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Abstract

Due to its complexity, cancer continues to be one of the leading causes of death worldwide. The
creation of suitable preventative practices and innovative therapies is limited by the lack of under-
standing of the basic mechanisms that cause cancer. As such, new, more effective methods that
advance our comprehension of cancer must be developed. Recent years have seen a rise in the
use of computational modeling to explain biological processes that are expensive and challenging
to explore in experimental settings. These methods enable the translation of biological mecha-
nisms into mathematical equations and assumptions that can be evaluated using computer tools to
produce new hypotheses. Moreover, computational frameworks are becoming more potent due to
availability to high-throughput data and extensive processing capacity.

The global aim of this dissertation is to design and implement computational models of cancer,
starting with simple and isolated behaviours and progressing towards more complex phenomena.
Three specific research fields are addressed to achieve this general objective: (i) single-cell motil-
ity, (ii) tumour growth and (iii) pattern formation. In the first objective, we present a computational
model to simulate individual cell motility that considers the mechanical and chemical properties
of the microenvironment. Subsequently, we extend this framework to account for cell-cell inter-
actions and reproduce the growth of multicellular tumour structures. Lastly, we integrate all the
previously mentioned biological events and introduce cell differentiation as this framework’s final
building block to simulate the spatial pattern formation.

In addition, this dissertation discusses the relevance of integrating experimental data and com-
putational methods to improve biological relevance and confirm model outputs. In particular, we
show how calibration and optimization techniques can be used to consider empircal data in model
design and validation. Qualitative and quantitative experimental results from both the literature
and novel expriments are reproduced in this dissertation to showcase different approaches in data
integration.

Overall, this dissertation provides a prime instance of how computer modelling can be used
to analyze and understand complex problems in cancer biology. We explicitly show how model
components may represent certain aspects of cancer biology that can be enhanced and reproduced
using experimental data. Consequently, it is shown that complex behaviour like tumour growth
and pattern formation result from the intricate interplay between model components.
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Resumen

Debido a su complejidad, el cáncer sigue siendo una de las principales causas de muerte a nivel
mundial. La creación de prácticas preventivas adecuadas y terapias innovadoras está limitada por
la falta de comprensión de los mecanismos básicos que causan el cáncer. Como tal, se deben
desarrollar métodos nuevos y más efectivos que avancen nuestra comprensión del cáncer. En los
últimos años, se ha visto un aumento en el uso de modelos computacionales para explicar procesos
biológicos que son costosos y difíciles de explorar en entornos experimentales. Estos métodos
permiten la traducción de mecanismos biológicos en ecuaciones y suposiciones matemáticas que
pueden evaluarse utilizando herramientas informáticas para producir nuevas hipótesis. Además,
las tecnologías computacionales se están volviendo más potentes debido a la disponibilidad de
datos y la amplia capacidad de procesamiento.

El objetivo global de esta tesis es diseñar e implementar modelos computacionales de cáncer,
comenzando con comportamientos simples y aislados y progresando hacia fenómenos más com-
plejos. Se abordan tres campos de investigación específicos para lograr este objetivo general: (i)
motilidad unicelular, (ii) crecimiento tumoral y (iii) formación de patrones. En el primer objetivo,
se presenta un modelo computacional para simular la motilidad celular individual que considera
las propiedades mecánicas y químicas del microambiente. Posteriormente, este trabajo fue ampli-
ado para tener en cuenta las interacciones célula-célula y reproducir el crecimiento de estructuras
tumorales multicelulares. Por último, todos los eventos biológicos mencionados anteriormente
fueron considerados y se añadió la diferenciación celular como el bloque de construcción final de
esta tesis para simular la formación de patrones espaciales.

Además, esta tesis analiza la relevancia de integrar datos experimentales y métodos computa-
cionales para mejorar la precisión biológica y confirmar los resultados del modelo. En particular,
muestra cómo se pueden usar técnicas de calibración y optimización para considerar datos em-
píricos en el diseño y validación de modelos. Los resultados experimentales cualitativos y cuan-
titativos, tanto de la literatura como de nuevos experimentos, se reproducen en este artículo para
mostrar diferentes enfoques en la integración de datos.

En general, esta tesis proporciona un modelo de cómo se pueden utilizar los métodos com-
putacionales para analizar y comprender problemas complejos en la biología del cáncer. Demues-
tra explícitamente cómo los componentes del modelo pueden representar ciertos aspectos de la
biología del cáncer, que pueden mejorarse y reproducirse utilizando datos experimentales. En
consecuencia, los comportamientos complejos, como el crecimiento tumoral y la formación de
patrones, resultan de la intrincada interacción entre los componentes del modelo.
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"Mas ao menos fica da amargura do que nunca serei
A caligrafia rápida destes versos,

Pórtico partido para o Impossível."
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1.1 Context

Cancer is a major public health problem and a leading cause of death worldwide (Bray et al.,

2021; Siegel et al., 2022). In fact, it was estimated that 19.3 million new cancer cases occurred

worldwide in 2020, leading to almost 10.0 million deaths (Sung et al., 2021), while, in Europe,

there were 4.0 million new estimated cases and 1.9 million cancer-related deaths (Dyba et al.,

2021). Coincidentally, the economic burden of cancer is substantial, rising to a total of N199

billion in Europe in 2018 (Hofmarcher et al., 2020), and it affects both patients and healthcare

systems. Therefore, it is increasingly more relevant to develop cost-effective strategies to prevent

and treat cancer at early stages of development. Early diagnosis tools have proved to be invaluable

in decreasing cancer mortality (Siegel et al., 2022). However, the advances in cancer prevention

have not been matched by the progress in therapy (Jubelin et al., 2022). Cancer comprises a group

of diseases that are still not fully understood that they may develop from any kind of cells in

the body (Cooper, 2000). Furthermore, tumours are highly heterogeneous and patient-specific,

meaning that the same therapy may not have the same expected effect when applied to different

tumours, even when they are of the same type (Karolak et al., 2018; Marusyk and Polyak, 2010).

There have been significant advances in recent years in developing experimental studies of

cancer development that may improve the understanding of this disease (Costa et al., 2020). Ex-

perimental models aim to replicate complex behaviour with simplified frameworks, which can

range in complexity, as shown in Fig 1.1. In vivo models, for example, rely on living organisms,

allowing for high resemblance between experiments and actual biological behaviour. However,

1



2 Introduction

Figure 1.1: Pre-clinical models in cancer research. Benefits and limitations of in silico, in vitro
and in vivo techniques employed to study cancer development. In vitro models are well-established
as they are less expensive and faster than in vivo models, which are also known to raise ethical
concerns. Despite being less biologically accurate, in silico models have been used consistently in
combination with experimental assays to understand biological data and test hypotheses about its
causality. Adapted from (De Pieri et al., 2021; Moya-Garcia et al., 2022).

they raise ethical questions and are difficult to quantify, given that tumours develop inside an or-

ganism. In vitro models, on the other hand, are performed outside of living systems (Hagiwara and

Koh, 2020). Traditionally, in vitro models use two-dimensional (2D) substrates, yet this is now per-

ceived as an oversimplification since cells in the human body are found in three-dimensional (3D)

environments that modulate cellular behaviour and change in response to cell interactions (Jubelin

et al., 2022). Remarkably, recent in vitro studies have been shifting their focus from 2D to 3D

approaches since the latter capture cell behaviour in a manner that better resembles in vivo dy-

namics (Wu et al., 2014; Pedersen and Swartz, 2005). Nonetheless, experimental models are still

expensive and time-consuming and often focus on specific events, thus failing to scale when trying

to extrapolate their effect on a macroscopic view (Bekisz and Geris, 2020). As a result, there is a

demand for instruments that enable more efficient investigation of biological systems.

Mathematics, specifically statistics, has been intensively used in biology and medicine to eval-

uate qualitative hypotheses through quantitative experimental and clinical data (Anderson and

Quaranta, 2008; Pérez-García et al., 2016). For instance, statistical tests are used frequently to

assess whether different environmental conditions and therapeutic agents affect tumour develop-

ment. Advanced tools, such as mathematical modelling and computational simulations, are less

likely to be found in the health sciences field, though, despite having a pivotal role in physics and

engineering (Byrne, 2010; Victori and Buffa, 2018). Mathematical models are sometimes viewed

as unduly simplistic by experimentalists and physicians who feel that cancer is a complicated dis-

ease that cannot be reduced to simple models (Gatenby and Maini, 2003). While it is true that



1.1 Context 3

Figure 1.2: Phenomenological and mechanistic modelling approaches. Mechanistic models are
based on generating new data from a set of assumptions rooted in biological mechanisms. There-
fore, they are relevant to test biological hypotheses and when causality is paramount. Phenomeno-
logical models aim to reproduce data through statistics and/or machine learning approaches. Ac-
cordingly, they are very accurate yet fail to explain the mechanisms behind the biological data.
Adapted from (Victori and Buffa, 2018; Baker et al., 2018).

phenomenological and statistical models can reproduce experimental data yet fail to explain it,

mechanistic approaches can provide more information about the causes that lead to the biological

behaviour (Transtrum and Qiu, 2016; Baker et al., 2018). A comparison between phenomenolog-

ical and mechanistic methods is shown in Fig 1.2.

Phenomenological models are based on empirical observations, which they are able to repro-

duce and describe through statistics and machine learning approaches (Victori and Buffa, 2018;

Baker et al., 2018). However, these predictions are based on results and are not directly derived

from theory, providing no information about the mechanisms that lead to these outputs. On the

other end, mechanistic models are based on causality and can be used to translate biological pro-

cesses into mathematical equations and create model predictions based on concepts that can be

interpreted by experimentalists (Craver, 2006). Consequently, the potential success of these meth-

ods to solve problems in computational oncology, i.e., the use of mathematical modelling and

computational simulation techniques to study cancer, relies on significant knowledge of both the

biological processes that occur in cancer and the mathematical and computational tools that may

be applied to study them (Banwarth-Kuhn and Sindi, 2020; Rockne and Scott, 2019; Karolak et al.,

2018). Henceforth, establishing collaborations between experimentalists and mathematicians or

engineers is often required to produce meaningful models of biological systems.

Computational models allow for the investigation of topics that cannot be tested directly..

Furthermore, developers can integrate models into multiscale platforms to evaluate how events

at different scales may interact and originate distinct behaviours (Rockne and Scott, 2019). Cell-

based or agent-based models (ABMs) are a specific type of modelling approach that considers cells

as individual agents that follow a set of rules that dictate how they behave and interact with other
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agents and the surrounding microenvironment (Cannata et al., 2013). ABMs offer an overview of

how population behaviour arises from single-cell rules where each cell or agent may act differently

to reproduce cell heterogeneity (Montagud et al., 2021). In addition, ABMs are constructed in such

a way that they may be coupled with models of varying scales. For example, intracellular models

can be tested to study subcellular events like cell metabolism and regulatory networks (Rejniak and

Anderson, 2011; Montagud et al., 2021), and reaction-diffusion models of the substances present

in the cellular microenvironment may also be taken into account to model the cells’ response

to therapeutic chemical agents and modulate cell behaviour as a function of the local nutrient

concentration (Macklin et al., 2012; Jagiella et al., 2016).

Multiscale ABMs are large and intricate computational models characterized by a substantial

number of parameters. Therefore, these models are challenging to evaluate and calibrate (Hase-

nauer et al., 2015). Yet, the ever-growing amount of high-throughput experimental data can be

used to empower data-driven optimization routines to calibrate computational models. Access to

big data makes it possible to use appropriate statistical and machine-learning methods to inform

mechanistic models. These new data-driven models may provide insights that conventional mod-

els based on prior assumptions may fail to achieve. Consequently, it is crucial to apply these model

calibration and optimization methods during the model development process to assure biological

validity.

1.2 Motivation

Mathematical models often assume that complex macroscopic biological behaviour arises from

simple rules and interactions at the microscopic level (Banwarth-Kuhn and Sindi, 2020). In other

words, it is possible to break down a complicated problem into a subset of small questions that,

when solved, give rise to a global solution. This approach is commonly defined as "bottom-up"

since it first considers small components of a system and progresses upwards. It must be noted

that, in cancer biology, a model is not necessarily equal to the sum of its parts and that complex

interactions between model components may be needed to be considered to replicate biological

behaviour (Anderson and Quaranta, 2008). However, bottom-up approaches such as ABMs are a

valuable starting point to unravel the mechanisms that drive cancer progression (Yu and Bagheri,

2020). Furthermore, ABMs can integrate stochastic modelling techniques to generate an additional

complexity level where the model results are not solely directly defined by static and well-defined

rules.

Despite the heterogeneous nature of cancer, some common trends among different cancer types

can still be identified. This fact is invaluable in cancer modelling because it allows modellers to

establish, at least, some of the basic building blocks that describe common tumour malignant

behaviour. Hanahan and Weinberg (2000) developed a theoretical framework called "The Hall-

marks of Cancer" that aims to summarize the enabling characteristics observed in cancer at a

general level which promote malignant development. Moreover, new features have been proposed

as "emerging hallmarks" recently, meaning that they favour malignant transformation but may not
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Figure 1.3: A simplified version of the Hallmarks of Cancer. Despite its complexity and het-
erogeneity, certain common characteristics can be found in cancer. In this dissertation, three main
characteristics are explored, namely migration and metastasis, sustained growth and abnormal
differentiation. Furthermore, we aim to explore how these different hallmarks may interact to gen-
erate specific biological behaviours.

be ubiquitous in cancer (Hanahan, 2022). Well-established hallmarks include, but are not limited

to, characteristics that support unregulated and aberrant tumour growth and migration activation,

which enables metastasis. Besides, phenotypic plasticity is an interesting hallmark, which alters

the normal cell differentiation process and can lead to poorly differentiated cells. A simplified

version of the Hallmarks of Cancer that includes the aforementioned characteristics is represented

in Fig 1.3. Hence, it can be established that computational models of cancer should can take ad-

vantage of this framework as a learning mechanism to understand which components should be

represented to reproduce at least some of these hallmarks.

Computational models can be overly focused on a single hallmark. For instance, several

models have been designed to study migration activation and metastasis (González-Valverde and

García-Aznar, 2018; Vargas et al., 2020), tumour growth (Gerlee and Anderson, 2007; Hyun and

Macklin, 2013) or cell differentiation (Zubler, 2009; Colombi et al., 2020). Nevertheless, these

models tend to assume that these aspects are isolated when in reality, biological events start at an

individual level but evolve to more complex patterns when multiple hallmarks are considered. For

example, migration and proliferation can be mutually exclusive, as stated by the "Go or Grow"

hypothesis (Hatzikirou et al., 2012; Kim et al., 2014). In particular, this theory explains that mi-

grating cells may have altered proliferation dynamics and arrest their cell cycle when migrating.

Moreover, the emergence of specific spatial patterns in cell organization, such as rosettes observed

in neuroblastoma, a type of paediatric cancer, are thought to arise from deregulated differentia-

tion processes coupled to abnormal proliferation and differential adhesion between cells (Wippold

and Perry, 2006; Duarte Campos et al., 2019). Accordingly, it is increasingly relevant to develop
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computational models which reproduce multiple aspects of cell behaviour.

The mathematical biology community has developed several ABM-based frameworks that

simultaneously consider events such as cell proliferation, death, migration and differentiation.

Examples include BioDynaMo (Breitwieser et al., 2022), Chaste (Mirams et al., 2013), Compu-

Cell3D (Swat et al., 2012), Hybrid Automata Library (Bravo et al., 2020), iDynoMiCs (Lardon

et al., 2011), Morpheus (Starruß et al., 2014) and PhysiCell (Ghaffarizadeh et al., 2018). Most

of these tools do not require extensive programming and mathematical modelling expertise and

are accessible to biologists and clinicians who prioritize biological behaviour over mathematical

formalism. Moreover, they are also optimized to take advantage of the increasingly available com-

putational power. Besides, they are accessible and extensible, meaning that new users can build

on previous model iterations and focus on creating new extensions to solve specific questions

(Rockne et al., 2019; de Montigny et al., 2021; Letort et al., 2019).

Taking all of this into consideration, it is evident that computational biology is progressing

towards integrated frameworks and the development of computational tools that can be utilised and

shared by the community to build robust models. Therefore, this dissertation explores how these

frameworks can be used to study cancer, starting from a simple single-cell model and progressing

in complexity to reproduce collective behaviour. Moreover, model calibration is a topic of interest

in this dissertation. In particular, manual and automatic workflows were developed to shown that

quantitative and qualitative data can be employed in model calibration routines.

1.3 Objectives

The global research objective of this dissertation is to use computational models to reproduce and

predict cell behaviours observed frenquently in cancer systems from a bottom-up perspective. Due

to the high complexity of cancer diseases, three specific events were selected to be explored ex-

tensively: (i) individual cell migration, (ii) tumour growth and (iii) pattern formation dynamics, as

shown in Fig 1.4. The order in which these processes were studied in this thesis is relevant as the

questions explored in each study grow in complexity as these studies are presented, from individ-

ual to collective cell behaviour. Firstly, single cells are simulated, and their interactions with the

surrounding extracellular matrix (ECM) are characterized to reproduce cell migration behaviour.

Subsequently, cell-cell interactions are introduced to model tumour growth observations. Finally,

both single-cell and cell-cell are considered and complemented by differentiation to identify how

specific histological patterns arise from collective cell behaviour. Moreover, parameter exploration

routines were employed to evaluate model behaviour, and model calibration techniques were ap-

plied throughout this dissertation when data was available to optimize the models developed.

Research objective 1: Understanding how the extracellular microenvironment regulates
single-cell motility

i Implementing and calibrating a computational model of single-cell motility which takes into

account the impact of the mechanical properties of the surrounding microenvironment on cell
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Figure 1.4: Visual summary of the dissertation’s research objectives. This dissertation aims
to study cancer biology through a bottom-up approach, adding new complexity levels as chapters
are discussed. The first model on implementation focuses on simulating and calibrating individual
cell motility. Subsequently, collective behaviour starts being considered, with the addition of cell-
cell interactions and proliferation. Lastly, tissue organization is studied by introducing neuronal
differentiation.

migration;

ii Extending the computational model to consider the effect of migration-inducing chemical sub-

stances on cell motility;

iii Implementing an automatic optimization pipeline to calibrate the extended model using new

quantitative data and identify the model parameters that explain the observed in vitro be-

haviour;

Research objective 2: From single cell migration to collective organisation regulating tissue
growth

i Reviewing computational models of tumour growth available in the literature with an emphasis

on the role of metabolism reprogramming;

ii Extending the single-cell motility model to account for cell-cell interactions to study tumour

formation and how it is modulated by mechanical forces imposed by the environment;

iii Calibrating the model above with qualitative data from spheroid growth assays performed in

microfluidic devices;

Research objective 3: Modelling pattern formation as a differentiation process

i Implementing a model that introduces neuronal morphology and differentiation;

ii Identifying how differentiation stages and mechanical interactions regulate the formation of

histological patterns, namely Homer-Wright rosettes;
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1.4 Document Structure

This dissertation is divided into six chapters that guide the reader through the design, implemen-

tation and validation of cell-based computational models of increasing complexity that aim to

unravel different hallmarks of cancer. Chapter 1 contextualizes the motivation and objectives of

this thesis and communicates the relevance of using computational modelling in cancer biology.

Chapter 2 extends on the basic background concepts to understand the biological and computa-

tional aspects explored in this dissertation, focusing on the hallmarks of cancer to be presented

in the following chapters and on cell-based modelling techniques. Having established the main

theoretical background for this dissertation, Chapter 3 covers the implementation of the com-

putational model that serves as the foundation work for the thesis. Specifically, it is addressed

how a cell-based model may be used to study single-cell motility and the effect of mechanical

and chemical factors on the cells’ migration patterns. The use of experimental data to optimize

computational models is also discussed, and the design of an optimization pipeline is described.

Building on this work, Chapter 4 extends the computational framework implemented in order

to characterize how the combined effects of cell migration, cell-cell mechanics and proliferation

modulate tumour growth. In addition, this chapter explores a new complexity level by reviewing

the influence of altered cell metabolism in tumour growth and how metabolic reprogramming has

been addressed in previous computational studies. Chapter 5 adds the last degree of complexity

to the computational model and presents a framework that includes all the biological phenomena

studied in the previous chapters and introduces neuronal differentiation. This chapter assesses

specifically how morphological patterns arise from the interplay between proliferation, differen-

tiation and cell-cell interactions. Lastly, Chapter 6 summarizes the results obtained throughout

this dissertation by presenting its main conclusions and proposing possible future research lines to

extend this work. Furthermore, this chapter lists the publications and contributions that resulted

from this work.
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2.1 Introduction

Cancer is a highly complex health condition which comprises over 200 disease types characterized

by aberrant and excessive cell proliferation (Cooper, 2000; Pérez-García et al., 2016; Hassanpour

and Dehghani, 2017). Healthy and differentiated cells are subject to several control mechanisms

that regulate their life cycle and death. In cancer cells, though, these systems become deregulated

due to gene mutations, causing abnormal growth and malignant features that result in the forma-

tion of a tumour and its subsequent progression (Weinberg, 2013). Due to its complexity, cancer

is still not fully understood and frameworks that enable our comprehension of this disease are

still needed, from conceptual models that explain cancer biology to practical applications through

which new hypotheses can be generated and tested.

Mathematical models have been used in cancer biology for over 60 years (Byrne, 2010). Al-

though traditional mathematical models can be solved manually, model developers have increas-

ingly relied on computational tools as models became more complex and the access to compu-

tational resources increased over the years (Bekisz and Geris, 2020). The main goal of creating

mathematical and computational representations of biological systems is to generate hypotheses

9



10 Background

that can be tested, validated and guide the design of new experiments (Victori and Buffa, 2018;

Enderling and Wolkenhauer, 2021). Accordingly, models should provide a level of simplification

and abstraction to intricate biological phenomena, yet they should still be complex enough to de-

pict the general behaviour of these systems accurately (Victori and Buffa, 2018; Transtrum and

Qiu, 2016).

This chapter aims to provide readers with a global overview of the theoretical background

that serves as the foundation of this dissertation. Given the multidisciplinary nature of the models

featured in this work, biological and computational concepts are addressed to provide readers with

the fundamental knowledge to understand these models and their results. Henceforth, Section 2.2

presents an introduction to cancer biology, exploring the general mechanisms that lead to cancer

development and highlighting the specific biological events studied in this PhD thesis. In addition,

section 2.3 describes how mathematical and computational techniques have been increasingly used

in biology and medicine to understand biological data and formulate hypotheses to explain this

data. General concepts on the use of mathematics to recreate biological systems are introduced

and the specific modelling frameworks employed in this dissertation are explored in more detail.

