-I00-AEI-10.13039-501100011033
000127602 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127602 590__ $$a5.5$$b2023
000127602 592__ $$a0.849$$b2023
000127602 591__ $$aENGINEERING, CHEMICAL$$b31 / 170 = 0.182$$c2023$$dQ1$$eT1
000127602 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000127602 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000127602 594__ $$a9.1$$b2023
000127602 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127602 700__ $$0(orcid)0000-0003-2006-1495$$aPaseta, Lorena
000127602 700__ $$0(orcid)0000-0002-0699-1293$$aEchaide-Górriz, Carlos
000127602 700__ $$0(orcid)0000-0001-9595-0831$$aMalankowska, Magdalena
000127602 700__ $$0(orcid)0000-0001-5002-7197$$aLuque-Alled, José M.$$uUniversidad de Zaragoza
000127602 700__ $$0(orcid)0000-0002-9934-1707$$aZornoza, Beatriz$$uUniversidad de Zaragoza
000127602 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, Carlos$$uUniversidad de Zaragoza
000127602 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000127602 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000127602 773__ $$g150 (2023), 105063 [10 pp.]$$pJournal of the Taiwan Institute of Chemical Engineers$$tJournal of the Taiwan Institute of Chemical Engineers$$x1876-1070
000127602 8564_ $$s4186148$$uhttps://zaguan.unizar.es/record/127602/files/texto_completo.pdf$$yVersión publicada
000127602 8564_ $$s2680715$$uhttps://zaguan.unizar.es/record/127602/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127602 909CO $$ooai:zaguan.unizar.es:127602$$particulos$$pdriver
000127602 951__ $$a2024-11-22-12:10:33
000127602 980__ $$aARTICLE