2.2 Biological background

2.2.1 Cancer development

Cancer is a genetic disease that originates from mutations in cancer driver genes, namely onco-

genes, tumour-suppressor genes and stability genes (Vogelstein and Kinzler, 2004; Vogelstein

et al., 2013). Oncogenes derive from proto-oncogenes which regulate normal cell proliferation

and promote cell division under controlled conditions (Kontomanolis et al., 2020). However, when

activated by mutations, oncogenes cause aberrant cell proliferation that evades the control mecha-

nisms present in normal cells (Shortt and Johnstone, 2012). Conversely, tumour-suppressor genes

are generally responsible for inhibiting cell proliferation and avoiding tumour formation (Cooper,

2000). Therefore, gene mutations in cancer lead to the inactivation or loss of tumour-suppressor

genes, resulting in sustained growth and apoptosis evasion (Payne and Kemp, 2005). Lastly, stabil-

ity genes, also known as DNA repair genes, assure that genetic alterations are minimal in healthy

cells (Vogelstein and Kinzler, 2004; Jeggo et al., 2016). Henceforth, their inactivation enables

cancer cells to maintain altered genomes that favour malignant behaviour.

Mutations are essential in tumourigenesis, a multistage process through which healthy cells

continuously acquire malignant tumour characteristics. Tumourigenesis can be divided into three

stages: (i) initiation, (ii) promotion and (iii) progression (Weston and Harris, 2003), as shown in

Fig 2.1. During initiation, single progenitor cancer cells acquire mutations (e.g., oncogene activa-

tion or tumour suppressor inhibition) that confer them advantageous phenotypes (Cooper, 2000;

Chaffer and Weinberg, 2015). DNA damage in cancer progenitor cells may arise from endogenous

and exogenous agents, such as reactive oxygen species (ROS) and radiation (Barnes et al., 2018).

If the mutated cells’ control mechanisms fail to repair DNA damage or induce cell death, cells
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Figure 2.1: Representation of the multistep tumourigenesis process. Tumourigenesis is a pro-
cess through which normal and healthy cells progressively acquire mutations that result in malig-
nant adaptations, e.g., sustained proliferation and invasion activation, and make them selectively
more apt to survive.

become initiated and proliferate, transmitting malignant properties to their descendants. Further-

more, additional gene mutations accumulate as cancer cells divide during the promotion stage,

making them more resistant to the control mechanisms that should arrest unregulated proliferation

and induce cell death (Sarkar et al., 2013; Cao, 2017). In addition, environmental cues can further

drive tumour promotion (Laconi et al., 2008).

Lastly, cancer cells may acquire the ability to escape the primary tumour and invade other

tissues in the final stage of tumour progression, creating secondary tumours, also referred to as

metastases (Sarkar et al., 2013). The sequence that defines the steps that tumour cells undergo

when they escape the primary tissue and colonize other parts of the human body is commonly

referred to as the invasion-metastasis cascade (Valastyan and Weinberg, 2011). The metastatic

cascade begins with the invasion of the surrounding microenvironment by tumour cells, which

first must become dissociated from their original tissue by breaking cell-cell and cell-matrix ad-

hesions (van Zijl et al., 2011). Subsequently, cancer cells enter blood vessels through which they

circulate until they reach another tissue (Morgan-Parkes, 1995). At this point, individual cancer

cells invade the new tissue and attempt to colonize it through the formation of secondary tumours,

which are regulated by the physical properties of the new tissue (Massagué and Obenauf, 2016).

Accordingly, it can be concluded that the malignant characteristics acquired by cancer cells during

tumourigenesis are essential for cancer promotion and progression.

2.2.2 The hallmarks of cancer

Cancer is complex and challenging to understand due to its complexity and heterogeneity. With

this idea in mind, Hanahan and Weinberg (2000) introduced an original conceptual framework

named "The Hallmarks of Cancer" that enumerates functional capabilities shared among tumour

types that differentiate them from healthy cells and that enable the formation of malignant tumours.

The hallmarks of cancer originally consisted of six features: (i) resisting cell death, (ii) sustaining

proliferative signalling, (iii) evading growth suppressors, (iv) activating invasion and metasta-

sis, (v) enabling replicative immortality, and (vi) inducing or accessing vasculature (Hanahan and
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Figure 2.2: The Hallmarks of Cancer. These characteristics compose a theoretical framework
that defines the commonalities between cancer cells. The left subfigure shows the hallmarks and
enabling characteristics proposed in the past (years 2000 and 2011) that have been proven suffi-
ciently characterized and validated to be recognized as functional capabilities acquired by malig-
nant tumour cells. The right subfigure highlights the emerging hallmarks and enabling charac-
teristics proposed recently (year 2022) to integrate the Hallmarks of Cancer. Figure taken from
(Hanahan, 2022).

Weinberg, 2000). However, this framework has been continuously updated as new research studies

have illuminated neoplastic patterns that were not recognized in the past (Hanahan and Weinberg,

2011; Hanahan, 2022). Henceforth, two new hallmarks have been introduced, namely reprogram-

ming cellular metabolism and avoiding immune destruction, and six other enabling characteristics

have been suggested. These include unlocking phenotypic plasticity, tumour-promoting inflamma-

tion, genome instability and mutation, non-mutational epigenetic reprogramming, senescent cells

and polymorphic microbiomes. A visual summary of the Hallmarks of Cancer is shown in Fig 2.2.

As previously stated in Chapter 1, this dissertation focuses on three aspects of malignant de-

velopment that can be associated with one or more hallmarks:

i Single-cell motility: Activating invasion & metastasis;

ii Tumour growth: Sustained proliferative signalling, evading growth suppressors, enabling

replicative immortality and deregulating cellular metabolism;

iii Pattern formation: Unlocking phenotypic plasticity (i.e., abnormal differentiation);

Therefore, we present a general overview of these hallmarks and their relevance to the biological

phenomena to be explored in this dissertation. In particular, we discuss (i) how cancer cells acquire

metastatic capacities and define their migration patterns, (ii) the relevance of sustained growth and

metabolic reprogramming to promote tumour progression and (iii) how specific spatial patterns

arise from blocked differentiation. We highlight that, even though we focus on specific hallmarks
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to describe these behaviours, complex cancer behaviour arises from a combination of different

hallmarks (e.g., cell migration can have an impact on solid tumour formation).

Metastasis and tissue invasion

Understanding cell motility and its dependence on the physical and chemical properties of the

extracellular microenvironment is of particular interest in cancer biology. The invasion of sur-

rounding tissues by tumour cells, a process known as metastasis, represents a critical step in tu-

mour development and leads to a significant decrease in survival rates (Clark and Vignjevic, 2015;

Yamaguchi et al., 2005). Metastasis relies on the eptithelial-mesenchymal transition (EMT), a

process through which cells lose epithelial features and acquire mesenchymal properties (Ribatti

et al., 2020). In other words, epithelial cells that were originally in a stable tissue connected by

cell-cell junctions (e.g., E-cadherin adhesions) lose these connections, changing their morphology

to become more similar to fibroblasts and acquiring invasive properties (Yang et al., 2020). On

the other hand, cell-matrix adhesions are promoted, which enables cells to invade the surrounding

tissue. Subsequently, tumour cells enter blood and lymphatic vessels through intravasation and

travel to other parts of the body, where they extravasate to colonize other tissues (Morgan-Parkes,

1995). Remarkably, it has been observed that cells favour the regression to epithelial states to form

secondary tumours (Yao et al., 2011).

Several previous studies have aimed to assess the pathophysiological processes of primary

tumours and explain how the properties of the extracellular microenvironment induce and guide

metastasis (Paszek et al., 2005; Seewaldt, 2014; Barney et al., 2016; Polacheck et al., 2013). The

ECM is the non-cellular component of tissues that provides support and structure to the cells

(Frantz et al., 2010; Kim et al., 2011). The ECM is mainly composed of water, proteins (e.g.,

collagen, elastin and fibronectin) and polysaccharides. The quantities at which these components

are present vary significantly from tissue to tissue and define their characteristic mechanical prop-

erties (Butcher et al., 2009; Pizzo et al., 2005). Previous studies have shown that properties such as

ECM stiffness influence migration (Guimarães et al., 2020). Moreover, it has been shown that the

mechanical properties of the tumour microenvironment differ from those found in normal tissues

as a result of the tumour cells’ ability to sense and modify their environment (Kim et al., 2011;

Yamaguchi et al., 2005; Lu et al., 2012).

Sustained growth

Abnormal proliferation has been recognized as the most fundamental characteristic among all can-

cer cells for multiple decades (Hanahan and Weinberg, 2011). In fact, several hallmarks that enable

sustained proliferation at high rates and inhibit cycle arrest can be associated with abnormal growth

in tumour cells (Hanahan and Weinberg, 2000; Feitelson et al., 2015). Tumours originate from

small colonies of cells which acquired these enabling characteristics due to mutations (Weston

and Harris, 2003). For instance, the deregulation of the mitogen-activated protein kinase (MAPK)

cascade have been shown to enable the proliferative potential of cancer cells (Dhillon et al., 2007).
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In healthy organisms, MAPK pathways are signal transduction pathways that are activated when

growth factors bind to glycoproteins of the receptor tyrosine kinase (RTK) family to promote

growth (Braicu et al., 2019). When the effectors of these pathways mutate in cancer cells, it

leads to constitutive activation and continuous signal transduction. In other words, cancer cells no

longer require external stimuli provided by growth factors to activate growth mechanisms through

this pathway. The retinoblastoma (RB) pathway constitutes another example of how unregulated

signalling networks promote cancer development (Hanahan and Weinberg, 2011). In particular,

the RB protein acts a tumour suppressor that regulates whether cells should advance in the cell

cycle. Hence, when it becomes silenced, cancer cells are able to proliferate without control (Cress

et al., 2014).

Cancer is considered an evolutionary process, and it is accepted that tumour cells mutate over

time and that cells with better adaptive characteristics are selected and continue to proliferate and

develop into solid tumours (Casás-Selves and DeGregori, 2011; Vendramin et al., 2021). At initial

stages of development, these tumours are avascular and have small dimensions (Jiang et al., 2005;

Chaplain, 1996). Thus, cells rely on diffusion to obtain nutrients from the microenvironment.

However, once critical tumour dimensions are reached (i.e., a radius of approximately 400-500

µm), diffusion alone is insufficient for nutrients to reach the tumour core (Hirschhaeuser et al.,

2010; Casciari et al., 1992a). Consequently, cancer cells must trigger angiogenesis to induce

vascularisation that will supply tumours with the nutrients required to survive and continue to

grow (Lugano et al., 2020). Accordingly, the ability to promote or access vasculature is relevant

to sustain growth, even though it is not explored in this dissertation.

Additionally, metabolism reprogramming has been increasingly recognized as a mechanism

to sustain growth. Cell metabolism is the series of biochemical reactions that enable cells to pro-

duce the energy required for survival and maintenance. Under some circumstances, metabolism

may be altered to fit the cells’ energy requirements, for instance, in proliferating cells with high

energy demands (Jones and Thompson, 2009; Lunt and Vander Heiden, 2011). Since tumour cells

are highly proliferative, metabolism plays a crucial role in cancer progression since it supports

the aberrant proliferation and survival dynamics of tumours. Studies have shown that cancer cells

can reprogram their metabolism and favour metabolic pathways that enable cell division at fast

rates but are less efficient, such as aerobic glycolysis (Hanahan and Weinberg, 2011; Warburg,

1956b; Palm, 2021). In fact, altered metabolism is the foundation for [18F]-fluorodeoxyglucose-

positron emission tomography (FDG-PET), a well-established scanning technique employed to

identify and diagnose tumours (Danhier et al., 2017; Martinez-Outschoorn et al., 2017). Specif-

ically, FDG-PET quantifies how much FDG, a glucose analogue, is consumed by cells under

the assumption that most cancer cells consume more glucose (Duhaylongsod et al., 1995). Even

though metabolic reprogramming has been studied more in recent years, there are still many unan-

swered questions regarding why tumour cells evolved to metabolize glucose through energetically

inefficient pathways (Liberti and Locasale, 2016).
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Abnormal differentiation

Cellular differentiation is the process through which unspecialised cells mature and acquire char-

acteristics specific to a given tissue type (Jögi et al., 2012). Unlike progenitor stem cells, healthy

adult stem cells are already differentiated and have limited potential to generate different cell types

(Gupta et al., 2019). Under specific conditions, cells have been shown to evade this terminal dif-

ferentiation state and acquire phenotypic plasticity, i.e., the ability to change their phenotype. For

instance, phenotypic plasticity has been explored extensively in the literature as a relevant com-

ponent of development, tissue repair and regeneration (Jessen et al., 2015; Fusco and Minelli,

2010). However, this biological event has also been observed in cancer development. In particu-

lar, previous studies have shown that cancer cells can dedifferentiate, reversing to progenitor-like

stages, they may remain in a poorly-differentiated stated, or they can transdifferentiate, acquiring

characteristics from a tissue different from that they should have originated (Hanahan, 2022).

Phenotypic plasticity is generally less accepted as a cancer hallmark than abnormal growth

and metastasis because it occurs in specific cancer types (Hanahan, 2022; Yuan et al., 2019). For

instance, neuroblastoma is the most lethal and most common extracranial solid tumour in infants

(Maris, 2010; Wright, 1910; Shimada et al., 1999b) and it arises from blocked neuronal differen-

tiation during development. Neuroblastoma tumour cells derive from neural crest cells that dif-

ferentiate into sympathetic neurons during embryogenesis in response to the presence of neuronal

growth factors (Johnsen et al., 2019; Kholodenko et al., 2018). However, genetic alterations and

environmental cues halt the differentiation process (Mora and Gerald, 2004). The stage at which

this blockage occurs defines the neuroblastoma tumour subtypes, which can be classified into three

principal categories: undifferentiated, poorly-differentiated, and differentiating (Shimada et al.,

1999b). Undifferentiated neuroblastic tumours tend to be more malignant that those that became

more differentiated and acquired characteristics similar to those of healthy tissues (Ponzoni et al.,

2022). Besides, the morphology of neuroblastic cells differs based on their differentiation grade.

Progenitor cells are initially undifferentiated and present a round morphology, yet during neu-

ronal development these cells create and extend neuronal processes to establish the structure of

a neuron (Pahlman and Hoehner, 1996). In poorly-differentiated neuroblastoma, this leads to the

formation of neurons with under-developed neuronal processes (Wippold and Perry, 2006). In ad-

dition, the actual spatial distribution of these poorly-differentiated cells is an interesting aspect of

neuroblastoma, given that they are organized as rosettes (Wright, 1910). Rosettes are small groups

of cells organised in circular configurations around a common core that, in neuroblastoma, is filed

with fibres (Wippold and Perry, 2006). It is currently accepted that the rosettes observed in neu-

roblastoma arise from the mechanical interactions between the cells’ under-developed neuronal

processes, which adhere and become entangled, resulting in a circular arrangement of the cell

bodies around this common core (Moss, 1983). However, this theory has not been confirmed since

it is not possible to study neuroblastoma during development in vivo, and the ability to recreate

these structures in vitro is limited with the current technology (Duarte Campos et al., 2019).
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Figure 2.3: Representations of the relationship between experimental and computational
research. Experimental data can be integrated into computational models that aim to propose
mechanisms that explain how cellular behaviour arises. In turn, the hypotheses generated by the
computational approach can be employed to plan future experiments with a more specific research
question. Adapted from (Banwarth-Kuhn and Sindi, 2020).

2.3 Computational oncology

2.3.1 Modelling cancer systems

Designing a computational model of a biological system usually consists of posing a question,

stating the assumptions and variables that should be included in the model and translating these

conditions into equations and code (Byrne, 2010). Additionally, simulations should be run, and

model results must be compared with the original research question to evaluate the model’s va-

lidity. Accordingly, it is common to establish collaborations between experimentalists and mod-

ellers to guarantee that biological assumptions are translated to mathematical terms correctly, and

that model results are appropriate. Fig 2.3 shows a representation of the common discourse be-

tween experimental and computational researchers to implement models that integrate real-world

data, which, in turn, can generate hypotheses that will guide the planning of future experiments

(Banwarth-Kuhn and Sindi, 2020).

Mathematical models are convenient tools to generate and test hypothesis, yet they are unable

to thouroghly and flawlessly depict nature, as expressed by the prevalent aphorism “All models

are wrong, but some are useful” (Box, 1976). Consequently, mathematical modelling should be

regarded as an iterative process (Byrne, 2010). A model may generate hypotheses that appear to

be biologically valid. However, it is critical that these predictions are not taken as truth and that

further experiments are designed and performed to tests these hypotheses. Furthermore, models

can be implemented in distinct manners, from traditional ordinary differential equations (ODEs)

and partial differential equations (PDEs) models to more recent approaches like ABMs, based on

their suitability to break down and understand the research problem (Bekisz and Geris, 2020).
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2.3.2 Continuum vs discrete models

Biological systems can be modelled through distinct mathematical approaches, including con-

tinuum, discrete and hybrid frameworks (Edelman et al., 2010; Rejniak and Anderson, 2011).

The spatial resolution at which cancer cells are reproduced differs between these implementa-

tions, with models ranging from microscopic, individual cell-based to more macroscopic, cell

population-based representations (Altrock et al., 2015; Preziosi and Tosin, 2009). Continuum ap-

proaches, such as ODEs and PDEs, usually consider tumours cell populations at a large scale

(Schaller and Meyer-Hermann, 2006). In other words, tumours are generally represented as a sin-

gle cell population whose size changes over time or as group of different cell populations (Araujo,

2004). Therefore, the ability to account for spatial heterogeneity is limited and does not consider

cell-level detail. Nonetheless, the behaviour of individual cells and stochastic events are not taken

into account, and thus continuum approaches and cannot model heterogeneous behaviour at the

cell-level (Schaller and Meyer-Hermann, 2006). Conversely, discrete modelling techniques, also

known as ABMs, can achiev a higher level of detail since they simulate tumours as a group of

individual cells acting as agents that follow a set of rules and interact with each other and the

microenvironment (Metzcar et al., 2019; Van Liedekerke et al., 2015).

ABMs describe cells at the individual level and are thus particularly able to reproduce the het-

erogeneous behaviour of biological systems (Metzcar et al., 2019) and the interactions between

cells and the microenvironment (Mathias et al., 2022; Macnamara, 2021; Gonçalves and Garcia-

Aznar, 2021). For example, cellular automata (CA) models consider that each cell is represented

by a single voxel, whereas cellular Potts models (CPMs) simulate a single cell as more than one

voxel. Thus, an approximate cell morphology can be estimated, and the mechanical interactions

with the surrounding neighbours can be computed (Macnamara, 2021). Off-lattice approaches do

not consider that the domain is divided into a grid, enabling cells to move freely through space

based on the forces exerted on them (Metzcar et al., 2019). centre-based models (CBMs) are an

example of the off-lattice approach, and they consider that cells are characterized by their central

position and a simplified geometry, such as a sphere. More sophisticated techniques that describe

cell shape and allow for cell deformation (e.g., vertex-based and discrete element models) have

also been developed, yet they are computationally expensive to simulate large tumours (Rejniak

and Anderson, 2011; González-Valverde and García-Aznar, 2017). However, efficient paralleliza-

tion strategies can be used to take advantage of computational resources and improve the speed of

ABM-based simulations (Montagud et al., 2021; Fachada et al., 2017).

Hybrid modelling is a technique that can be used to couple detailed discrete descriptions of

cellular systems at the cell level with continuum models of the surrounding microenvironment

(Rejniak and Anderson, 2011). Specifically, hybrid modelling is used to study tumour growth as

the result of the response of individual cells to the concentration of substances such as nutrients,

metabolic waste and therapeutic agents that diffuse and are consumed/produced in the system

(Altrock et al., 2015; Gerlee and Anderson, 2007). The spatial distribution of the chemical species

present in the microenvironment is generally modelled as a set of reaction-diffusion equations
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Figure 2.4: Cell-based modelling frameworks. Discrete models can generally be categorized
into two main categories, i.e., on-lattice and off-lattice models, based on whether the cells are
bound to occupy fixed positions defined by a lattice or if they can freely move through the domain.
Taken from (Metzcar et al., 2019).

written as PDEs where discrete agents act as sources and sinks (Byrne, 2010).

2.3.3 Centre-based models (CBMs)

Cell morphology and biological behaviour

In CBMs, cells are assumed to be sufficiently represented by their centre of mass and a simplified

geometry, such as a sphere (Macnamara, 2021; Metzcar et al., 2019). Although previous works

modelled cell shape by assuming that cells behave as ellipsoids and modelling anisotropy and

polarity (Palsson and Othmer, 2000; Rey and García-Aznar, 2013; Menzel and Ohta, 2012), the

simplest CBMs do not resolve cell shape and, instead, consider that cells behave as isotropic vis-

coelastic spherical particles which can undergo small deformations (Camley and Rappel, 2017).

Furthermore, CBMs simulate cells as autonomous agents that follow rules that define their biolog-

ical and physical behaviour, such as cell cycling, cell death and mechanics, as shown in Fig 2.4. In

this work, it is considered that CBMs are hybrid models that include continuum representations of

chemical substances present in the extracellular microenvironment, as explained in Section 2.3.2.

Examples of software platforms that enable the creation of hybrid CBMs models include Biocel-

lion (Kang et al., 2014), BioDynaMo (Breitwieser et al., 2022), CellSys (Hoehme and Drasdo,

2010), Chaste (Mirams et al., 2013), Gell (Du et al., 2022), iDynoMiCs (Lardon et al., 2011)

MecaGen (Delile et al., 2017) and PhysiCell (Ghaffarizadeh et al., 2018). Nevertheless, discrete

approaches that consider only cell behaviour and mechanics have also been used in computational

biology and are available through frameworks such as CBMOS (Mathias et al., 2022), FLAME

(Richmond et al., 2010) and ya||a (Germann et al., 2019).
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Figure 2.5: Biological and physical rules in centre-based models. Centre-based models assume
that cells are represented by their middle point and a spherical geometry and follow rules that
define their life cycle, death and mechanics. (a) Representation of cell growth and subsequent
cell division. Cells may automatically originate two spherical daughter cells that repel each other.
Alternatively, a dumbbell shape can be modelled to simulate the cell morphology during divi-
sion. (b) Cell death can be simulated through agent removal from the simulation domain, which
may include a phase where size decreases. (c) Cell-cell mechanics are computed based on pair-
wise interactions that depend on the distance between the cells’ centre positions. Adapted from
(Van Liedekerke et al., 2018).

Previous works based on CBMs considered cell growth during division through an increase in

cellular volume (Drasdo, 2007; Ghaffarizadeh et al., 2018; González-Valverde and García-Aznar,

2017), as represented in Fig 2.5(a). During cell division, cells duplicate their DNA and synthesise

macromolecules required to produce two viable cells (McIntosh et al., 2012), doubling their size

approximately. Subsequently, an actin ring is formed at the cell’s division plane, which contracts

and generates two individual cells. These stages of development are generally modelled by intro-

ducing two new spherical agents in close proximity at the end of the cell cycle, which should be

repelled by each other until equilibrium is reached (Macklin et al., 2012; Mathias et al., 2020).

Alternatively, a more realistic representation of the deformations observed in cell shape during

division can be simulated by approximating cell shape as a dumbbell that, subsequently, separates

into two cells (Van Liedekerke et al., 2018; Drasdo, 2007).

Cells are represented as autonomous agents with an intrinsic cell cycle regulated by an internal

clock that tracks and updates their state over time. In addition, the rates at which cell division

occurs can be modelled as deterministic or stochastic processes (Ghaffarizadeh et al., 2018). When
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considering a deterministic system, it is established that these events occur at fixed time intervals.

In other words, when a cell doubling time is settled, all cells will undergo cell division once this

time point has passed in their internal clock. Conversely, stochastic modelling is based on setting

rates that dictate the probability of cell division (Pdiv) to occur at a given time interval ∆t and is

represented by Eq 2.1:

Pdiv = 1−erdiv∆t ≈ rdiv∆t (2.1)

The cell cycle can be modelled at different complexity levels, with models ranging from a sin-

gle transition rule that defines cell division to multiple states that describe the different cell cycle

phases (Macklin et al., 2012; Pleyer and Fleck, 2023; Kempf et al., 2010). Moreover, additional

rules can be defined to simulate the effect of the surrounding microenvironment on cell prolifer-

ation. For instance, cells may enter cycle arrest due to contact inhibition, i.e., when the forces

exerted on them by other cells inhibit proliferation (Baker and Simpson, 2010; Pavel et al., 2018).

Likewise, due to the hybrid nature of these frameworks, the cell cycle may be linked to the sub-

stances represented as continuum concentration fields (de Montigny et al., 2021; Macklin et al.,

2012; Hyun and Macklin, 2013). Accordingly, cells located in regions where nutrient density is

low may become quiescent due to the limited access to growth-enabling substances.

Cell death is simulated by agent removal from the simulation domain, through similar ap-

proaches as those used to model the cell cycle. In other words, deterministic or stochastic models

can be used, and the microenvironment may also modulate this process. When considering cell

death, both apoptosis, i.e., programmed cell death, and necrosis, which is induced by external fac-

tors, can be reproduced (Macklin et al., 2013; D’Arcy, 2019). Cell death can also be employed to

simulate therapeutic agents through chemical substances or physical agents that can attach to cells

and kill them (Ghaffarizadeh et al., 2018; Ozik et al., 2018).

Physical interactions and motility

In CBMs, the cells’ centre of mass can be updated based on an equation of motion (Van Liedekerke

et al., 2018). Generally, three factors are taken into account in this equation: the friction imposed

by the microenvironment, the mechanical interaction forces between cells (i.e., adhesion and re-

pulsion forces) and the active migration forces exerted by the cells (Camley and Rappel, 2017;

Macnamara, 2021). Moreover, because the extracellular microenvironment has a low Reynolds

number, it is generally assumed that inertia can be neglected and friction dominates this system

(Purcell, 1977; Odell et al., 1981). Accordingly, the equation of motion for a spherical cell i can

be written as Eq 2.2:

0 ≈ Fi
drag+Fi

loc+ ∑
j∈N(i)

Fi j
cci (2.2)

where Fi
drag represents dissipative forces caused by friction (e.g., fluid drag and matrix adhesion),
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Fi
loc represents the active locomotive forces generated by cells Fi j

cci represents the cell-cell inter-

actions between the cell i and a neighbouring cell, j. It is a common and reasonable assumption

to model drag forces as Fi
drag = − 1

µ
vi, meaning that these forces are proportional to the cells’ ve-

locity, where µ defines the mechanical properties of the ECM and the resistance to cell movement

(Camley and Rappel, 2017; Zaman et al., 2005). Nonetheless, other approaches include, for in-

stance, explicitly modelling the frictional forces imposed by not only the ECM but also other cells

(Van Liedekerke et al., 2015).

Cells exert forces on the surrounding ECM to migrate by creating protrusions in a given direc-

tion, forming adhesions with the matrix and contracting the cytoskeleton to move in a preferential

direction (Merino-Casallo et al., 2022a). Henceforth, these active migration forces are usually rep-

resented in mathematical models by their magnitude, which correlates to cell speed, and direction

(Rey and García-Aznar, 2013). Migration forces can be modelled to represent random or directed

movement. When cells do not have a preferred direction movement, cell motion can be described

as a random walk (Codling et al., 2008). Conversely, in the presence of chemical factors known

as chemoattractants, i.e., which stimulate cell migration towards these substances, the direction of

preferred movement aligns with the chemical gradients (Ghaffarizadeh et al., 2018). Moreover,

models of cell migration can assume that cells move at constant speed and that only the direction

of movement changes. Nonetheless, other approaches suggest that cell speed may follow a distri-

bution, for example it may fluctuate around a mean value, thus capturing the heterogeneous nature

of cell movement better (Campos et al., 2010).

Lastly, the physical interactions between two neighbouring cells can be depicted through pair-

wise potential functions which consider both cell-cell adhesion and repulsion as a function of the

overlap between the two cells (Mathias et al., 2022; Rey and García-Aznar, 2013). Neighbour-

ing cells are known to create adhesion bonds due to cadherin and caterin molecules when they

are nearby (Ramis-Conde et al., 2008; Macnamara, 2021). Conversely, repulsion forces are also

exerted when cells are compressed together since their internal cytoskeleton cannot deform exten-

sively (González-Valverde et al., 2016). Consequently, it is well-established in CBMs that three

regions define how two cells interact based on their overlap, commonly written as δ , a resting

length R0, usually considered to be equal to the cells’ diameter, and an established interaction ra-

dius, Rint , as shown in Fig 2.5C (Mathias et al., 2020; Rey and García-Aznar, 2013). Specifically,

when two cells overlap, i.e., the distance between their positions is smaller than the resting length,

repulsive forces are dominant to assure that this overlap is eliminated. Conversely, adhesion forces

play a more dominant role at distances larger than R0 but smaller than Rint , making the cells ad-

here and stabilize at the resting length. For distances larger than the radius of interaction, the

interaction forces become negligible. Different models may be employed to model cell-cell inter-

actions, including linear springs (Drasdo and Loeffler, 2001), generalized linear springs (Mirams

et al., 2013), Hertzian contacts (Drasdo and Höhme, 2005), Johnson–Kendal–Roberts potentials

(Basan et al., 2011), Morse potentials (Rey and García-Aznar, 2013), piecewise quadratic forces

(Ghaffarizadeh et al., 2018) and cubic forces (Delile et al., 2017).
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Extracellular microenvironment

CBMs can be extended to account for representations of not only the cells but also the extracellular

microenvironment. Like many ABM-based approaches, CBMs are usually coupled with PDEs to

simulate the substances in the microenvironment. These reaction-diffusion equations can take into

account substance diffusion and decay as well as consumption and uptake by bulk sources/sinks

and cells (Ghaffarizadeh et al., 2018). Changes in the concentration of a substance i can be mod-

elled in accordance with a reaction-diffusion equation:

∂ρi

∂ t
=Di∇2

ρi−λiρi+S(ρ∗−ρ)−Uρi+ ∑
cells,k

δ(x−xk)Wk[Sk(ρ∗k −ρ)−Uk,iρi] in Ω (2.3)

with Dirichlet boundary conditions in ∂Ω. Here, ρi represents the substance concentration, Di is

the diffusion coefficient, λi is the decay rate, S is the bulk supply rate, ρ
∗ represents the saturation

density at which secretion stops and U is the bulk uptake. In addition, for a cell k in the domain,

δ(x) is the Dirac function, xk is the cell position, Wk represents the cell volume, Sk is the cell

secretion rate and Uk,i is the cell consumption rate. For instance, this approach has been used to

simulate the effect of hypoxia (Rocha et al., 2021; Macklin et al., 2012), nutrient-depletion (Shan

et al., 2018; Jagiella et al., 2016) and therapeutic agents (Ghaffarizadeh et al., 2018; Jafari Nivlouei

et al., 2022) on tumour development.

As previously stated, the local concentration can be evaluated by the agents in a simulation and

considered to make decisions on cell behaviour (e.g., arrest proliferation, induce cell death and

change the direction of migration). Furthermore, ABM-based approaches enable the simulation of

biological behaviour at different scales, including through the definition of subcellular metabolic

and signalling pathways (Rejniak and Anderson, 2011; Jafari Nivlouei et al., 2022). This approach

provides a detailed microscopic description of the processes that regulate cell behaviour and pro-

vides information that can be useful when it is relevant to study the effect of specific molecules

(Ford Versypt, 2021). Intracellular models can be implemented through differential equations (So-

mogyi et al., 2015), Boolean models (Letort et al., 2019) and neural networks (Gerlee, 2013), for

instance.

Lastly, CBMs can account for representations of the ECM and its mechanical properties. In

their equation of motion (see Eq 2.2), CBMs already simulate the effect of drag forces imposed by

the ECM. Nonetheless, it is possible to incorporate more realistic descriptions of this component

of the extracellular microenvironment (Macnamara, 2021; Senthilkumar et al., 2022). The ECM

is composed by a meshwork of fibres that define its mechanical properties (Pathak and Kumar,

2011). Starting with a straightforward approach, one way to take into account spatial heterogene-

ity is to simulate the ECM substance whose concentration can be sampled by cellular agents to

update their equation of motion based on the local viscosity (Gonçalves and Garcia-Aznar, 2021).

Alternatively, the CBM model can be coupled to a tunable continuum solid material to account for

the tissue passive mechanics (González-Valverde and García-Aznar, 2018, 2017). Finally, ECM
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fibres can be modelled as agents (spheres or cylinders) that interact with cells, which is the most

realistic yet computationally expensive approach (Letort et al., 2019; Macnamara et al., 2020).

2.4 Summary

This chapter provided an overview of the biological processes that will be covered in this dis-

sertation and the computational frameworks used to model them. The general objective of this

dissertation is to simulate cancer systems using computational models. Accordingly, we discussed

the mechanisms that lead to tumour development and presented a theoretical framework that uni-

fies different malignant characteristics observed in distinct cancer types. In addition, we explored

some of these characteristics in more detail because they will be studied in the following chapters.

Specifically, Chapter 3 deals with migration and metastasis, Chapter 4 explores tumour growth

and metabolic reprogramming and, lastly, Chapter 5 aims to reproduce the emergence of specific

spatial patterns that arise due to abnormal differentiation.

Furthermore, this chapter contextualized the current trends in computational oncology, from

model formulation to specific modelling frameworks. In this dissertation, we aimed to simulate

cancer systems from a bottom-up perspective, starting with individual cell behaviour and pro-

gressing to collective trends. Therefore, we chose to model our systems through CBMs, which

were discussed in detail in this chapter. We based this choice on the need to simulate each cell as

an individual agent and the advantage of being able to study cell-cell and cell-matrix interactions

through force-based equations. We started this dissertation with a general CBM-based framework

and extended it to account for more complex phenomena. Accordingly, in Chapters 3-5, we dis-

cuss new and specific biological behaviours, how they were added to the model and what we can

learn from the results obtained.
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3.1 Introduction

Some of the most fundamental processes in life rely on the complex process of cell migration

(Vicente-Manzanares and Horwitz, 2011; Ladoux and Mège, 2017). For instance, unicellular

organisms rely on migration to move away from hazardous conditions and into nutrient-rich sur-

roundings. Additionally, cell migration is involved in multiple processes that ensure the normal

growth and maintenance of multicellular organisms, including morphogenetic events, tissue repair

and the immune response (te Boekhorst et al., 2016). Nonetheless, unregulated cell motility can

also lead to metastasis (Krakhmal et al., 2015), which significantly increases cancer mortality, and

play a role in chronic inflammation (Liu et al., 2021). Cell migration can be performed individu-

ally or collectively (Friedl and Wolf, 2010; Buttenschön and Edelstein-Keshet, 2020). Although

collective migration tends to be prevalent in physiological phenomena such as tissue regeneration

and wound healing (Mayor and Etienne-Manneville, 2016), it requires an extended understanding

of the chemical and mechanical interaction between cells that maintain tissue organization (Trepat

et al., 2012; Canel et al., 2013; Yang et al., 2019). Therefore, this chapter focuses on characterizing

single-cell motility.

Individual migration phenotypes are usually classified as amoeboid or mesenchymal (Bear

and Haugh, 2014; Talkenberger et al., 2017). Fig 3.1A shows a comparison between these two

migration modes. On the one hand, amoeboid migration is characterized by rapid cell movement

and constant changes in cell shape to move through the paths of least resistance in the microen-

vironment (Lämmermann and Sixt, 2009). The rapid movement of the cells is accompanied and

facilitated by weak adhesion interactions with the substrate that allow cells to squeeze through

pores and small structures (Lämmermann et al., 2008). Consequently, highly motile cells such as

those present in the inflammatory response (e.g., neutrophils and lymphocytes) generally acquire

amoeboid migration patterns. On the other hand, mesenchymal migration relies on cell-matrix ad-

hesions through which cells exert forces on the surrounding environment to move (Merino-Casallo

et al., 2022a). Accordingly, it is a slower mechanism, usually observed in cells like fibroblasts that

rely on cell adhesions to sense the mechanical and chemical properties of the surrounding ECM

(Bear and Haugh, 2014). Moreover, these cells may exhibit the ability to degrade the ECM and

generate new paths to pass through (Yamada and Sixt, 2019).

Cancer cells are regularly associated with mesenchymal migration because they undergo the

EMT, through which cell-cell and cell-matrix adhesions are lost, disrupting the structure of ep-

ithelial tissues and leading to the emergence of mesenchymal-like migration patterns (Kalluri and

Weinberg, 2009; Yang et al., 2020). However, amoeboid features have also been observed in

cancer cells (Krakhmal et al., 2015), for instance, when protease inhibitors are present and cells

become unable to degrade the surrounding matrix (Friedl and Wolf, 2003; Wolf et al., 2003; Orgaz

et al., 2014). Furthermore, recent studies have shown that amoeboid and mesenchymal motility

patterns are not mutually exclusive (Graziani et al., 2022). According to these studies, cancer cells

present the phenotype plasticity required to shift between these two states (Talkenberger et al.,

2017; Paňková et al., 2010). Therefore, more studies are needed to understand this behaviour and
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Figure 3.1: Cell motility mechanisms in 3D fibrous matrices. (A) Comparison between the
mesenchymal and amoeboid phenotypes, the two major migration modes in individual cells.
Mesenchymal migration is characterized by "path-generating" patterns because cells degrade and
change their environment to move. Conversely, cells that adopt a amoeboid phenotype tend to
follow "path-finding" patterns, where they squeeze through the matrix pores and try to move along
the path of least resistance. (B) Main ECM features that influence and guide cell motility in 3D.
Both mechanical (e.g., matrix stiffness, elasticity and confinement) and chemical (e.g., molecular
composition, chemical gradients) properties can have an impact on cell migration. In addition,
cells can modify the structure of the ECM, altering its properties. Adapted from (Yamada and
Sixt, 2019).
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advance the knowledge of how the external factors may regulate it.

Environmental cues have been shown to modulate cell motility as cells are able to sense and

respond to the properties of their surroundings. For example, cells can follow gradients of soluble

or surface-attached chemoattractants (e.g., chemokines and growth factors) through chemotaxis

and haptotaxis, respectively. Furthermore, cells respond to the mechanical properties of the extra-

cellular microenvironment (Discher et al., 2005; Janmey and McCulloch, 2007). Matrix stiffness,

which characterizes the matrix’s resistance to deformation in response to forces, has been exten-

sively studied in 2D (Ehrbar et al., 2011; Paszek et al., 2005; Lo et al., 2000; Pathak and Kumar,

2011). Nonetheless, these findings may not apply to 3D environments, which are more similar to

complex physiological conditions (Yamada and Sixt, 2019). The complexity of 3D cultures makes

it increasingly difficult to disassociate the effects induced by matrix stiffness from those produced

by the matrix architecture. In 3D, stiffness arises from structural changes that also affect the ma-

trix architecture (Pathak and Kumar, 2011). In other words, matrices with a higher fibre density

may be stiffer, but they also present smaller pore sizes. Therefore, cells seeded in these matrices

face high confinement levels and become unable to squeeze through the matrix to continue moving

(Charras and Sahai, 2014).

In the last two decades, advanced cell culture tools such as microfluidic devices have been

developed to study cell motility in 3D configurations (Mehta et al., 2022; van Duinen et al., 2015),

as opposed to more conventional 2D approaches (Kramer et al., 2013). Microfluidic devices are

engineering tools that enable the study and manipulation of fluids at the submillimetre length

scale and, at the same time, the acquisition of high-quality image data (Sackmann et al., 2014;

Moreno-Arotzena et al., 2014). Fig 3.2 shows an example of a microfluidic device used to study

cell motility. Despite these advances, there are still disadvantages to experimental research, such

as the increased costs and long time scales (Bekisz and Geris, 2020). Accordingly, to facilitate

the study of these biological questions, computational modelling has been used to create models

and simulation frameworks that can replicate experimental settings while overcoming the afore-

mentioned disadvantages (Merino-Casallo et al., 2022a; Rangarajan and Zaman, 2008; Shatkin

et al., 2020). Furthermore, the high-quality imaging data generated in microfluidic assays can be

considered in the design and implementation of these computational approaches to enhance their

biological relevance.

Taking this into account, this chapter aims to explore how computational models can be used

to reproduce experimental data from migration assays and make predictions about the mechanisms

that guide cell motility. To achieve this, Section 3.2 provides an overview of the experimental con-

figurations used to perform migration assays in 3D and discusses model calibration and optimiza-

tion routines. Subsequently, two applications are discussed. Section 3.3 presents an application

which focused on implementing a computational framework that accounted for the presence of the

ECM and its effect on single-cell motility. This work was based on a previously published study

and qualitative model calibration routines were performed. The second application, discussed in

Section 3.4, intended to extend the computational model developed in Section 3.3 and integrate

it into an automatic model calibration pipeline to predict which model input parameters produce
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Figure 3.2: Microfluidic devices. (a) Microdluidic device in a 35 mm glass-bottom petri dish.
(b) Geometry of the microfluidic device. The hydrogel is kept confined within the central channel
(pink). In direct contact to the gel, two main media channels (green and blue) ensure hydration
and diffusion through the hydrogel. (c) Migration assays can be performed by seeding cells in the
hydrogel chamber and tracking individual cells over time. Adapted from Moreno-Arotzena et al.
(2015) and Plou et al. (2018).

the best similarity between experimental and computational data. The data used in this study was

obtained in original experiments that measured the chemotactic response of fibroblasts when ex-

posed to the presence of growth factors. Thus, the model was properly extended to reproduce the

effect of chemical substances on cell migration.

3.2 Model optimization and data integration: an overview

Mechanistic models are characterized by a large number of parameters that require validation

(Hasenauer et al., 2015). Furthermore, ABMs can be particularly cumbersome to characterize

given that they are determined by the interactions ocurring between multiple agents that often

follow stochastic rules (Gonzalez-de Aledo et al., 2018). As such, parameter space exploration is

crucial to characterize how models behave. In addition, it is important to take biological data into

account to define these parameter spaces, to assure that model behaviour is as realistic as possible

(Banga, 2008). Experimental data may also be used to optimize models and identify which model

mechanisms were the most relevant to reproduce the observed biological behaviour (Stéphanou

et al., 2020; Lima et al., 2021).

In this section, we describe how sophisticated experimental setups based on the use of mi-

crofluidic devices and time-lapse imaging can be used to characterize cell motility in 3D environ-

ments. Furthermore, we introduce some methods, such as parameter space exploration and model
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optimization frameworks, focusing on advanced automatic routines based on Bayesian statistics.

3.2.1 Microfluidic devices and migration assays

In conventional 2D cell cultures, cells are grown over flat substrates, which is not realistic when

compared with physiological conditions where cells can be found embedded in 3D environments

(van Duinen et al., 2015). Taking into account that the nature and composition of the ECM are

quite difficult to replicate in vitro, experimental studies conducted with 3D scaffolds have been

helpful to improve the understanding of how the ECM regulates 3D cell migration (Nyga et al.,

2011; Moreno-Arotzena et al., 2015; Movilla et al., 2018, 2019). In particular, hydrogels mainly

composed of type I collagen, the most abundant substance of the natural ECM components (Frantz

et al., 2010), are commonly used in experimental settings. Among other benefits, collagen ma-

trices offer versatility and enable the possibility to produce matrices with different mechanical

properties based on their composition and preparation procedures (Sapudom and Pompe, 2018).

For example, collagen concentrations can be altered or changes in pH can be implemented to

modify the different matrix properties (Roeder et al., 2002).

Polymeric matrices and scaffolds can be integrated in microfluidic devices to add a new com-

plexity level to these simplified representations of the ECM through the creation of complex and

dynamic environments (Li et al., 2012). Specifically, the high level of control over the microflu-

idic system’s properties allows researchers to design experiments under different conditions by,

for example, changing the density of the collagen matrix inside the device or introducing chem-

ical substances in the devices (Plou et al., 2018; Pérez-Rodríguez et al., 2018; Moreno-Arotzena

et al., 2015). These features make microfluidic devices a convenient tool to conduct migration

assays with time-lapse microscopy approaches (Mehta et al., 2022). In these studies, the position

of individual cells is tracked over time, resulting in a time series dataset that can be employed

to quantify migration metrics such as the cells’ persistence time and directionality (Pijuan et al.,

2019; Pérez-Rodríguez et al., 2018).

Apart from cancer cells, several migration studies have been performed with fibroblasts since

they are one of the most well-recognized models of mesenchymal migration (Doyle et al., 2021).

Fibroblasts are the most abundant cells of the connective tissue and are known to synthesize and

organize proteins such as collagen that form the ECM (Petrie and Yamada, 2015; Tschumperlin,

2013). Accordingly, fibroblasts play a relevant role in wound repair (Li and Wang, 2011) and

tissue remodelling (Jacob et al., 2012), both of which require cells to migrate through the ECM

to reach the areas where they will act. Once fibroblasts have reached the injured tissue, they can

promote wound repair by reorganizing the ECM. Moreover, fibroblasts are associated with cancer

cells during tumour development and they play a role on matrix remodelling during metastasis to

promote invasiveness (Kalluri and Zeisberg, 2006; Kalluri, 2016).

Given the relevance of fibroblasts as a model of mesenchymal migration, it is important to

study the mechanisms that define fibroblast motility and the factors that may regulate them (Bear

and Haugh, 2014). One of the first aspects that modulate fibroblast activity during development

and tissue repair is the presence of chemical substances that attract these cells, guiding them
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through chemical gradients in a process known as chemotaxis (Martins et al., 2012). Growth fac-

tors such as PDGF-BB have been shown to act as chemoattractants in these processes (Heldin and

Westermark, 1999; Deuel et al., 1991). Following an injury, some of the cells responsible for the

inflammatory response release these substances to direct fibroblasts, which recognize these sig-

nals and orient themselves towards the direction of higher growth factor concentration (P., 2013).

In addition, cancer cells have been shown to secrete PDGF-BB to recruit and activate fibroblasts

(Bronzert et al., 1987).

Microfluidic devices can be used to study chemically-regulated cell motility by inducing chem-

ical gradients in the microfluidic chambers (Moreno-Arotzena et al., 2015; Li et al., 2012). Taking

the device shown in Fig 3.2C as an example, it can be seen that the it is composed of a central

chamber containing an hydrogel matrix and two adjacent channels where cell media and other

substances can be introduced. Therefore, a chemotactic gradient may be induced by introducing a

substance (e.g., a chemoattractant such as PDGF-BB) in one of the chambers (Moreno-Arotzena

et al., 2014; Cóndor et al., 2018). It is expected that this substance will diffuse through the central

chamber, reaching the cells that are seeded in it. Subsequently, the migration patterns of these cells

may be evaluated and compared to experiments where these chemical factors were not present to

assess the chemotactic effect of the substance used in the study (Moreno-Arotzena et al., 2015).

3.2.2 Model calibration routines and data-driven models

Computational models can be seen as simulators that produce output data from a set of input pa-

rameters. Some input parameters may be known from the literature, or at least expected to lie

inside a known interval. For example, cell doubling times may be available in the literature and

they can be measured experimentally. Nonetheless, other parameters need to be inferred, which

can be a difficult task (Fernández Slezak et al., 2010; Jørgensen et al., 2022). In addition, different

model parameters can present distinct effects on the model outputs depending on their sensitivity

(Fernández Slezak et al., 2010). In other words, small changes in the input values of a sensi-

tive parameter will produce significant changes on model results. On the contrary, less sensitive

parameters will have smaller effects on the simulations and allow for more flexible input param-

eter values. Accordingly, parameter spaces must be explored to quantify parameter uncertainty

(Renardy et al., 2018).

At the most basic level, parameter exploration routines can be performed manually or program-

matically (Read et al., 2018). Manual calibration implies that a user should define a parameter set,

change the model inputs, run the simulation and process the results in a procedural and iterative

manner. These tasks are often repetitive and, once defined, they do not actually require user ac-

tions, though. Therefore, scripts can be written to automatically perform them in a standardized

and efficient manner (Newland et al., 2018; Read et al., 2018). Grid search, for example, is one of

the most straightforward automatic calibration routines (Bergstra and Bengio, 2012). This search

workflow starts with the definition of a search space, which defines the range of the parameter

values to be studied. Subsequently, this algorithm systematically samples every point within the

grid space, providing a comprehensive overview of the model’s response. Alternatively, random
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search algorithms can be employed to randomly sample a limited number of points within this

space to reduce computational costs (Bergstra and Bengio, 2012).

Grid and random search methods require exhaustive parameter exploration. Consequently,

they scale poorly when dealing with problems with several parameters and computationally ex-

pensive models. In contrast, new algorithms such as Bayesian Optimization (BO) predict the best

parameter values for a given task without exhaustively searching the parameter space (Lei et al.,

2021). BO is a methodology based on Bayes’ theorem, commonly used to optimize functions that

can be treated as a black-box, i.e., when the algorithm only needs to know the function inputs and

outputs (Merino-Casallo et al., 2018; Mascheroni et al., 2021; Shahriari et al., 2016). At a basic

level, this methodology takes into account some target data (e.g., data from in vitro experiments)

and knowledge from previous model iterations to adequately choose the next set of parameters to

be tested. Accordingly, BO significantly reduces the number of iterations needed to fit the model

to experimental data (Shahriari et al., 2016).

BO can be regarded as a general optimization algorithm. In optimization problems, an objec-

tive function is defined to measure the quality of the solution (Banga, 2008). Subsequently, model

parameters are varied according to the established model constraints and the objective function

is evaluated. Assuming that BO is applied to optimize a computational model with experimental

data, the objective of this algorithm is to maximize the similarity between the empirical and sim-

ulated datasets (Lei et al., 2021). Therefore, this problem can be defined by Eq 3.1 to find a set of

optimal parameters (x) that maximize the function f (x) in a given parameter space X .

x∗ = argmax
x∈X

f (x) (3.1)

The similarity between two datasets can be measured through metrics such as the Bhattacharyya

coefficient (BC), which quantifies the overlap between two discrete distributions (Comaniciu et al.,

2000). Conversely, distance metrics (e.g., the Kolmogorov–Smirnov statistic) can be used to com-

pare the experimental and computational datasets if the global objective is changed to be a min-

imization problem instead, so that the differences between the measured and generated data are

minimal (Jørgensen et al., 2022; Read et al., 2018; Lei et al., 2021).

3.3 Modelling 3D cell motility in collagen matrices of different den-
sities

3.3.1 Study outline

The study presented in this section serves as the foundation for the computational models pre-

sented in this dissertation. Therefore, here we focused on simulating and characterizing what we

consider to be the most basic complexity level to be addressed in this work, single-cell motility.

However, we implemented a computational model that can be extended to incorporate the bio-

logical behaviours to be presented and discussed in Chapters 4 and 5. Furthermore, we strived
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to assure that our model was biologically relevant and valid by replicating experimental results

previously published by Plou et al. (2018). The premise of this previous work was to use microflu-

idic devices to seed individual cells of a non-small cell lung cancer (NSCLC) cell line in collagen

matrices of varying concentrations and assess how collagen density modulated cell behaviour.

Specifically, Plou et al. (2018) performed migration assays that enabled the study of single-cell

motility by tracking individual cell trajectories for 24 hours and computing metrics such as the

distance travelled by cells and their velocities.

Overall, this previous experimental study showed that cell motility was hindered in matrices

of high collagen concentrations. In fact, as the collagen density increased, cells encountered more

difficulties moving through the ECM due to steric hindrance. Accordingly, cells became increas-

ingly more confined, leading to shorter travel distances and lower cell velocity values. Our goal in

this study was to qualitatively replicate these general trends and results. Accordingly, we based our

model design process on reproducing the experimental setup described by Plou et al. (2018) and

using the published data to calibrate our model. We built our model as an extension to PhysiCell

(Ghaffarizadeh et al., 2018), an open-source modelling framework that simulates cells through a

CBM coupled to a continuum description of the microenvironment. We highlight that, although

the results of previous studies are at the core of our model, we sought to build a flexible framework

that can be extended to other results and scenarios.

3.3.2 Methodology

Modelling framework

The first step of the implementation process consisted of choosing an adequate modelling frame-

work in concordance with our main objective. Since we considered that mechanical interactions

should be regarded at the cellular level, we established that a discrete model would suit the problem

better than a continuum approach. Discrete models are known to have an increased level of com-

plexity, usually associated with higher computational costs (Jeon et al., 2010). Hence, researchers

developed hybrid continuum-discrete models to reduce computational costs by simulating the ex-

tracellular environment as a continuum while still accounting for cell-level information. Recently,

PhysiCell (Ghaffarizadeh et al., 2018) was presented as an open-source hybrid 3D cell simulator.

For the continuum part of the model, an associated piece of software, BioFVM (Ghaffarizadeh

et al., 2016), is used to solve reaction-diffusion equations. In particular, BioFVM can account for

substance diffusion and decay for several user-defined substances, as well as the existence of both

bulk and cell-centred sources and sinks (Ghaffarizadeh et al., 2016).

Based on PhysiCell’s advanced state of development, along with its flexibility to include new

user-defined modules, we chose to develop our model as an extension to this framework. To do so,

we relied on built-in functions that accounted for tracking the cell volume, cell proliferation and

cell death, and we extended the features that model cell motility and cell mechanics. Moreover,

we introduced a representation of the ECM, which the PhysiCell system did not include. Thus,

collagen was incorporated into the model as a non-diffusing substance defined by its density.
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Table 3.1: Reference parameter values for the single-cell motility model.

Symbol Parameter Value Unit References

∆tmech Mechanics time step 0.1 min Ghaffarizadeh et al. (2018)
ρ

0
Collagen Collagen Concentration [2.5, 4.0, 6.0] mg/mL Plou et al. (2018)

µ Drag Coefficient [7.96, 18.42, 39.15] Pa ⋅ s Valero et al. (2018)
R Cell Radius 8.4 µm Ghaffarizadeh et al. (2018)
tpersist Cell persistence time 20.0 min Ghaffarizadeh et al. (2018)

Subsequently, this value was used to compute cell-matrix interactions, as further explained below.

For this first approach, we assumed that the collagen density was uniform throughout the domain

and that cells did not remodel the matrix, so the collagen concentration did not change over time.

More details on the parameters used to implement our model are presented in Table 3.1.

Introducing the mechanical properties of collagen matrices

PhysiCell updates cell positions by computing the effect of cell-cell forces acting on each cell, as

represented in Fig 3.3. Accordingly, considering a cell i interacting with some neighbouring cells,

N(i), we can consider the equilibrium equation taking the over-damped assumption:

0 ≈ ∑
j∈N(i)

(Fi j
cca+Fi j

ccr)+Fi
drag+Fi

loc (3.2)

where Fi j
cca and Fi j

ccr are cell-cell adhesive and repulsive forces, Fi
drag represents dissipative forces

(such as fluid drag and matrix adhesion) and Fi
loc is the net locomotive force. In this work, cells

were simulated as single agents (i.e., one cell per simulation), given that the results presented by

(Plou et al., 2018) indicated that cells moved as individuals and did not interact with each other.

Thus, the cell-cell interaction terms ( Fi j
cca and Fi j

ccr) were disregarded. Furthermore, we assume

that cell-matrix forces can be described through Eq 3.3:

Fi
drag = −µvi (3.3)

where vi is the cell velocity and µ represents the drag coefficient. The mechanical properties of the

collagen matrices used by Plou et al. (2018) were characterized in a previous publication (Valero

et al., 2018) through rheological analysis.

Valero et al. (2018) characterized the viscoelastic properties of collagen matrices using a

stress-controlled rheometer and showed that the dynamic viscosity, which quantifies the material’s

resistance to flow, increased with collagen density. Hence, we expected cells to face increased

difficulty when migrating in denser, and consequently more viscous, matrices. Taking this expec-

tation into account, we considered that the drag coefficient, µ , could be estimated using this data.

Specifically, for each collagen density, we defined µ as the mean value for the measured dynamic

viscosity values, as presented in Table 3.1. The viscosity values were considered to be uniform
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Figure 3.3: Forces acting on the single-cell motility model. (A) Force diagram showing the cell-
cell and cell-matrix interactions present in PhysiCell. Although PhysiCell accounts for cell-cell
adhesion and repulsion of cells inside an interaction radius, this simplified model of single-cell
motility only considers cell-generated locomotive forces and drag forces imposed by the ECM.
(B) Locomotive forces generator function modelled through an estimation of the inverse cumu-
lative distribution of experimental cell velocities. When fed uniformly distributed random values
between 0 and 1 (x-axis), the represented function produced a new set of values that followed the
desired force distribution (y-axis), as shown by the representative boxplot showcased as the output
of this function. (C) Implemented workflow to model cell-generated locomotive forces, consider-
ing no cell-cell interactions. At an average of 20 simulated minutes, cells were allowed to change
their velocity both in magnitude and direction. Accordingly, at those time points, we generated
a new force value through the inverse sampling method. The output of this function was subse-
quently incorporated into the equation of motion producing three different velocity distributions,
each corresponding to a matrix density value.
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throughout the domain since we assumed that, as a first approach, the collagen density was also

uniform.

Defining cell-generated forces

The results obtained by Plou et al. (2018) showed that there was a diversity of behaviours in cell

motility, as seen by the non-uniform distribution of cell velocities. Taking into account that cell-

cell interactions were not considered in this work, the equation of motion (Eq 3.2) was simplified

to vi = 1
µ

Fi
loc. Therefore, the velocity at which cells moved depended solely on the viscosity of the

collagen matrix, µ , and the locomotive forces generated by the cells. Given that we assumed that

this viscosity was uniform for each collagen concentration and given by a constant µ , it was ap-

parent that the heterogeneity in behaviour came from the locomotive forces. Thus, we defined that

the distribution of forces should resemble the velocity distribution characterized experimentally.

We considered that cells were able to change their velocity as a result of a change in the

magnitude and direction of the active locomotive forces. This ocurred stochastically and multiple

times during the simulations, according to the cells’ persistence time, as given by Eq 3.4:

P(vupdate) =
∆tmech

tpersist
(3.4)

where, P(vupdate) is the probability of changing cell velocity, ∆tmech is the time step at which me-

chanical interactions were computed, and tpersist is the cell’s persistence time. The values assigned

to these model parameters can be found in Table 3.1. Regarding the magnitude update, we needed

to create a function that generated random values following the force distribution that, in turn,

would produce velocity distributions similar to those measured in the experiments. We chose to

solve this problem through the inverse transform sampling method, which is generally used to

obtain random values from any probability distribution. In particular, the inverse cumulative dis-

tribution is computed and, by feeding this function uniformly random numbers between 0 and 1,

it generates a range of values that follows the distribution we aimed to model, as represented in

Fig 3.3B.

Henceforth, we created a generator function by estimating an inverse cumulative density func-

tion from the experimental cumulative density distribution, which ultimately resulted in Eq 3.5:

Floc(x) = 1.56x3+3.27x2+0.07x+0.06 (3.5)

It must be noted that, as stated previously, our objective was to capture the general tendencies seen

experimentally and not to single-handily replicate the experimental data on a small scale. Hence,

we chose to estimate a general curve based on the three available empirical cumulative cell veloc-

ity distributions presented in Plou et al. (2018) (for the different collagen concentrations), so that it

could provide good results for all collagen densities, rather than fit the model to each curve. Sub-

sequently, we iteratively changed its coefficients based on the obtained velocity distributions, so

that the results resembled those seen experimentally. An extensive study on how these parameters
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may influence our results can be found in Appendix B, Section B.1. Furthermore, this analysis

also includes an overview of how the model may respond to other density distribution functions.

Finally, to compute the direction of these forces, it was assumed that the cells adopted a com-

pletely random walk. Therefore, every time the velocity of a cell i was updated, a unit vector

that defines a random direction, ei, was computed. Afterwards, this value was multiplied by the

magnitude value given by Eq 3.5, thus defining Fi
loc:

Fi
loc = Flocei (3.6)

Simulation workflow

Our simulations aimed to reproduce the experimental setup employed by (Plou et al., 2018) to

track cell trajectories and cell speeds for a period of 24 hours. We considered a single cell for each

simulation, taking into account that we did not consider cell-cell interactions, and we tracked its

trajectory and recorded spatial data at the same time points as those considered in the experiments

(i.e., every 20 minutes). Furthermore, we consider that cells cannot duplicate to meet the require-

ments of this study, namely, avoiding cell-cell interactions. Moreover, given that the expected

lifetime of the NSCLC cell line surpasses 24 hours, cells were programmed not to enter cell death

during the simulations.

Similar to what was done experimentally, we computed the mean cell velocity by taking the

average value of cell velocities, calculated as the distance travelled between time points, divided

by the recording time. Additionally, we computed effective cell velocities as the distance between

the initial and final positions of the cell, divided by the time of the simulation. However, exper-

imental quantification was previously conducted using 2D imaging techniques, through confocal

microscopy, and these results were presented in the form of 2D plots. Accordingly, we followed

the same data processing procedures to facilitate the comparison between the experimental and

computational results. This simulation workflow, summarized in Fig 3.4, was used to run 80 repli-

cates for each of the matrix density values, resulting in a similar number of data points to those

obtained experimentally. Moreover, we manually calibrated the model by comparing its outputs

with the qualitative results published by Plou et al. (2018).

3.3.3 Results

Increasing values of collagen density hinder individual cell migration

As previously stated, this work aimed to define cell-generated forces and to evaluate the model’s

ability to qualitatively describe the effect of matrix density on individual cell migration. In fact,

our results show that cell trajectories become more contained as the collagen concentration in-

creases, as represented in Fig 3.5. It is important to state that regarding individual cell trajectories,

the experimental results show that cells appear to spread out in a horizontal direction. We stipulate

that this behaviour is promoted by the alignment of the collagen fibres, which is a result of the

procedures used to fill out the microfluidic chips and collagen polymerization and has been shown
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Figure 3.4: Simulation and calibration workflow for the single-cell motility model. Single cells
were initialized and their trajectories were tracked and recorded. Mean and effective velocities
were computed from the recorded spatial data and manual calibration was performed to find the
model input parameters that produced the best results in comparison with the available qualitative
empirical data.

to regulate cell migration by promoting more directed migration patterns (Del Amo et al., 2018).

In contrast, simulated cells adopt more random motility patterns. However, this outcome is ex-

pected since we did not define a preferential direction of migration, as our focus was studying cell

movement in general and not replicating individual cell trajectories. Nonetheless, considering that

it has been shown that fibre alignment can affect cell motility (Del Amo et al., 2018; Fraley et al.,

2015), the model could be easily extended to consider directionality through Eq 3.6 by defining

a preferential direction, rather than a random vector. In terms of distance travelled, the computa-

tional and simulated results are similar. We note that although these results are presented through

2D plots, cells migrate in 3D space in both the simulated and experimental conditions.

Furthermore, our results show that both mean and effective cell velocities adopted smaller val-

ues as matrices present higher density values, as shown in Fig 3.5 and Table 3.2. Therefore, we

concluded that our simulation results replicated the effect of high ECM density values on individ-

ual cell migration. Fig 3.5 shows that the model generally captures this non-uniform distribution

of cell velocities quite well. As expected, the distribution does not apply to each of the density

values specifically, since we used a general approximation, rather than a specific distribution for

each matrix density value. However, we show that good results can be achieved without the need

for an increased level of complexity.

3.3.4 Conclusions

In this study, we presented a centre-based model extension to simulate individual and collective

cell behaviour in which the regulatory effect of matrix density on cell migration and tumour forma-

tion was introduced, using previously published experimental data (Plou et al., 2018), to calibrate

the model. To achieve this, we extended PhysiCell to account for the presence of the ECM and

we characterized its mechanical properties with previously published rheology data (Valero et al.,
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Figure 3.5: Experimental and simulated results for the individual migration setup. (A) Repre-
sentation of relative cell trajectories for the experimental (top) and computational (bottom) results.
As the density of the collagen matrix increases, cells become more confined, resulting in reduced
cell movement. (B) Mean and effective cell velocities for cells seeded in matrices of varying col-
lagen density. Both the experimental (left) and computational (right) results indicate that as the
density increases, cells travel shorter distances due to the restrictions imposed by the matrix and
both the mean and effective speeds decrease.
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Table 3.2: Statistical data of the mean and effective cell velocities for different collagen con-
centrations for both experimental settings and computational simulations.

Vmean [µm/min] N median mean se

Density [mg/mL] Exp Comp Exp Comp Exp Comp Exp Comp
2.5 5181 5840 0.0922 0.1281 0.1696 0.1702 0.0020 0.0019
4.0 3807 5840 0.0537 0.0553 0.1040 0.0746 0.0023 0.0009
6.0 3837 5840 0.0392 0.0266 0.0630 0.0355 0.0023 0.0004

Veff [µm/min] N median mean se

Density [mg/mL] Exp Comp Exp Comp Exp Comp Exp Comp
2.5 82 80 0.0285 0.0390 0.0365 0.0421 0.0020 0.0026
4.0 57 80 0.0105 0.0182 0.0136 0.0185 0.0024 0.0010
6.0 60 80 0.0079 0.0082 0.0086 0.0086 0.0024 0.0004

2018). This model extension was published on GitHub1 and is publicly-available for PhysiCell

users to introduce this representation of the physical microenvironment in their models. Further-

more, we were able to qualitatively describe how an increase in matrix density lead to smaller cell

velocity values and how this, in turn, suppressed the invasion of single cells.

We also introduced a representation of the distribution of cell-generated locomotive forces,

which are fitted to resemble the experimental results. Therefore, the force components were tem-

porally dynamic and distinct for each cell in order to replicate the heterogeneity in cell behaviour

generally observed in nature (Metzner et al., 2021). Using this model, we can capture the het-

erogeneity seen in cell behaviour in our data and other previously published experiments Ehrbar

et al. (2011); Quaranta et al. (2009). In a biological sense, this result indicates that cells are more

likely to migrate at lower speeds. However, in a few instances, cells may migrate at much higher

velocities than the general trend seen for that set of conditions. This result could also be indica-

tive of a low motile fraction, but this is currently not implemented in the model; i.e., all cells are

programmed to migrate with similar behaviour.

Regarding the limitations of our model, one of the shortcomings that we identified was its

simplified depiction of collagen matrices. On the one hand, the model disregards the fibrous

nature of collagen matrices and the effects that it may have on motion directionality, which was

not studied here. On the other hand, we assume that the collagen matrices are homogeneous

materials, which is not completely accurate for these experimental settings, in which there are

local regions with higher and lower numbers of fibres Haeger et al. (2014); Valero et al. (2018).

As a first approach, we are currently choosing to characterize drag forces through the value of the

mean dynamic viscosity of the matrix for each collagen concentration. Nonetheless, we do know

that viscosity values vary according to a normal distribution Valero et al. (2018). Accordingly, we

could have defined the ECM not by constant viscosity values, but through this spatial distribution,

which would provide us with a better description of matrix heterogeneity. However, instead, we

1https://github.com/m2be-igg/PhysiCell-ECM
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considered the ECM as a substance (i.e., collagen density) with constant mechanical properties,

and we indirectly evaluated the heterogeneity through the velocities measured in the experiments.

Hence, the impact of this simplification in our results is quite low.

Finally, due to the centre-based nature of the model, it was not possible to gain a realistic

approximation of how cells may deform. However, for this particular study, we consider the

decreased computational cost and the ability to simulate a high number of cells to be preferable to a

detailed representation of the microenvironment and cell geometry. Furthermore, since this model

was fitted specifically to a set of experimental data related to a specific cell line and conditions,

we stipulate that the model may not accurately describe experimental settings with different cell

lines and matrix density values. Nonetheless, we believe that the model could be easily updated

by fitting parameters to other experimental results, while the main mechanisms should not need

significant changes.

3.4 An improved data-driven model of chemically-regulated motility

3.4.1 Study outline

In this work, we aimed to characterize the role of chemotactic gradients induced by PDGF-BB on

human fibroblasts motility using an integrated experimental-computational approach. We based

our implementation on previously published works that characterize the migratory response of

cells seeded in microfluidic devices to chemical gradients (Moreno-Arotzena et al., 2014; Del Amo

et al., 2017). As seen in Fig 3.6, the microfluidic devices were composed of two types of com-

ponents: a central region filled with a collagen-based hydrogel, and two adjacent channels that

acted as reservoirs for culture medium and other substances, such as PDGF-BB The central region

of the devices contained one or three chambers, according to the studied conditions. Based on

the geometry of these devices, we created chemotactic gradients by introducing PDGF-BB in one

of the adjacent channels of the microfluidic devices. However, instead of seeding the fibroblasts

inside collagen matrices embedded in the devices, as done in previous works, we created a cell

monolayer on one of the walls of the cell media channels in contact with the collagen hydrogel.

Thus, we were able to clearly visualize the migration patterns of the fibroblasts, starting at the

monolayer and advancing through the collagen matrix.

In addition, we used a discrete-based computational model to replicate the migration trends

observed in vitro and identify the model parameters that allowed us to reproduce the experimental

data. In particular, we replicated the experimental conditions using a PhysiCell (Ghaffarizadeh

et al., 2018) model, which we extended to account for the presence of chemical substances in

the microenvironment and their effect on cell motility. Using this knowledge and relating it to

the biological meaning of the model parameters, we aimed to understand which mechanisms pro-

duced the chemotactic response of isolated fibroblasts to PDGF-BB gradients. In particular, we

implemented a Python-based automatic optimization pipeline to couple PhysiCell and a publicly-

available BO library (Nogueira, 2014), which allowed us to replicate the experimental results and
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Figure 3.6: Experimental-computational study design to characterize fibroblast motility in
response to chemotactic gradients. (A) Geometry of the microfluidic devices used in our study.
The central microfluidic chamber contains a collagen matrix gel, which fibroblasts entered as they
migrated from the cell monolayer in which they were seeded, as shown in the detailed side-view
representation of the cell monolayer. (B) Three main experimental conditions under study and
their implementation. Chemical gradients are represented through colour gradients which diffuse
from the channel where PDGF-BB was placed. We defined that the monolayer would always be
placed on the top channel, where cells were seeded.

predict which factors have the most significant impact on approximating the computational and

experimental results.

To achieve this, a collaboration was established between the PhD candidate and members of

the Mutiscale in Mechanical and Biological Engineering (M2BE) group, who designed and devel-

oped a set of microfluidic-based experiments to quantify the response of migrating fibroblasts to

chemical stimulation. Furthermore, image processing analysis was performed by these researchers

to measure the distance between the current position of the fibroblasts and their initial position in

the fibroblast monolayer, thus quantifying their advance in the microfluidic device. Therefore, in

this work, we will briefly describe the experimental research process employed to use this data

as it is relevant to understand the computational model subsequently implemented by the PhD

candidate. However, further technical details about the experimental setup and image processing

analysis used in these experiments can be found in the work published by Movilla et al. (2023).

3.4.2 Methodology

Study design

This study aimed to explore three main research questions: (i) describing the effect of chemotac-

tic gradients on cell motility; (ii) evaluating how the response of fibroblasts changed over time;

and (iii) characterizing the chemotactic effect in matrices of distinct collagen concentrations. A

graphical representation of the experiments performed to address each research question is shown

3.6B. The specific objectives of each condition are stated below:

i Condition 1 aimed to characterize the response of migrating fibroblasts to the presence of

a chemical gradient. Furthermore, we have studied how the spatial location of the gradient
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may affect cells differently by considering both experiments where a chemical gradient was

induced from the monolayer channel, and experiments with a chemical gradient induced from

the channel that is opposite to the monolayer. Cells were seeded in collagen matrices with a

concentration of 2.5 mg/mL and the experiments were performed over 4 days.

ii Condition 2 focused on extending the previous configuration for longer periods, specifically

9 days, to define the evolution of the chemotactic effect over time. Three chambers were used

to allow cells to migrate for larger distances, and the collagen density of the matrices was kept

at 2.5 mg/mL. Here, we only created a chemotactic gradient by introducing PDGF-BB in the

opposite channel to the cell monolayer, and we used a control condition.

iii Lastly, Condition 3 aimed to characterize how distinct collagen densities modulated the chemo-

tactic effect. Hence, we used single-chamber microfluidic devices embedded with collagen

matrices with a concentration of 4 mg/mL. We considered a chemotactic gradient created by

introducing PDGF-BB in the opposite channel to the monolayer, as well as a control experi-

ment. Experiments were run over 4 days.

In addition, we performed a short study to quantify intercellular distance and whether it was

modulated by the chemical factors to confirm if cells were moving as individuals or collectively.

The results for this study are presented in Appendix B, Section B.1.5.

Experimental setup

The experiments that generated the data used in this study were conducted in microfluidic de-

vices fabricated in polydimethylsiloxane (PDMS) following the methodology implemented by

Shin et al. (2012). The geometry of the microfluidic devices consisted of a central chamber in

which we introduced the hydrogel and two adjacent media channels that allowed for the introduc-

tion of cell culture medium and other substances (e.g., PDGF-BB). The spatial location of the

media channels enabled the production of chemical gradients through the addition of a growth

factor in one of the channels (Moreno-Arotzena et al., 2014; Del Amo et al., 2017). The study pre-

viously published by Moreno-Arotzena et al. (2014) presents further details about the geometry of

these microfluidic devices.

A type I collagen gel solution was used to prepare collagen hydrogels of different concen-

trations, namely 2.5 and 4.0 mg/mL, following the methodology proposed by Shin et al. (2012).

Furthermore, normal human dermal fibroblasts (NHDF) were transducted with a green fluorescent

protein (GFP) to enable cell tracking and were subsequently added to the side channel of the mi-

crofluidic device to a final dilution of 2.5 x 105 cells/mL to form the fibroblast monolayer. After

24 hours of incubation since hydrogel seeding, 5.0 ng/mL of PDGF-BB was added to one of the

adjacent microfluidic channels. Thus, a chemical gradient was established by a diffusive process

across the hydrogel when PDGF-BB was added to the devices. The adjacent channels were filled

every two days with the appropriate culture medium (i.e., growth medium with PDGF-BB for
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the chemotaxis conditions and growth medium for the control conditions). The experiments were

reproduced one to four independent times, with 4-10 technical replicates in each experiment.

Phase contrast and fluorescent (GFP) images were captured every 24 hours for 4-9 consecutive

days, depending on the experimental condition. The focal plane was selected to be in the middle

along the z-axis of the device, focusing on cells fully embedded within the 3D network. Each im-

age was then automatically evaluated with a custom-made MATLAB script to count the number

of cells in each channel and quantify the advancement of the individual fibroblasts in the perpen-

dicular direction to the monolayer. It was assumed that the position of each fibroblast was given

by its centre, despite the elongated morphology of these cells. Statistical significance between the

distance data for cells grown in environments with and without PDGF-BB was evaluated through

one-way ANOVA tests, followed by a post-hoc Tukey HSD test when necessary.

Model implementation

As done in Section 3.3, our model was implemented in PhysiCell and cell motility was modelled

as a combination of cell-generated locomotive forces and interactions with the environment, as

previously described in Eq 3.2. In addition, we extended our model to consider cell-wall repulsion

(Fi
cwr) between the cells and the walls of the microfluidic device. Thus, cell positions were updated

by computing the effect of all the forces acting on a cell i, as defined by Eq 3.7.

vi =
1
µ

⎛
⎝ ∑j∈N(i)

(Fi j
cca+Fi j

ccr)+Fi
loc+Fi

cwr
⎞
⎠

(3.7)

A force diagram representing these forces is shown in 3.7. In this work, we neglected cell-wall

adhesion forces to better reproduce the in vitro behaviours observed in our microfluidic assays.

In these observations, cells tended to favour migration from the monolayer to invade the 3D col-

lagen matrix. Since we adopted a model simplification that placed cells near a wall to replicate

the monolayer, we established that cell-wall adhesion should be neglected so that cells would pre-

fer invading the matrix. These interactions were modelled through potential functions, as fully

described in previous works (Ghaffarizadeh et al., 2018), and their corresponding coefficient val-

ues are presented in Table 1. Here, we consider that, under these settings, fibroblasts migrate

from the monolayer through the collagen matrices as individual cells, and cell-cell connections

are primarily transient. Thus, as cells do not create permanent cell-cell adhesion structures, their

motility differs from the patterns usually seen during in vivo wound healing, characterized by the

significant formation and maintenance of cell-cell adhesion structures (Sunyer et al., 2016; Ozce-

likkale et al., 2017; Tambe et al., 2011). Accordingly, we focused primarily on the role of the

cell-generated forces.

Additionally, we extended PhysiCell’s standard cell motility functions to provide finer control

over cell movement. Based on our experimental observations, we concluded that, although fibrob-

lasts were seeded in 3D conditions, cells had restricted vertical motion because of the small height

of the microfluidic device, yet this was not reflected in the 2D component. Thus, we defined that
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Figure 3.7: Representation of the forces considered in our computational model. Representation
of the model’s mechanics and cell motility functions. (A) Simplified representation of the force
diagram for the interactions between the cells and the microenvironment. The model considers
cell-cell repulsion and adhesion (Fi j

ccr and Fi j
cca, respectively), repulsion forces between the cells

and the walls that define the boundaries of the computational domain (Fi
crw), cell-generated lo-

comotive forces (Fi
loc j). Furthermore, the model takes into account the interactions between the

cells and the ECM through the drag coefficient given by previously obtained experimental data that
characterize the mechanical properties of collagen matrices (µ). (B, C) Representation of how the
direction of cell-generated forces is computed every time the cell velocity is updated, based on a
set of parameters defined at the start of the simulation (n, b f wd , rlat , rvert). These parameters define
how motility may be restricted in its vertical and lateral components (represented by the coloured
areas) and whether cells are more probable to move towards or away from a defined direction
(represented by the opacity of the coloured areas in the lateral component). The figure shows an
example of a unit vector n that can be chosen based on the represented parameters.
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Table 3.3: Reference parameter values for the chemotaxis model. Values in brackets represent
ranges, showcasing that the parameter values were not fixed and varied based on the configuration
of the simulation to reflect the presence and spatial location of chemotactic gradients.

Symbol Parameter Value Unit References

∆tmech Mechanics time step 0.1 min Ghaffarizadeh et al. (2018)
∆tcell Cell processes time step 6.0 min Ghaffarizadeh et al. (2018)
ρ

0
Collagen Collagen concentration [2.5, 4.0] mg/mL Experimental

µ Drag Coefficient [7.96, 18.42] Pa ⋅ s Valero et al. (2018)
R Cell radius 7.0 µm Thoumine et al. (1999)
RA Cell adhesion distance 1.25R µm Ghaffarizadeh et al. (2018)
tdouble Cell doubling time 50.0 h Gupta et al. (2005), estimated
tdeath Cell lifetime 720.0 h Rubin (2002)
tpersist Cell persistence time [10.0-60.0] min Calibrated
ccca Cell adhesion coefficient [1.0-10.0] - Ghaffarizadeh et al. (2018), calibrated
cccr Cell repulsion coefficient [10.0-100.0] - Ghaffarizadeh et al. (2018), calibrated
σ Locomotive forces factor [0.0-6.0] - Calibrated
b f wd Forward bias [0.0-1.0] - Calibrated
rlat Lateral restriction factor [0.0-1.0] - Calibrated
rvert Vertical restriction factor [0.0-1.0] - Calibrated

our model should enable restriction over these two components of cell motility independently. We

achieved this by introducing two new model parameters, rlat and rvert , to be defined in more detail

in the text. In addition, we aimed to model the effect of chemotaxis while still preserving some of

the randomness seen in cell movement. In order words, we defined that, in our model, fibroblasts

seeded in the presence of PDGF-BB should have a greater probability to move along the resulting

chemotactic gradient. Yet, they must retain some freedom to move in the opposite direction. Thus,

we defined a new parameter, b f wd , which modulated the probability of moving towards a given

gradient. Taking this into consideration, we established that, every time cell-generated forces were

updated for a cell i, their components were defined by Eq 3.8.

Fi
loc = Floc ⋅σ ⋅ei(n,b f wd ,rlat ,rvert) (3.8)

Here, ei is a random unit vector that represents the direction of the forces and is defined according

to user-defined parameters (n, b f wd rlat , rvert). As previously stated, rlat and rvert regulated the

range of lateral and vertical movement, respectively. For example, if rvert was defined as 0, the cells

were able to move freely in 3D, yet if this parameter had a value of 1, the cellular movement would

be completely restricted to 2D. A similar approach applies to rlat , which determined whether

cell motility strictly followed a bias vector, n, or if cells could stray away laterally from this

direction. The probability of a cell moving towards or away from n was given by b f wd . For a user-

defined value of 0, the cell always moved away from the n, and for a value of 1 the cell always

moved towardsn. In the current version of the model, we assumed n to be a normal vector to the

monolayer, which pointed towards the opposite wall. The effect of these parameters is visually

represented in Fig 3.7 (subfigures B and C).
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Moreover, Fi
loc describes the magnitude of cell-generated forces. To capture the heteroge-

neous behaviour of cell movement, we modelled force magnitudes through a Rayleigh distribution,

a positively-skewed distribution, defined by its mean value (σ ), following previously published

works (Mark et al., 2018). Accordingly, the magnitude of cell-generated forces was not fixed, but

rather varied over time. Hence, we were able to reproduce some of the variability in cell move-

ment that may arise due to cell-matrix interactions, which we did not explicitly account for in our

model. We considered that the cell persistence time was regulated by the presence of PDGF-BB

and fitted its value for every experimental condition. The range that defined the parameter search

space for this model input is presented in Table 3.3.

Regarding cell proliferation and death, we considered a simple cell cycling model that was

defined by the cell proliferation rate, and we modelled apoptosis by defining a cell death rate. The

selected values for these model parameters were based on results found in the literature (Rubin,

2002; Gupta et al., 2005) and the observed behaviours in our experiments, and they can be found

in Table 3.3. As we aimed to use our computational model in combination with data from in vitro

experiments, the model required some refinements to accurately replicate the experimental design.

Having this into account, the computational domain was defined to resemble the central region of

the microfluidic chips. Besides, cells were initialized to reproduce a simplified representation of a

monolayer in the top wall of the computational domain, forming a hexagonal grid in which cells

did not touch their neighbours.

Model optimization

In this study, we aimed to maximize the similarity between the computational and experimental

datasets for each of the conditions under study. Accordingly, we defined a fitting function that took

into account both datasets to compute their similarity as given by the BC, which is a metric that

can be used to compute the similarity between two discrete distributions (Comaniciu et al., 2000).

Particularly, here we considered the normalized in vitro and in silico histograms for the distance

travelled by cells at each day. Having defined these data structures, the similarity between each

bin of the histogram (hist i) was computed and the BC was calculated based on Eq 3.9. Given that

our results consist of data representative of several days, we computed the BC for each day and,

subsequently, we calculated the average of these values.

BC =
N

∑
i=1

√
hist i

experimental ⋅hist i
simulated (3.9)

We implemented BO into our computational framework by building a Python-based pipeline

that linked the compiled C++ PhysiCell code to in-house Python scripts that analyse the exper-

imental and computational data to compute the similarity between the two datasets, as defined

by the BC. Additionally, we used a publicly available Python package that implements BO algo-

rithms (Nogueira, 2014) and integrated it into our framework to find the parameters that maximize

the similarity between experimental and computational data, as shown in Fig 3.8. As an initial
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Figure 3.8: Simulation and optimization workflow for the chemotaxis model. The optimization
framework was composed by three levels: the model (PhysiCell), the data-analysis component
(in-house Python scripts) and the optimization algorithm (developed by Nogueira (2014)). Input
parameters at the start of the simulation were defined by the BO algorithm based on a set of user-
defined ranges, presented in Table 3.3. It was defined that the model would start by exploring 3
random points in the parameter space, and subsequently select the next values to be evaluated.
At each iteration, the algorithm selected the parameter values that provided the best similarity
results for the previous iterations, and estimated a new set of parameters to converge to a solution.
This process was repeated during 25 iterations. At each iteration, the second level was run 3
times and the average BC value was computed. In turn, every time the second level was run, the
PhysiCell model was called 3 times, to get a total number of cells similar to that obtained for in
vitro experiments.

approach, we used the experimental data for the control conditions to calibrate the model param-

eters that regulate cell motility’, previously presented in Table 3.3, without taking into account

the effect of PDGF-BB. Henceforth, we defined an optimization routine that started by sampling

three random points of the parameter space. This was done to avoid converging to a local solution

of the maximization problem without exploring the parameter space, overlooking other possible

solutions.

For the following iterations, the optimization algorithm chose new parameter values based on

the knowledge gathered from other iterations, i.e., which values produced the maximal similarity

values. Subsequently, we assumed that the presence of PDGF-BB would primarily lead to changes

in the persistence time, the magnitude of forces, and the lateral restriction and forward motility bias

factors. Hence, we fixed the remaining parameters and ran the optimization algorithm focusing

solely on these values. In addition, we probed the parameter space at the start with the optimization

pipeline with the best set of parameters obtained for the control conditions, as we assumed that

these values had biological significance and should be sampled. To reduce the computational cost
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of running a large number of simulations, we narrowed the size of the parameter search space at

each iteration through the sequential domain reduction technique (Stander and Craig, 2002). This

approach was offered by the Python library in use (Nogueira, 2014). Hence, at each new iteration,

the region of interest of the parameter space was updated based on the results of the previous

iteration to be centred around the parameters that maximized the similarity. Besides, the size of

the region of interest was reduced. Consequently, the optimization function was less exploratory

but converged faster to an optimal value.

Simulation workflow

As shown in Fig 3.8, each PhysiCell model simulation was comprised of 118 cells, and 3 repli-

cates were considered to achieve the same number of data points as in the experimental results,

approximately. Furthermore, at each iteration of the optimization algorithm, we considered three

independent sets of computational results. For each dataset, the BC was computed in regards to the

experimental data, and we considered the average similarity for these values to compute a mean

BC value, that was passed to the optimization algorithm as our target metric. The BO algorithm

consisted of a total of 25 iterations for each of the experimental conditions. At the end of the

optimization pipeline, we selected the parameter combinations that maximized our optimization

function. In cases where distinct parameter sets produced similar optimal values, we analysed the

results and selected the best parameters based on their biological significance and their coherence

with the chemical gradients produced under each experimental condition.

3.4.3 Results

PDGF-BB gradients induce and guide human fibroblast motility

In Condition 1, we focused on characterizing the chemotactic effect of PDGF-BB on fibroblasts

seeded in single-chamber devices with 2.5 mg/mL collagen matrices in the direction perpendicular

to the monolayer. The results of this study are shown in Fig 3.9. Comparing the control experiment

with those where PDGF-BB was present (i.e., monolayer channel (MC) opposite channel (OC)

conditions), we observed that fibroblasts presented a more homogeneous spatial distribution in the

presence of this chemoattractant substance, as shown in Fig 3.9A. Moreover, we observed that this

behaviour was further enhanced when PDGF-BB was placed in the OC. The enhanced motility of

fibroblasts in the presence of PDGF-BB started being apparent after 24 hours, and it became more

evident over time. Fig 3.9B presents the distribution of the travelled distances for each day of

the experimental conditions. This quantitative representation allowed us to verify the previously

described behaviours. After 48 hours, the median travelled distances were 96.8, 143.6 and 201.2

µm, for the control, MC and OC conditions, respectively. Therefore, the median values for the

travelled distances were increased by 48.3% when PDGF-BB was added in the MC, and there was

an increase of 107.8% when it was placed in the OC. Similarly, after 96 hours the median travelled

distances were 141.6, 220.4 and 310.0 µm, corresponding to an increase of 55.6% and 118.9% for

the aforementioned conditions. Furthermore, the performed statistical analysis indicated that the
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differences between the distance data were statistically significant for all of the studied conditions

(p-value < 0.001).

These results suggest that the presence of PDGF-BB enhanced the motility of fibroblasts,

allowing them to advance farther into the microfluidic chip. It is also apparent that the direction of

the chemical gradient was a relevant factor to promote cell migration. When the chemotactic factor

was placed in the MC, cells showed enhanced motility in comparison to the control conditions.

However, this effect was more pronounced when PDGF-BB was placed in the OC. We conducted

additional experiments to test if the migration patterns of fibroblast would change in response

to the use of PDGF-BB at a higher concentration. Additionally, we performed another study

in which we ceased the administration of PDGF-BB at 48 hours. Overall, we observed that the

distances travelled by fibroblasts were not affected by these conditions. These results can be found

in Appendix B, Section B.1.3.

Model predictions suggest that active cell forces define the response to chemotactic gradients

Using the data presented in the previous section, we implemented and calibrated a computational

model to predict the underlying mechanisms of the observed motility patterns. We used a discrete-

based model to study fibroblast motility as a combination of purely random and gradient-based

migration. In addition, we adjusted the model input parameters to capture the characteristic be-

haviours of each experimental condition, and we defined the computational domain to replicate

an approximated geometry of the microfluidic devices used in the experiments. We used our ex-

perimental data alongside automatic optimization techniques to identify the model parameters that

were the most relevant to replicate the observed in vitro results. During the optimization proce-

dure, we considered the magnitude of the active cell locomotive forces (σ ), the lateral and vertical

movement restriction factors (rlat and rvert , respectively), the probability of moving towards or

away from the OC (b f wd) and the motility persistence time (tpersist). Using this approach, we tuned

our computational model to produce results similar to the experimental data. Fig 3.9C shows the

overlap between the experimental and computational distributions for the distances travelled by

fibroblasts over time, under control conditions. We conclude that datasets are similar, as indicated

by the similarity coefficient (BC), also presented in this figure. However, we recognize that, at

day 4, the simulations produced distance results that were more normally distributed than the ex-

perimental data. Hence, we propose that the model may not be able to account for the different

dynamics that ECM cur at the leading edge of the invasion, where there are fewer cells usually

named as leaders, and the trailing edge, which presents a larger number of cells characterized as

followers (Mayor and Etienne-Manneville, 2016). This phenomenon has been documented exten-

sively in collective cell migration but, since our model considers individual cell motility, it was

not possible to replicate it in this work. The BC values for the conditions described in the pre-

vious section are represented in Table 3.4, alongside the parameter values that provided the best

similarity values between experimental and computational data.

Comparing the three conditions under study, we concluded that the forward bias (b f wd) should

be reduced to simulate the results obtained when PDGF-BB was added to the MC, whereas it
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Figure 3.9: Experimental and computational results for the travelled distances in 2.5 mg/mL
matrices over 4 days. (A) Spatial distribution of migrating fibroblasts seeded in microfluidic de-
vices over 4 days, with and without the introduction of PDGF-BB at a concentration of 5 ng/mL.
(B) Quantification of the distances travelled by fibroblasts, with and without chemical stimula-
tion. Distances were computed based on the perpendicular distance between the current position
of each cell and the position of the monolayer. The differences between all groups on each day of
experiments were evaluated to be statistically significant (p-value < 0.001). (C) Overlap between
the experimental and computational results for the distribution of the distances travelled by cells
over 4 days, under control conditions. The represented histograms serve as a graphical represen-
tation of the similarity between the two datasets and showcase the model’s ability to replicate the
experimental data. Similarity was computed through the BC, which evaluates the overlap between
two discrete histograms and quantifies it as a value between 0 (representing no overlap between
the two groups) and 1 (representing two identical groups). We ran 3 replicates for our simulations
and computed the BC between simulation results and experimental data for each group.
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Table 3.4: Model optimization results for the experiments where fibroblasts were grown in
2.5 mg/mL collagen matrices over 4 days. We tuned our computational model through an auto-
matic optimization procedure based on BO to replicate each of the experimental conditions stud-
ied for fibroblasts seeded in 2.5 mg/mL collagen matrices. We quantified the similarity between
the experimental and computational data using the BC, which measures the overlap between two
datasets and defines it as a value between 0 (no overlap) and 1(maximum similarity). The table
shows the most relevant model input parameters that produced the best similarity values, alongside
their values. The addition of PDGF-BB could be replicated through an increase in the magnitude
of the cells’ active locomotive forces (σ ) and the cells’ persistence time (tpersist), which resulted
in faster and more directed movement, respectively. In turn, the forward bias value (b f wd) was
modified to reflect the direction of the chemotactic gradient. For the MC experiments, the bias
factor was decreased to reflect the attraction of cells towards the monolayer, where the chemical
concentration was highest. On the contrary, the addition of PDGF-BB in the OC was simulated by
increasing the bias factor.

Condition Parameter Values BC Value
σ tpersist b f wd rlat rvert

Control 1.4 17.2 0.56
0.76 0.36

0.972 ± 0.004
PDGF-BB in the monolayer channel 2.4 21.0 0.55 0.975 ± 0.001
PDGF-BB in the opposite channel 2.0 24.4 0.58 0.937 ± 0.004

should be increased to replicate the OC results. In other words, to replicate the results of the MC

experiments, the best simulation results were obtained when cells were more likely to migrate

backwards in comparison to the control conditions. On the contrary, to achieve the behaviour

observed when PDGF-BB was introduced in the ECM , the probability of migrating towards this

channel had to be increased. This is coherent with the expected PDGF-BB gradient for each

of these cases. In regard to the cell-generated forces, the model results obtained for σ seem to

indicate that active cell forces should be stronger in the presence of PDGF-BB than in control

conditions. Moreover, the magnitude of these forces had to be further enhanced to replicate the

MC experiments. Lastly, we concluded that our model suggests that the presence of PDGF-BB

had a role in regulating cell directionality, since the cell persistence times had to be increased to

replicate the experimental data. Therefore, we highlight the role of chemotaxis, which induces cell

movement and directionality, in contrast to chemokinesis, which only stimulates cell movement in

random patterns (Kamiyama et al., 1998). Nonetheless, these observations should be interpreted

as model predictions that require experimental validation, using techniques tailored to quantify the

variables identified by the model at the cell level.

The chemotactic effect of PDGF-BB is persistent over time

To assess the effect of PDGF-BB on fibroblast motility over extended periods, in Condition 2 we

extended our previous experimental configuration to include three chambers instead of a single

chamber. Experiments were run for 9 days, and we considered a collagen density of 2.5 mg/mL.

Besides, we only performed control and OC experiments, as these proved to provide the most
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Figure 3.10: Experimental and computational results for the travelled distances in 2.5 mg/mL
matrices over 9 days. (A) Spatial distribution of migrating fibroblasts. (B) Quantification of the
experimental and computational distances travelled by fibroblasts in collagen matrices. Comparing
the experimental and computational data, the similarity values indicate that the model was able
to capture the general trends of the migrating fibroblasts (BC > 0.93). Nevertheless, the direct
comparison of both datasets shows that the model produced larger distances values than those
observed experimentally during the last days of simulations, specifically under control conditions.

significant results in the previous sections. Fig 3.10A shows that the presence of a PDGF-BB

gradient induced enhanced fibroblast motility. We observed that after 216 hours the fibroblasts

seeded in matrices with chemical stimulation were able to migrate twice as much as those seeded

in control conditions. This was validated by the quantitative results for this metric, presented in

Fig 3.10B. The median values for the distance travelled by fibroblasts after 48 hours were 65.6 and

161.0 µm, for the control and the PDGF-BB assays, respectively. Hence, we concluded that the

presence of PDGF-BB lead to an increase of 145.4%. After 216 hours, the median value increased

from 205.7 µm in the control conditions to 449.2 µm in the presence of the chemical factor. In

turn, this represented an increase of 118.3%, showcasing once more the enhanced motility of

fibroblasts seeded in the presence of PDGF-BB. Furthermore, the performed statistical analysis

indicated that the differences between the distance data in the absence and presence of PDGF-BB

were statistically significant (p-value < 0.001).

We also studied the effect of chemical stimulation over 9 days through our computational

model. Henceforth, we used the parameter values that provided the best results for the experi-

ments presented in the previous section. Particularly, we considered the values obtained for the

control condition and the assays in which PDGF-BB was introduced in the opposite channel to the
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Figure 3.11: Experimental and computational results for the travelled distances in 4.0 mg/mL
matrices over 4 days. Quantification of the experimental and computational distances travelled
by fibroblasts. Comparing the experimental and computational data, we conclude that our model
was able to accurately replicate the emergent behaviours (BC > 0.96).

monolayer. We ran the simulations for increased periods to resemble the new experiments, consid-

ering a total of 9 simulated days. We compared the experimental and computational datasets and

obtained a BC of 0.93 for the control conditions, and a BC of 0.96 for the condition with chemical

stimulation. These results suggest that, despite a small decrease in the BC values, the same input

parameters values were able to replicate the experimental data for both the experiments carried out

for 4 days and those that lasted for 9 days. Consequently, it is apparent that, at the computational

level, there were no significant differences in cell behaviour despite the extended simulation time.

Comparing the two datasets represented in Fig 3.10B for the control conditions, we can conclude

that the model was able to replicate the experimental data during the first days of simulation.

However, by day 7, we observed that the simulated values were larger than the values obtained

experimentally. Thus, we propose that the motility mechanisms defined by the initial model pa-

rameters did not fully capture cell behaviour in the last days of experiments. The same pattern

could be observed to a lesser extent for the condition that considered chemical stimulation.

Collagen density hinders the chemotactic effect of PDGF-BB

In Condition 3, we aimed to assess how differences in the concentration of collagen modulated the

cell response to the presence of PDGF-BB gradients. Therefore, we embedded collagen matrices

with a density of 4.0 mg/mL in single-chamber microfluidic devices. As in Condition 2, two

experiments were performed (control and OC). The results of this study are shown in Fig 3.10.

Based on this data, we concluded that fibroblast motility was enhanced when PDGF-BB was

introduced in the system, as we also observed in the previous sections. Furthermore, statistical

analysis indicated that the differences between the distance data in the absence and presence of

PDGF-BB were still statistically significant (p-value < 0.001).
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After 48 hours, the median values were 106.3 and 148.9 µm for the control condition and the

experiments with PDGF-BB, respectively. Accordingly, the travelled distance values increased by

40.2% due to the addition of the chemical factor. Similarly, after 96 hours there was an increase of

61.6%, as the median value increased from 165.8 µm for the control conditions, to 268.1 µm for the

OC experiments. Nonetheless, we should consider that, as we have previously demonstrated, the

median value for the travelled distances after 96 hours increased by 118% for fibroblasts seeded in

collagen matrices with a concentration of 2.5 mg/mL. Hence, even though motility was enhanced

by the addition of PDGF-BB in 4.0 mg/mL matrices, the resulting chemotactic effect was not

as strong as that observed for cells seeded in matrices with lower collagen densities. To justify

these results, we suggest that the diffusion of PDGF-BB was faster in matrices with low collagen

densities (i.e., matrices with larger pore size), which facilitated the chemotactic effect. In addition,

cells may have faced some difficulty when entering the collagen matrices, probably due to the

increased density values. A more in-depth comparison between the results obtained for distinct

collagen densities can be found in Appendix B, Section B.1.4.

As done in the previous sections, we simulated these experiments with our computational

model and used the experimental data to identify the most relevant input parameters to replicate

the observed migration trends. Moreover, we compared the values we obtained for this condi-

tion to those we have obtained for the experiments considering a collagen density of 2.5 mg/mL.

We represented the presence of the collagen matrix in our model through its physical properties,

namely its viscosity, which had a direct effect on the motility of each cell. We ran our model opti-

mization pipeline using the presented experimental data as our target data, and we studied which

model input parameters values produced the best similarity results. Table 3 presents the parame-

ters that were the most relevant to replicate the experimental data, alongside their values and the

associated BC value. Once again, we observed that the parameters that define the active cell motil-

ity forces (i.e., σ , b f wd and tpersist) were identified by the computational framework as the main

regulators of the chemotactic response. In addition, the model results suggested that the vertical

restriction factor should increase in comparison to previous simulations, which we assume to be

representative of the higher confinement levels that cells face as the collagen density increases.

In regard to the parameters that modulate the cell-generated locomotive forces, by compar-

ing control and chemical conditions, we observed similar patterns to those previously described

when PDGF-BB was added to microfluidic devices with 2.5 mg/mL collagen matrices. On the one

hand, to replicate the chemotactic effect produced by PDGF-BB, the best set of results was ob-

tained when the magnitude of the cell-generated forces was increased. Similarly, these results also

relied on higher values for the forward bias, which dictated that cells were more likely to move

towards the channel opposite to the monolayer. Unlike the previous results showed, though, we

did not find a significant difference between the persistence times obtained for the control and the

PDGF-BB conditions. However, we observed that the persistence time for these simulations (49.8

minutes) was particularly higher than those obtained for lower collagen concentrations (17.2-24.4

minutes). Hence, it is suggested that fibroblasts seeded in collagen matrices of higher concen-

tration changed the magnitude and direction of their locomotive forces fewer times than those
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Table 3.5: Model optimization results for the experiments where fibroblasts were grown in
4.0 mg/mL collagen matrices over 4 days. The table shows the most relevant model input param-
eters that produced the best similarity values, alongside their values. The similarity between the
experimental and computational datasets is given by the BC, which is defined as a value between
0 and 1, with 1 corresponding to maximum similarity. As suggested by the results shown in the
previous sections, the addition of PDGF-BB seems to increase the magnitude of cell-generated
forces and cell directionality. In addition, it is apparent based on these results that the increased
density of the collagen matrices promoted more restricted migration patterns, as given by the high
vertical restriction factor values, and more directed movement, indicated by the high persistence
times.

Condition Parameter Values BC Value
σ tpersist b f wd rlat rvert

Control 2.8
49.8

0.56
0.89 0.36

0.972 ± 0.004
PDGF-BB in the opposite channel 3.2 0.61 0.937 ± 0.004

seeded in low concentrations. Lastly, we highlight that the magnitude of the active cell forces

was higher in these simulations than those obtained in the previous sections. In other words, the

computational results suggested that the cells applied stronger forces to move through the matrix.

As previously stated, these results should be interpreted as model predictions about the underlying

mechanisms of fibroblast chemotaxis at the cell level, yet they must be validated.

3.4.4 Conclusions

Here, we presented an improved data-informed that allowed us to have more control over cell

motility and simulate the effect of chemotactic gradients. In addition, we were able to calibrate

our model with the use of novel experimental quantitative data. Both the PhysiCell model ex-

tensions to simulate chemotaxis and the optimization pipeline scripts are publicly-available on

GitHub2. Overall, in this work we observed that the presence of PDGF-BB promoted cell motility

in fibroblasts as shown in previous works (Heldin and Westermark, 1999). Moreover, our results

showed that fibroblast motility differed based on the direction of the induced chemotactic gradient.

Comparing the datasets for the MC and OC experiments, we remark that motility was enhanced

in both cases, but the invasion of the collagen matrix by fibroblasts was more pronounced when

PDGF-BB was added to the OC. We propose that motility was enhanced but limited in the MC

condition because cells were already close to the PDGF-BB source. When PDGF-BB was added

to the OC, we postulate that matrix invasion was enhanced due to chemotactic signals sensed by

cells, which promoted the invasion of the collagen matrix to reach the growth factor source. We

further observed that the induced chemical effect produced by the addition of PDGF-BB in the

opposite channel was sustained over larger periods of time, as we have observed the same trends

for experiments that lasted for 9 days.

2https://github.com/m2be-igg/pdgf-induced-motility



3.4 An improved data-driven model of chemically-regulated motility 57

The combined use of our experimental data and a descriptive computational model allowed

us to infer some of the mechanisms that may have originated the migration patterns observed

in vitro. We concluded that the directionality and magnitude of the cell-generated locomotive

forces, as well as the persistence time of the migrating fibroblasts, were key aspects to simulate

the chemotactic effect induced by PDGF-BB. We further observed that the effects imposed on

these parameters were sustained over time. We also highlight that our model enabled us to gain

new insights about the behaviours observed when there were no chemical gradients in the devices.

Generally, our results showed that cells were initially seeded in a collective structure but moved

through the collagen matrix as individuals, as seen in previous works (Miron-Mendoza et al.,

2012). Moreover, we observed that cells seeded under control conditions in particular still showed

a preference to migrate towards the wall opposite to the cell monolayer, even though there was

not a chemotactic gradient guiding them. In our computational model, this was represented by the

increased forward bias values. We infer that this could have been motivated, in the experiments,

by the large number of fibroblasts seeded in the monolayer. Cells may have shifted their motility

to invade the hydrogel and migrate towards cell-free regions, which provided more space for indi-

vidual growth and motility (Oraiopoulou et al., 2018). Consequently, it is possible that fibroblasts

seeded at lower cell concentrations will not migrate as much as there will be more cell-free regions

close to the monolayer. Nevertheless, we observed that, as cells advanced through the microfluidic

chip and reached lower cell density regions, forward motility appeared to have been conserved and

preferred over random movement. Moreover, this behaviour could be representative of a prefer-

ence by cells to invade the 3D microenvironment of the collagen matrices, rather than remaining

attached to the 2D monolayer (Bayless et al., 2009).

Additionally, we considered the effect of the physical properties of the collagen matrices on

the cells’ motility patterns. In regard to the control conditions, we did not detect relevant differ-

ences in the gel invasion between cells seeded in matrices with a collagen density of 2.5 mg/mL

and those with a density of 4 mg/mL. This was consistent with previous works which showed

that the collagen density of the matrices does not influence the spatial distribution of individual

fibroblasts over time (Del Amo et al., 2017). Our model results suggest that, even though the

increased viscosity values may have reduced cell velocity as the cells faced more difficulties to

move through the matrix (Petrie and Yamada, 2015), the enhanced directionality imposed by the

matrix fibres produced similar cell spatial distributions (Dickinson et al., 1994). It was apparent

that fibroblasts adopted more directed and more restricted migration patterns, which we assume

to be due to the confinement levels produced by smaller pore sizes, and increased the magnitude

of the cell-generated forces (Dickinson et al., 1994; Miron-Mendoza et al., 2012). In other words,

whereas cells migrated longer distances in low density matrices, their motility patterns were ran-

dom. Therefore, the resulting displacement values (i.e., the difference between the cell’s final and

initial position) were similar to those seen at high collagen density values.

Our model results suggest that the chemical stimulation of PDGF-BB still ocurred in spite of

the increased matrix density caused by higher collagen concentrations. However, we remark that,

even though the addition of PDGF-BB still enhanced fibroblast motility through an increase in the
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travelled distance values, this effect was not as pronounced as that seen in fibroblasts seeded in

collagen matrices of lower density. Taking into account that the increased collagen density leads

to differences in the structure of the collagen matrices, and, particularly, produces smaller pore

sizes (Kamiyama et al., 1998), we hypothesize that the diffusion of PDGF-BB may have been

affected by these differences. In fact, it is expected that the diffusion coefficient of PDGF-BB

decreases in matrices with reduced pore sizes (Moreno-Arotzena et al., 2014). Therefore, as the

diffusion of PDGF-BB must have been impaired and slowed down by the physical properties of the

matrix, fibroblasts probably presented a delayed and weaker response to the presence of chemical

gradients.

Even though our model produced good results that were very similar to the distance distribu-

tions measured experimentally (BC > 0.93), it presents some limitations. We primarily modelled

the presence of chemotactic gradients and their effects through the initial values of the model’s

input parameters. Accordingly, we assumed that the model response to these factors was constant

over time, which did not fully capture the reality of our experiments. The diffusion of PDGF-BB

is a dynamic process. Thus, it is expected that the chemical gradients may evolve over time and

space. For instance, cells spatially closer to the PDGF-BB source should be more sensitive to the

chemotactic substance than cells that are farther from the source, and thus sense smaller PDGF-BB

concentrations. Similarly, the diffusion of these chemical factors in collagen matrices may be het-

erogeneous, PDGF-BB molecules may degrade or become attached to the proteins of the matrix

(Moreno-Arotzena et al., 2014; Griffith and Swartz, 2006). Therefore, distinct regions of the mi-

crofluidic chip may present higher PDGF-BB concentrations, which would have a local effect on

fibroblast motility. This also applies to the model’s inability to properly reproduce the experimen-

tal results obtained in Condition 2, where fibroblasts were seeded in microfluidic devices with 3

cell chambers. In this case, it would have been especially crucial to be able to simulate the de-

layed chemotactic response of fibroblasts, as it took more time for PDGF-BB to diffuse through

the entire device and reach the cells. However, once this chemical factor reached the cells, their

migration patterns were similar to those seen for Condition 1.

Lastly, we should highlight that our model predictions must be further validated through the

use of techniques more suited to study cell movement at smaller time and spatial scales. For exam-

ple, we confirmed our predictions on the directionality of cell movement by tracking the position

of fibroblasts at a time scale of minutes and not days. These additional assays are described in

Appendix B, Section B.1.6, showing that fibroblast seeded in the same conditions as our main

study present migration persistence times in the order of minutes, in agreement with the model re-

sults. However, the predictions about the vertical restriction factor and force magnitude should be

validated. The former could be achieved by actually quantifying cell movement in the vertical (z)

direction, while the latter entails the use of higher-end technologies. Nonetheless, we believe that

our framework is a valuable tool to make these kinds of predictions to identify the main regulators

of an observed experimental behaviour and plan future experiments accordingly.
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3.5 Summary

In this chapter, we implemented the first building block of this dissertation through the design

of computational models that simulate single-cell motility. Starting with a simple model that

simulated cell motility as the combination of cell-generated and drag forces, we could estimate

the distribution of cell locomotive forces based on experimental data published in the past and

were able to predict that matrix density regulated and hindered single-cell migration. Moreover,

we extended this model to include a more realistic representation of cell-generated forces and how

they are influenced by external stimuli of the microenvironment. Using an automatic optimization

based on Bayesian statistics, we were able to infer which model parameters played a significant

role to reproduce experimental data. Specifically, our computational approach was able to identify

that cell persistence and directionality were influenced by the presence of chemical factors and that

cells exerted stronger forces in response to chemical stimuli and high matrix density. Henceforth,

these results lead to the design of new experiments that confirmed the model predictions in regard

to the cell persistence times, highlighting the relevance of combined experimental-computational

approaches to unravel biological behaviour.

It is also interesting to compare the outputs obtained for each application covered in this chap-

ter. When examining the models’ responses to increases in collagen density, it is clear that the

two applications displayed distinct biological behaviours. In the first scenario, it was assumed that

the ECM had no effect on the cell-generated force generator. In the second case, we added a de-

gree of freedom by defining a variable that controlled the amplitude of locomotive forces, and we

discovered that our model optimization process favoured an increase in this value when collagen

density rose as well. Given that the first example relies on qualitative examination of the experi-

mental data, we are unable to draw a firm conclusion as to why these disparities were identified.

Possibly, the assumption first example oversimplified, and better results could have been achieved

using a dynamic magnitude value. However, these results were satisfactory. Thus, given that this

adaptation was not essential in the first case, this could be representative of biological differences

between the two cell lines used (NSCLC and NHDF). Fibroblasts tend to present a mesenchymal

migration mode that is heavily influenced by the surrounding environment and that relies on creat-

ing cell-matrix adhesions through which cells can sense the properties of the ECM and modulate

their response accordingly. In this case, it makes sense to consider the force magnitude as a func-

tion of matrix density. Conversely, amoeboid-like cells move through the matrix without adhering

to it or changing their force response. Therefore, their motility is hindered when steric hindrance

imposed by matrix fibres is a limiting factor to cell movement. We propose that the cells studied in

the first example relied on a primarily amoeboid phenotype and, thus, good results were achieved

through a general force generator function independent of matrix density. In future experiments,

it would certainly be relevant to confirm this prediction.

Overall, this chapter served as a fundamental starting point to this dissertation, and, in the

chapters to follow, we will extend the computational model described here to account for more

complex phenomena. Furthermore, we established the relevance of parameter estimation routines,
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which will be discussed throughout this document, and we explored how advanced microfluidic-

based experimental configurations allow us to obtain data to calibrate our models, a topic that will

also be addressed in detail in Chapter 4. It must also be stated that the optimization pipeline de-

veloped in this chapter is model agnostic and can be modified to optimize other models, including

higher complexity models as those to be studied in the chapters to follow.



CHAPTER 4
Tumour growth

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Traditional models of tumour growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Modelling tumour spheroid growth in collagen matrices . . . . . . . . . . . . . . . . . 66

4.3.1 Study outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 A review on computational models of cancer glucose metabolism . . . . . . . . . . . 75

4.4.1 Glucose metabolism in cancer cells . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Modelling cellular systems and glucose metabolism . . . . . . . . . . . . . . . . . 79

4.4.3 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

This chapter is based on:

Inês Godinho Gonçalves and José Manuel García-Aznar. "Extracellular matrix density regulates
the formation of tumour spheroids through cell migration." PLoS computational biology 17.2
(2021): e1008764.

Inês Godinho Gonçalves and José Manuel García-Aznar. " Hybrid computational models of multi-
cellular tumour growth considering glucose metabolism." Computational and Structural Biotech-
nology Journal 21 (2023): 1262-1271.

61



62 Tumour growth

4.1 Introduction

Tumours arise from cancer cells with abnormal proliferative potential which divide and form mul-

ticellular structures. A particular area of study that has yet to be understood in cancer devel-

opment is related to metastatic colonization, i.e., how metastatic cells adapt to survive in a new

tissue (Massagué and Obenauf, 2016). Although the large majority of circulating individual tu-

mour cells perish before they are able to produce a secondary tumour, some can invade new tissues

and replicate (Massagué and Obenauf, 2016; Nagrath et al., 2007). In the last few years, studies

have shown that this ability to survive and proliferate in new tissues depends not only on cells

but also on the biophysical microenvironment of the metastatic niche and the cell-matrix interac-

tions (Fidler, 2003). Thus, it is of high importance to understand and characterize how tumour

cells respond to different compositions of the microenvironment, to identify the causes that may

induce a more invasive phenotype and to develop therapeutic strategies that hinder this behaviour

(Massagué and Obenauf, 2016; Carey et al., 2012).

Several studies have studied tumour cells seeded in 3D scaffolds to replicate the initial stages

of growth in avascular tumours (Nyga et al., 2011), creating a setting that can also reflect the

initial stages of metastatic colonization in new tissue. There are several available techniques

used to produce multicellular structures from tumour cells (Lv et al., 2017). multicellular tu-

mour spheroids (MCTSs), for example, can be formed by growing tumour cells in solutions or

non-adhesive substrates and can later be introduced in 3D scaffolds (Reynolds and Weiss, 1992;

Mueller-Klieser, 1987). However, individual cells may also be directly seeded in 3D matrices or

microfluidic devices to understand how cells organize based on the matrix characteristics (Breslin

and O’Driscoll, 2013; Zhang and Nagrath, 2013). In comparison to more traditional cell culturing

techniques, e.g., cultures grown in 2D or in suspension, MCTSs provide a more realistic histologi-

cal and functional depiction of solid tumours and their surrounding microenvironment as observed

in in vivo (Pampaloni et al., 2007).

MCTSs provide a realistic representation of the avascular growth states of tumour growth

(Pampaloni et al., 2007) Yet, it is still unclear how the mechanical properties of 3D scaffolds

modulate tumour growth. On the one hand, it is well established that matrices of higher density

suppress growth by exerting compressive forces on cells, hence producing smaller tumours than

those grown in matrices with low densities (Cheng et al., 2009; Loessner et al., 2013; Helmlinger

et al., 1997). Consequently, the tumour size tends to decrease as the density of the matrix increases.

In general, these experiments have used low-porosity matrices. On the other hand, experimental

studies have also shown that matrices with higher density tend to limit cell movement as cells

are unable to migrate through the matrix due to steric hindrance (Ehrbar et al., 2011; Plou et al.,

2018; Wolf et al., 2013; Cóndor et al., 2019). In turn, this situation promotes individual cell

migration in matrices composed of lower collagen concentrations, causing cells to stray from their

original cluster, which can subsequently affect tumour size (Plou et al., 2018; Mark et al., 2020;

Haeger et al., 2014), as represented in Fig 4.1. Furthermore, the chemical species of the tumour

microenvironment have also been shown to modulate cancer growth, specifically glucose, which
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Figure 4.1: The effect of matrix collagen density on tumour growth. The left subfigure repre-
sents the common assumption that high-density matrices inhibit tumour growth due to compressive
forces that lead to cell arrest. The right subfigure shows that, in high-porosity matrices, individual
cells are able to move freely when collagen density is low, resulting in individual and sparse cells
and no detectable tumours.

is associated with metabolic reprogramming (Casciari et al., 1988, 1992b; Rousset et al., 2022).

This chapter aims to analyse the biological behaviours and external factors that induce tumour

growth, specifically in the avascular development stages, and how thee features can be simulated

through ABMs. Therefore, we firstly provide a brief overview of traditional models of tumour

growth implemented with continuum methods, showcasing how they evolved over time to account

for more detailed spatial descriptions of tumour development. However, these approaches are less

powerful than CBMs to model cell heterogeneity, which is a topic that will be explored in detail

in this chapter. As done in Chapter 3, we investigate the role of mechanical and chemical stimuli

present in the tumour microenvironment. In particular Section 4.3 describes the implementation of

a model extension to the model described in Chapter 3, Section 3.3, to consider cell-cell mechanics

and the cell cycle. Using previously published data of tumour spheroid growth in microfluidic de-

vices, we were able to qualitatively calibrate our model to reproduce the empirical growth curves

and we could make predictions about how spheroid formation was regulated by the collagen den-

sity through cell migration. Moreover, Section 4.4 aims to showcase how previous computational

tumour growth models were employed to investigate nutrient availability and metabolic repro-

gramming. Although we did not implement glucose metabolism in our computational approach,

this review allowed us to understand the current literature on computational models of tumour

growth kinetics that consider glucose metabolism. Moreover, we could identify strategies through

which we could include these representations in our models.

4.2 Traditional models of tumour growth

For several decades, scientists have relied on mathematical and computational models to under-

stand and reproduce tumour growth and several frameworks have been developed to describe the

spatial dynamics of tumours and their microenvironment at different complexity levels (Rejniak

and Anderson, 2011; Altrock et al., 2015; Schaller and Meyer-Hermann, 2006; Araujo, 2004;

Kansal et al., 2000; McEvoy et al., 2020). Some of the simplest models developed were based on
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Figure 4.2: Continuum and discrete models of tumour growth. (A) Representation of simulated
growth curves of avascular models obtained with classical continuum models based on ODEs,
namely the exponential (blue) and Gompertzian (green/orange). Although these models provide
similar results at early stages of growth, only the Gompertzian model is able to reproduce the
saturation in tumour size that is commonly attributed to limited nutrient diffusion once a tumour
reaches a critical size. (B) Examples of discrete, or agent-based, models, which, unlike continuum
approaches, model tumours a group of individual agents that follow a set of rules that characterize
biological phenomena such as proliferation and death. Proliferative cells are shown in cells while
yellow cells represent the necrotic core. In the CPM subfigure, different shades of the same colour
represent distinct cells since a single cell may occupy more than one voxel.

continuum approaches that aimed to replicate the evolution of the number of cells or the size of

a tumour spheroid over time, using ODEs and PDEs (Gerlee, 2013). ODEs can be employed to

model macroscopic tumour growth curves under the assumption that tumours are composed of a

single, spatially homogeneous cell population (Bull et al., 2020). Several growth laws have been

used to this aim, as illustrated in Fig 4.2A. For example, tumour growth can be modelled through

an exponential law that describes growth as being proportional to tumour size, represented by its

volume, V , as written in Eq 4.1.

dV
dt
= αV,where V(t = 0) =V0 (4.1)

Here, α is a growth constant that can be fitted to match a given cell population using experimental
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data and V0 is the initial tumour volume. Exponential growth is an adequate model to reproduce

the initial stages of growth in a tumour spheroid, when a single cell originates two daughter cells

(Murphy et al., 2016). Nonetheless, it fails to capture the subsequent stages where growth becomes

arrested due to the limited amount of nutrients and the increased concentrations of metabolic waste

that induce cell arrest and death (Kunz-Schughart et al., 1998; Casciari et al., 1992b).

The inhibitory effect caused by the limited diffusion can be modelled by modifying the expo-

nential growth law and considering logistic or Gompertzian growth instead (Murphy et al., 2016;

Bull et al., 2020; Benzekry et al., 2014). In the 1960s, Laird (1964) showed that the growth curves

of several tumour types could be described by the Gompertzian equation, a generalization of the

logistic growth law that reproduces an initial fast growth phase, followed by an exponential de-

crease in the tumour’s growth rate that results in tumour size saturation. This model can be defined

by defined by Eq 4.2:

dV
dt
= αe−β tV,where V(t = 0) =V0 (4.2)

where β defines the rate at which growth decays (Benzekry et al., 2014; Norton, 1988). It has

been shown to fit experimental data better than exponential and logistic models (Vaghi et al.,

2020).Nevertheless, growth laws modelled as ODEs are not able to capture the complex tumour

internal spatial organization and structure (Benzekry et al., 2014; Schaller and Meyer-Hermann,

2006). Consequently, more sophisticated models were adapted to capture the internal spatial or-

ganization of tumours and describe growth as a result of insufficient nutrient diffusion that leads

to cell death and quiescence (Greenspan, 1972; Burton, 1966).

PDEs have been used to simulate the effect of the spatial distribution of diffusing factors that

promote or inhibit cell growth and how they modulate the growth rate of tumour cells locally. In

the 1970s, Greenspan (1972) developed a model of tumour growth that took into account how

a single diffusing factor, here assumed to be glucose, influences tumour size. Assuming radial

symmetry and that V(t) = 4
3 πR3(t) where R defines the tumour radius, the Greenspan model can

be defined by Eq 4.3:

dR
dt
= 1

R2 ∫
R

0
f (c)r2dr (4.3)

where c is the local concentration of glucose and f (c) is a function that describes how the cells’

doubling rate changes in function of glucose concentration. Given that glucose is a growth-

promoting factor, f (c) should consider that the local concentration of glucose should increase

the cells’ doubling rate, until a maximum value is reached, where an increase in glucose con-

centration no longer has an effect on the doubling rate (Byrne, 2010). The spatial distribution

of glucose can be modelled as a reaction-diffusion equation and it is assumed that glucose con-

centration decreases from the tumour surface to its core. Furthermore, the glucose consumption

rate can be adjusted to consider different phenotypes, such as proliferating, quiescent and necrotic

(Greenspan, 1972; Burton, 1966). In addition, the Greenspan model can be extended to consider

other substances and reproduce differential behaviours accordingly (Bull et al., 2020).
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The aforementioned continuum-based models have proven to provide realistic descriptions of

tumour growth kinetics at the avascular stages. Nevertheless, these mathematical approaches fail

to undisclosed how tumour growth arises from single-cell behaviour. On the other hand, discrete

models describe cells at the individual level and are thus more suited to reproduce the heteroge-

neous behaviour of biological systems (Metzcar et al., 2019) and the interactions between cells

and the microenvironment (Mathias et al., 2022; Macnamara, 2021; Gonçalves and Garcia-Aznar,

2021). These models simulate cells as individual agents that follow a set of rules that define their

cellular behaviour (e.g., death, proliferation, migration) and how they interact with other cells and

the surrounding microenvironment (Wang et al., 2015). ABMs can be grouped into on-lattice and

off-lattice models. Fig 4.2B shows an illustration of some of the most commonly used on-lattice

and off-lattice models to simulate tumour growth. On-lattice approaches (e.g., CA and CPMs) di-

vide the domain into a grid of cells or voxels, and cells are bound to occupy these specific positions,

which makes them computationally efficient (Bull et al., 2020). Conversely, off-lattice approaches

such as CBM and vertex models provide more realistic representations of cells, yet they can be

considered to be computationally expensive to simulate large tumours (González-Valverde and

García-Aznar, 2017; Rejniak and Anderson, 2011). All of the aforementioned approaches have

been used to simulate tumour growth as reviewed in more detail in (Bull et al., 2020; Macnamara,

2021; Wang et al., 2015).

4.3 Modelling tumour spheroid growth in collagen matrices

4.3.1 Study outline

The work covered in this chapter describes the implementation of a model extension to the model

presented in Chapter 3, Section 3.3, which took into account cell-cell interactions and cell pro-

liferation/death. Therefore, at this stage, a new complexity level was added to our computational

approach that now combines the effect of single-cell motility and drag-imposed forces, already

characterized in the previous chapter, with cell-cell dynamics that need to be evaluated. This work

was also inspired by the experimental studies developed by Plou et al. (2018), where the authors

seeded single cells in collagen matrices embeded in a microfluidic setup during 7 days and charac-

terized how collagen density affected cell organization and tumour growth. The authors concluded

that the matrices with low concentrations of collagen enabled cells to migrate more freely, the in-

creased motility produced sparser and smaller clusters. In contrast, the restrained motility of cells

seeded in matrices of higher collagen density resulted in larger spheroids. Accordingly, it can be

stipulated that even though the invasive capability is low, cell surveillance is enhanced by denser

matrices, as cells aggregate and form stable structures that evolve into secondary tumours (Sapu-

dom et al., 2015; Aceto et al., 2014).

In this adapted experimental configuration, Plou et al. (2018) allowed cells to proliferate for

several days to enable tumour growth. Cell motility metrics were not tracked, and the focus

shifted to quantifying how the tumour spheroid size evolved over time. Thus, cluster areas were
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Table 4.1: Reference parameter values for the tumour model.

Symbol Parameter Value Unit References
∆tmech Mechanics time step 0.1 min Ghaffarizadeh et al. (2018)
∆tcell Cell processes time step 6.0 min Ghaffarizadeh et al. (2018)
ρ

0
Collagen Collagen Concentration [2.5, 4.0, 6.0] mg/mL Plou et al. (2018)

µ Drag Coefficient [7.96, 18.42, 39.15] Pa ⋅ s Valero et al. (2018)
R Cell Radius 8.4 µm Ghaffarizadeh et al. (2018)
RA Cell Adhesion Distance 1.25R µm Ghaffarizadeh et al. (2018)
ccca Adhesion Coefficient 7.2 - Ghaffarizadeh et al. (2018), estimated
cccr Repulsion Coefficient 380 - Ghaffarizadeh et al. (2018), estimated
TKi67− Cell Quiescence Time 6.5 h Ghaffarizadeh et al. (2018), estimated
TKi67+ Cell Proliferation Time 15.5 h Ghaffarizadeh et al. (2018), estimated
rD Cell Death Rate 0.00319 1/h Ghaffarizadeh et al. (2018)

tracked at time points of 1, 3, 5 and 7 days, and the obtained results were compared between the

different matrix density values. The authors also analysed how the cluster eccentricity, measured

at day 7, may vary according to the microenvironment. Therefore, in our computational approach,

we introduced the new model components to account for the new components that needed to be

reproduced (i.e., cell mechanics and proliferation/death) and, subsequently, we reproduced the

experimental setup and its associated post-processing procedures.

4.3.2 Methodology

Modelling framework

As previously stated, in this work we intended that our computational framework combined the

forces that were previously characterized for the single-cell motility model and extend it to take

into account cell-cell adhesion and repulsion and cell cycling. The former could be achieved by

updating the equation of motion to detect and compute cell-cell adhesion and repulsion forces

(Fi j
cca and Fi j

ccr), respectively), resulting in Eq 4.4.

0 ≈ ∑
j∈N(i)

(Fi j
cca+Fi j

ccr)+Fi
drag+Fi

loc (4.4)

PhysiCell custom functions were used to detect cells inside a radius of interaction, RA, at which

cell-cell adhesion started to occurr. Cell-cell repulsion was present only when cells were in contact

with each other (Ghaffarizadeh et al., 2018). Model parameter values can be found in Table 4.1.

Defining cell-cell interactions

Cell-cell interactions are characterized by potential functions as implemented by Ghaffarizadeh

et al. (2018) and are regulated by adhesion and repulsion coefficients, Ccca and Cccr, respectively

(see Table 4.1). In particular, adhesion and repulsion forces between two cells i and j, separated

by a distance of (xi - x j), represented as r, are given by Eqs 4.5 and 4.6:
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Fi j
cca =Ccca∇φ(r) (4.5)

Fi j
ccr =Cccr∇ψ(r) (4.6)

for which ∇φ and ∇ψ , respectively, can be written as:

∇φ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1− ∣r∣RA
)

2 r
∣r∣ if ∣r∣ ≤ RA

0, otherwise
(4.7)

∇ψ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(1− ∣r∣R )
2 r
∣r∣ if ∣r∣ ≤ R

0, otherwise
(4.8)

where RA represents the maximum distance between two cells at which adhesion forces are present,

and R is the maximum distance for which repulsion forces are present. R is, simultaneously, the

radius of a single cell. Below these values, interaction forces between cells are assumed to be null.

Defining cell events

Unlike the previously described setup, cells were allowed to proliferate and undergo apoptosis.

Specifically, it was considered that cells could either be in a quiescent or a proliferative state,

which would correspond to Ki67- and Ki67+, respectively Warth et al. (2014). Taking into account

the cell state for a cell i, represented as Si, the probability of the cell in a Ki67- phase entering a

Ki67+ phase in a time interval [t, t +∆t] can be given by:

Prob(Si(t +∆t) =Ki67+∣Si(t) =Ki67-) = 1−e−
1

TKi67-
∆t ≈ ∆t

TKi67-
(4.9)

where Tki67- represents the time spent in the Ki67- state. Similarly, the probability of a proliferative

cell to enter a quiescent state is:

Prob(Si(t +∆t) =Ki67-∣Si(t) =Ki67+) = 1−e−
1

TKi67+
∆t ≈ ∆t

TKi67+
(4.10)

Regarding cell death for both states, the probability of a cell entering apoptosis, represented by a

state D, is given by the death rate, rD, as described in Eq 4.11.

Prob(Si(t +∆t) =D∣Si(t) =Ki67-/+) = 1−e−rD∆t ≈ rD∆t (4.11)

The time steps (∆t) used in our simulations are coherent to those originally defined by PhysiCell

(Ghaffarizadeh et al., 2018). Accordingly, the time step used for cell processes such as described

above, namely cell death and cell cycle, is in the order of minutes (6 min), whereas the time steps

used for the diffusion and mechanical analyses are, respectively, 0.01 and 0.1 min. PhysiCell

also includes the possibility of modelling proliferation rules as a dynamic process dependent of
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Table 4.2: Parameter values for the post-processing of tumour growth modelling results.

Parameter Values Unit References

z-Height of Interest [-48, 48] µm Estimated
DBSCAN Radius 18 µm Estimated
DBSCAN Minimum Number of Cells 3 (2 at day one) - Estimated

substance concentration. However, we assumed that the experimental settings corresponded to a

well-oxygenated environment, assuming conventional cell culture oxygen values as well as the

high permeability of PDMS-based microfluidic chips (Thomas et al., 2011). Furthermore, given

that the cell concentration was not high, we considered that oxygen’s effect on spheroid formation

could be disregarded. Nonetheless, an extended study of the oxygen levels in our simulations is

provided in Appendix B, Section B.2.2, where it is shown that hypoxia values were not reached.

Cluster classification and metrics

However, we adapted this procedure to our data and decided to automate this process since we

needed to iteratively run simulations and obtain cluster metrics to assess how cell-cell interactions

could be calibrated to obtain better results. To obtain comparable data representations to those

presented by Plou et al. (2018), we used the x and y coordinates of cells present in a height-

defined z-region. We only used a section of the z-axis to obtain a similar selection of cells to what

would be expected from a confocal microscopy analysis, disregarding cells that would be out of

focus. With this spatial data, we used an implementation of the density-based spatial clustering

of applications with noise (DBSCAN) algorithm (Ram et al., 2010) to classify each cell into a

cluster or identify it as an outlier. In particular, we used the implementation offered by scikit-learn

(Pedregosa et al., 2012), a publicly available Python module for machine learning algorithms.

DBSCAN is a distance-based algorithm that requires users to define the minimum number of cells

in a spheroid and a radius of interest. Consequently, we inferred these values, which are presented

in Table 4.2, from experimental observations. An extended sensitivity analysis of the effect of

these parameters on our results can be found in Appendix B, Section B.2.1, which also includes

a brief study on how area values would vary if other area quantification methods were used (e.g.,

smallest enclosing circle/ellipse and convex hull).

Having defined the clusters, which were visually assessed to avoid misclassifications, the area

of each cluster was computed. Here, we aimed to replicate the procedure used by Plou et al.

(2018), in which the cluster area is computed by calculating the area of the circle that best fits each

cluster. Accordingly, we started our analysis by calculating the centroid for each cluster, which we

defined by the average x and y coordinates of all the cells that formed the cluster. Subsequently,

we computed the distance of each cell to that point, which we used to estimate the radius of the

cluster by calculating their average value. Using the estimated cluster radius, we computed the

area for a circular geometry.
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Figure 4.3: Simulation and calibration workflow for the single-cell motility model. Single cells
were initialized and their trajectories were tracked and recorded. Mean and effective velocities
were computed from the recorded spatial data and manual calibration was performed to find the
model input parameters that produced the best results in comparison with the available qualitative
empirical data.

Last, after seven simulated days, we also computed cluster eccentricity by identifying an equiv-

alent ellipse with the same second-moments as the region defined by the cell centres of each clus-

ter. We calculated ellipse eccentricity as the ratio of the distance between the foci of the ellipse

and its major axis length, which we assumed to be representative of the cluster eccentricity. In

contrast to our previous strategy, we analysed the entire height of the domain, as we observed that

at this point of development, the geometry of the clusters did not significantly change based on the

selected subsection. Since the experimental eccentricity values considered only spheroids with an

area larger than 1000 m2 and were obtained through a semi-automatic classification algorithm, the

computational results were also manually evaluated to disregard clusters with small area values or

that were misclassified by the automatic algorithm.

Simulation workflow

For this setup, simulations were run for seven simulated days and recorded at time points of 24

hours, with a total of 10 replicates for each matrix density value. At time points of 24, 72 and 120

hours, cells were classified into clusters. Experimentally, the results were obtained through a man-

ual classification procedure, using an image-based piece of software. Several microscopy images

were taken, representing different slices of the microchip height. Subsequently, the subregion that

better captured the area of the clusters was chosen and used as input for a classification algorithm.

The authors selected the multicellular clusters’ approximate locations in the images of interest,

and the algorithm identified the regions of interest and computed the cluster area by fitting a circle

to the detected structure. Hence, as presented in Fig 4.3, we aimed to calibrate these cell-cell

interaction parameters by analysing the formation of multicellular clusters, and their subsequent

growth, as depicted by the experimental quantification of cell area values. Accordingly, we placed

nine initial cells in the domain at a distance that would enable individual cluster growth, without

promoting the junction of two different clusters, as this was not observed experimentally.
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Figure 4.4: Representation of cell positions after five simulated days of tumour growth. 2D
(top) and 3D (bottom) representations of the coordinates of cells grown in matrices of different
collagen concentrations after five days. For the 2D scatter plots, we selected only cells present in
a defined height of interest to remove cells that would otherwise be out of focus in microscopy
images. A single replicate was chosen for each condition to produce these plots. Different colours
represent different clusters, whereas black cells are those considered outliers (i.e., they do not
belong to any of the cell groups). The cluster area increases with density, as cells stay closer
to their original position. On the other hand, in low collagen density matrices (left), in which
individual cell migration is not limited, individual cells are seen to stray away, resulting in a large
number of outliers and smaller, sparser tumours.

4.3.3 Results

Low-density matrices produce smaller structures due to cells’ ability to migrate

In the original experiments, Plou et al. (2018) observed that tumour cells seeded in high-density

collagen matrices produced smaller multicellular structures than those seeded in low-density en-

vironments. Similar to the experimental conclusions, the results of our simulations describe how

tumour size was affected by matrix density, as seen in Fig 4.4, which presents the cell positions in

the 2D plane at the end of the fifth simulated day for each matrix density value. Coloured circles

represent cells that belong to a cluster, with each colour corresponding to a different cell group,

whereas black cells represent outliers. Based on this figure, we hypothesized that cells seeded in

matrices with high collagen density tend to be more confined and form clusters with higher area

values than those grown at low densities, in which barely any spheroids were present.

Accordingly, an interesting dichotomy between migration and tumour size could be observed:

for conditions where cell migration was allowed, the multicellular clusters experienced less growth,
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Figure 4.5: Evolution of cluster area growth over five simulated days. Distribution of cluster
areas at the end of days one, three and five for clusters grown in matrices of medium and high
collagen density (4.0 and 6.0 mg/mL, respectively), for the experiment (left) and computational
(right) settings. These distributions take into account data from all five replicates. Cells seeded
in collagen matrices of low density (2.5 mg/mL) did not show significant multicellular cluster
formation and growth and hence were not represented. An increase in tumour size through time
can be seen for both the medium and high collagen concentrations, but larger densities induce the
formation of clusters of larger areas.

and vice-versa. Previous studies have proposed a possible explanation for the interplay between

migration and tumour growth through the "Go-or-Grow" mechanism, which may depend partially

on the physical constraints of the ECM (Giese et al., 2003; Hatzikirou et al., 2012). According to

this mechanism, migration and proliferation are temporally exclusive: migrating cells are not able

to proliferate, resulting in clusters of a smaller size. Nonetheless, it is still unclear whether these

two phenomena are not coincident in time (Garay et al., 2013). Interestingly, our results suggest

that there was no need for such a mechanism under the studied conditions since we did not imple-

ment proliferation suppression in migrating cells. Henceforth, we highlight the difference between

tumour growth and cell proliferation and we recognize the effect of individual cell migration on

the former, but not necessarily on the latter.

We could confirm that cluster size was enhanced in high-density matrices by classifying and

quantifying the area of each cluster. Fig 4.5 depicts the time evolution of cluster areas for matrices

of medium and high density at days one, three and five and indicates that our model not only

captured cluster area accurately after five days of growth but it could describe the evolution of

tumour size through time. Only values for medium and high densities are shown because the

number of clusters with a significant area in matrices of low density is not significant.
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Cluster eccentricity decreases in response to collagen density

Plou et al. (2018) also computed cluster eccentricity and evaluated these values as a result of ma-

trix density. In these experiments, it was observed that low-density matrices resulted in elongated

clusters, whereas high density values favoured the assembly of spheroids with a rounded morphol-

ogy. Conversely, simulated clusters adopted a relatively round morphology, further promoted in

high-density matrices, as shown in Fig 4.6, which presents the results obtained for cluster eccen-

tricity at seven days of simulation. As a general trend, we were able to conclude that eccentricity

values increased in low-density matrices due to cell motility. We stipulate that cells started to stray

from the original cluster but, ultimately, due to a decrease in cell speed, reconnected to the original

structure as cells proliferated. Consequently, more elongated clusters started to appear.

When compared with the experimental values, our values were consistently higher than those

computed in the experimental study. We conducted an investigation to understand why this was

occurring, which can be found in Appendix B, Section B.2.1, and we attribute this outcome to the

intrinsic differences between the two datasets and the used algorithms for cluster classification, as

we observe the same trends in each setup. It must be taken into account that the experimental mea-

surements relied on semi-automatic imaging methods, which are pixel-based and, consequently,

have lower sensitivity to perturbations in cell coordinates. These small differences can greatly

influence the eccentricity values of clusters, especially when considering rounder structures, as

we explain in more detail in Section B.2.1. Furthermore, the experimental methods focused more

on the contours of the multicellular cluster, whereas we based our computational results on cell

coordinates, without taking into account cell geometry. Nonetheless, we consider that the model

captured the general dynamics of the experimental setup.

4.3.4 Conclusions

In this study, we used model of single-cell motility that took into account cell-generated and drag

forces and extended it to take cell-cell interactions and cell cycling into account. We intended to

employ this computational to evaluate the formation of multicellular clusters and identify which

of the aforementioned model components were the most relevant to this biological behaviour. Ac-

cordingly, we relied on previously published data of experiments where tumour cells were seeded

in collagen matrices integrated in microfluidic devices and the formation of multicellular struc-

tures from individual cells was studied over time. In general, we showed the model’s potential

to simulate and describe the formation of tumour spheroids, integrating the biomechanical role of

the matrix, which was mediated by its collagen concentration. As a consequence, our approach

could qualitatively predict spheroids growth within different collagen densities as a direct result of

cell motility. Moreover, we showed that this relationship between cluster size and individual cell

migration, often attributed to suppression in cell proliferation of migrating cells, could be achieved

without changing the rates of cell proliferation (Giese et al., 2003; Hatzikirou et al., 2012). Ac-

cordingly, our results aligned with other studies that do not consider motility and proliferation to
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Figure 4.6: Cluster eccentricity after 7 days of growth. Representation of the xy cell coordi-
nates for the cells present in the entire height of the domain, overlapped by the clusters’ equivalent
ellipses and eccentricity values (left). Individual cells and clusters of small areas or areas that
were manually evaluated as having been misclassified by the clusterization algorithm are not rep-
resented. Clusters of cells grown in collagen matrices of high density are shown to present smaller
values of eccentricity (indicating a rounder morphology), while clusters grown in matrices with a
lower collagen concentration adopt slightly larger values, as cells migrate away from the cluster,
producing more elongated morphologies. The distribution of eccentricity values for both densities
(right) further confirms this idea.

be mutually exclusive as well as with the idea that proliferative tumours can also be highly inva-

sive (Garay et al., 2013). This effect is also of relevance in the context of metastatic colonization

given that, in low-density matrices, it is less likely for a secondary tumour to develop, as cells are

individualized and may die before forming a new tumour.

We recognize that our model has some limitations, as revealed by the study we conducted on

cluster eccentricity. Although we were able to simulate the qualitative behaviour of the experimen-

tal data, we recognize that model refinements could be implement to provide more realistic results.

We postulate that the elongated morphologies and increased eccentricity values could have also

been promoted by the alignment of the matrices’ collagen fibres. Nevertheless, the model did not

capture this property of the collagen matrices, and the simulated cells moved in a random walk,

which did not favour cluster elongation in a determined direction, but rather leads to tumour ex-

pansion in all directions. This was further promoted by the effect of cell-cell interactions, that may

have counteracted individual cell movement as cells moved in different directions. Consequently,

the model was not able to predict a direct correlation between increased migration and strand-like

morphology, as shown experimentally. A possible strategy to try to simulate the formation of

elongated clusters would be to force directional motility instead of a random walk. Nevertheless,

we think that, by itself, this is likely not sufficient for producing strand-like clusters, as all cells

would migrate in this direction. Hence, the clusters would be expected to move collectively, and

not to deform, which, in relative terms, would produce comparable results to those presented here.

Consequently, we believe that a leader-follower mechanism (Khalil and Friedl, 2010; Mayor and
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Etienne-Manneville, 2016) needs to be implemented so that only some cells migrate in a deter-

mined direction, pulling on neighbour cells to force the cluster to grow in that direction.

4.4 A review on computational models of cancer glucose metabolism

Avascular tumour growth has been characterized extensively through experiments and computa-

tional models (Araujo, 2004; Casciari et al., 1992a; Altrock et al., 2015). However, there is still a

need for models that can provide new insights into cancer metabolism and how it affects tumour

progression. Although some mathematical models consider metabolic reprogramming in tumours

(Schuster et al., 2015), these usually consider cell populations at a large scale and lack the ability

to model heterogeneous behaviour at the cell-level. Therefore, strategies such as hybrid modelling

can be used to couple detailed descriptions of cellular systems with models of the surrounding

microenvironment and simulate biological behaviour at different scales, including intracellular

metabolic pathways (Rejniak and Anderson, 2011).

In this section, we provide a brief review on computational models that consider glucose

metabolism. Accordingly, we start by defining the metabolic pathways that are reprogrammed

in cancer cells and how they differ from healthy cells. Having established this biological back-

ground, we go through previous examples of tumour growth models, from conventional, large-

scale implementations to multiscale frameworks that explicitly simulate the targeted metabolic

pathways. Lastly, we present some perspectives on the future of multiscale models to simulate

glucose metabolism in cancer cells.

4.4.1 Glucose metabolism in cancer cells

Glucose is a nutrient used by both healthy and tumour cells to produce energy in the form of

adenosine triphosphate (ATP) (Martinez-Outschoorn et al., 2017; Vander Heiden et al., 2009).

Generally, glucose can be catabolized via two main metabolic pathways: glycolysis and oxidative

phosphorylation. The former is a less efficient but faster process that can be performed under

anaerobic conditions, producing lactate and 2 ATP molecules per glucose molecule. The latter

is a more complex, oxygen-dependent pathway that can generate large amounts of energy (ap-

proximately 32 ATP molecules for each glucose molecule), producing water and carbon dioxide

molecules as a result. In healthy tissues, differentiated cells tend to generate energy through oxida-

tive phosphorylation and resort to glycolysis only under anaerobic conditions. Yet, in the 1920s,

studies performed by Warburg (Warburg, 1956b) showed that tumour cells rely on glycolysis, even

when oxygen was available, originating a theory commonly known as the "Warburg effect" or "aer-

obic glycolysis". Currently, it is well accepted that tumour cells reprogram their metabolism and

consume glucose at high rates, as glycolysis requires more glucose molecules to produce large

amounts of energy (Hanahan and Weinberg, 2011; DeBerardinis and Chandel, 2016). Neverthe-

less, it is still unclear why cancer cells perform aerobic glycolysis instead of the more effective

process of oxidative phosphorylation.
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Figure 4.7: Cell metabolism differences in healthy and cancer cells. Healthy cells are known to
metabolize glucose through glycolysis when they are in anaerobic conditions, i.e., when oxygen is
not available. Conversely, healthy cells undergo aerobic respiration when they are in the presence
of oxygen. On the other hand, although cancer cells also perform glycolysis in anaerobic condi-
tions, their metabolism shifts in the presence of oxygen. When oxygen is available, some cancer
cells perform glycolysis, which is not as energetically efficient, but it enables energy production at
faster rates. Different tumour types have been shown to differ in their preference to shift towards
glycolysis. Thus, some tumours may have a glycolytic cell population, whereas other tumour
types may also present cells that still perform aerobic phosphorylation.

The findings proposed by Warburg suggesting that cancer cells undergo aerobic glycolysis

were firstly attributed to defects in their mitochondria that might impair the process of oxidative

phosphorylation (Warburg, 1956b,a). Later studies have shown that cancer cells are still able to

oxidize glucose, though (Weinhouse, 1955). Furthermore, aerobic glycolysis and oxidative phos-

phorylation were proven to occur simultaneously at high rates in some tumour types (Martinez-

Outschoorn et al., 2017; Pfeiffer et al., 2001), unlike what is normally observed in normal cells,

which prioritize one of these metabolic pathways (Hay, 2016). This phenomenon is illustrated in

Fig 4.7. Consequently, based on these results, scientists started to postulate that there might be an

evolutionary advantage to this metabolic adaptation.

Glucose is commonly associated with energy production, which makes the Warburg effect

seem paradoxical in the sense that glycolysis results in significantly less ATP molecules than

aerobic respiration (Liberti and Locasale, 2016). Nonetheless, previous studies have shown that

aerobic glycolysis enables ATP generation at faster rates than oxidative phosphorylation (Pfeif-

fer et al., 2001; Bose et al., 2021). Also, cancer cells are able to increase their glucose uptake

through the upregulation of glucose transporter 1 (GLUT1) expression. Henceforth, the energet-

ical inefficiency of glycolysis does not compromise cell growth and survival when nutrients and

oxygen are abundant, since it is balanced by the ability to produce ATP rapidly (Vander Heiden

et al., 2009). In turn, this reveals that, under physiological conditions, the Warburg effect does not

interfere with energy production. Furthermore, other studies have shown that aerobic glycolysis
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benefits proliferating cells as it enables biomass creation, which is essential to duplicate the cells’

internal contents (Ngo et al., 2015), it plays a role in maintaining the redox balance (Gwangwa

et al., 2018), and it promotes invasion and metastasis (Alfarouk et al., 2011; Persi et al., 2018).

In addition to the Warburg effect, cancer metabolism is a complex phenomenon and there are

other mechanisms that are still being discovered. For instance, it has been shown that cancer

cells can modulate the metabolism of fibroblasts, which undergo aerobic glycolysis and produce

lactate (Pavlides et al., 2009). Subsequently, the surrounding cancer cells reuptake the metabolites

produced by fibroblasts and further catabolize them in the aerobic respiration cycle, which allows

them to produce high energy amounts. This process is commonly termed as the "reverse Warburg

effect", and it can also occur between distinct tumour cell populations in MCTS, one of which

presents a glycolytic phenotype, while the other catabolizes lactate. Therefore, understanding

how glucose modulates the evolution of MCTS is also crucial. Moreover, cancer cells metabolize

more glutamine than healthy cells to use as a carbon source for macromolecule biosynthesis (Krall

and Christofk, 2015; Yoo et al., 2020). Consequently, “glutamine addiction” is also recognized as

one of the reprogrammed metabolic pathways in tumour cells (Wise and Thompson, 2010).

MCTSs have been used extensively in research since the 1970s, when Sutherland et al. (1971)

first described this experimental model. Specifically, scientists have relied on this model to as-

sess the effect of nutrients on cancer progression and test the effect of new anti-cancer therapies

(Hirschhaeuser et al., 2010; Han et al., 2021). At initial stages of growth, MCTSs have small

diameters and, thus, the cells rely on diffusion to obtain nutrients from the microenvironment.

However, once a critical diameter is reached, diffusion alone is not sufficient for nutrients to reach

the spheroid core. In addition, metabolic waste that originates from cell metabolism starts accu-

mulating in the spheroid centre (Hirschhaeuser et al., 2010; Kunz-Schughart et al., 1998). Conse-

quently, large avascular MCTSs present a layered distribution of cells similar to that observed in

in vivo solid tumours (Mueller-Klieser, 1987; Murphy et al., 2022) with three concentric regions.

At the spheroid core, cells become necrotic since they do not receive enough nutrients to survive.

Besides, it is possible to distinguish two cell populations in the spheroid rim: proliferating cells in

the periphery, where there are more nutrients and oxygen, and quiescent cells in the internal region

close to the necrotic core. The internal structure of a tumour spheroid and the internal distribution

of nutrients and metabolic substances is shown in Fig 4.8.

Several previous experimental studies tried to characterize the internal distribution of chemical

substances in tumour spheroids (Casciari et al., 1988, 1992b; Rousset et al., 2022). Additionally,

multiple of these works relied on mathematical models to predict the distribution of substances

such as glucose, oxygen and lactate, as well as their consumption and secretion rates. These inte-

grated frameworks are particularly relevant in metabolic reprogramming research. It is recognized

that cancer cells reprogram their metabolism to produce the energy and macromolecules required

to keep their high proliferation rates. Specifically, tumour cells favour glycolytic pathways, which

are fast yet energetically inefficient, to generate energy at faster rates than normal cells. Nonethe-

less, scientists have not yet been able to unravel the mechanisms that lead to this evolutionary

adaptation.
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Figure 4.8: Internal organization of a tumour spheroid. When tumour spheroids reach a critical
size, nutrient diffusion becomes limited and the cells that are in the tumour core start to respond
to nutrient shortage by becoming quiescent (represented in blue) or dying (represented in black).
Consequently, spheroids present a well-defined internal structure formed by three concentric areas:
proliferating, quiescent and necrotic cells. The distribution of nutrients and metabolic waste in
tumour spheroids is also characteristic in these structures. Specifically, they are characterized by
nutrient shortage as well as an accumulation of metabolic waste at their core.
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4.4.2 Modelling cellular systems and glucose metabolism

Intracellular models

Metabolism, like other biological behaviours, can be modelled at different scales. One of the

simplest and most commonly employed approaches to incorporate glucose metabolism in hybrid

models of tumour growth is to account for the main metabolic processes in the models’ contin-

uum component (Shamsi et al., 2018; Astanin and Preziosi, 2009). As previously stated, glucose

metabolism relies on two main pathways: glycolysis and oxidative phosphorylation. Glycolysis

is characterized by being less energetically efficient than oxidative phosphorylation, since it re-

quires glucose consumption at faster rates and produces fewer ATP molecules. Robertson-Tessi

et al. (2015) developed a hybrid model that takes into account oxygen, glucose, ATP and lactate

and their effect on tumour cells. and the several previous studies have been designed where cell

death was deterministically induced when a critically low concentration of glucose was reached to

simulate necrosis. In addition, glucose consumption rates may increase in low-oxygen regions to

simulate the metabolic switch between aerobic and anaerobic pathways, while also accounting for

the Warburg effect (Astanin and Preziosi, 2009).

Mathematical descriptions of intracellular networks at the subcellular scale have been de-

veloped with distinct formalisms being applied to simulate signalling and metabolic pathways

(Resendis-Antonio et al., 2015). Metabolic reaction network models aim to create mechanistic

representations of the metabolites that take part in a given pathway and how they interact (Edel-

man et al., 2010). These representations can differ on their assumptions regarding not only whether

a system is continuous or discrete in time and space, but also if it is deterministic or stochastic.

Furthermore, network models can be generally classified into two main groups: stoichiometric and

kinetic models (Yasemi and Jolicoeur, 2021). The former take into account the stoichiometry of

the metabolic reactions and their time-independent characteristics, while the latter introduces ad-

ditional information on metabolite kinetics (Gombert and Nielsen, 2000). Besides, new techniques

have been developed to combine kinetic and stoichiometric modelling, coupling the comprehen-

siveness of constraint-based approaches with the detailed mechanisms of kinetic models (Jamshidi

and Palsson, 2010; Júlvez and Oliver, 2020; Sahu et al., 2021).

On the one hand, stoichiometric approaches define metabolic networks as stochiometric ma-

trices based on the number of metabolites, which are characterized as reactants and products, and

reactions in a pathway (Edelman et al., 2010). Specifically, the stoichiometric matrices are com-

posed of the metabolites’ stoichiometric coefficients and the rows represent the metabolites while

the columns define the reactions. Overall, these models define the mass balance over the metabolic

network and they are particularly convenient because they can take into account genome-scale

metabolic data, without requiring information on the kinetic parameters of the modelled path-

ways, which can be difficult to measure experimentally (Bordbar et al., 2014; Gatto et al., 2015).

Using constraint-based approaches, for example flux balance analysis (FBA), it is possible to

find the metabolic pathways that optimize cellular growth and energy production (Edelman et al.,

2010). To achieve this, it is assumed that the system has reached a steady-state. Additionally,
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some additional constraints, such as the bounds of the flux rates, may be imposed.

On the other hand, kinetic models aim to capture detailed and realistic representations of

metabolic system dynamics. Henceforth, metabolite concentrations are modelled over time and

they are usually represented by a set of ODEs that take into account specific metabolic reactions

and detailed kinetic parameters (Stalidzans et al., 2018). The general expression for the evolution

of a metabolite concentration (c) over time (t) is given by Eq 4.12:

dc
dt
=

n

∑
i=1

kiri (4.12)

where n is the number of reactions in which the metabolite takes part, k represents the stoichiomet-

ric coefficients and r is the rate of the reaction. The equation rates can be measured experimentally

and be mathematically represented by different laws based on the complexity of the interactions

between the agents in a given reaction. For example, mass action and Michaelis-Menten kinet-

ics are some of the most used mathematical laws when modelling cell metabolism (Klipp and

Liebermeister, 2006). Nonetheless, experimentally measuring the intracellular concentration of

metabolites and the corresponding reaction rates can be an arduous task, making kinetic models

more difficult to calibrate than stoichiometric approaches.

Recently, researchers have developed several biochemical network models to analyse the War-

burg effect and other aspects of metabolic reprogramming (Tripathi et al., 2022; Hashemzadeh

et al., 2020; Jia et al., 2019; Lagziel et al., 2019; Bertuzzi et al., 2010; Dai et al., 2016). Nonethe-

less, only a few models have explicitly taken into account the effect of glucose availability and its

metabolism at a larger scale (Jiang et al., 2005; Piotrowska and Angus, 2009; Shan et al., 2018;

Cleri, 2019; Schuster et al., 2015; Jagiella et al., 2016; Roy and Finley, 2019). Specifically, there

is still a need for models that combine different aspects of cellular behaviour, such as motility,

mechanics and cell-cell interactions, into a fully integrated and multiscale model. In the section to

follow, we explore some research works that aim to bridge this gap and their implementation.

Multiscale models

One of the most relevant advances that has emerged in recent years due to the increase in com-

putational power is the ability to couple models that describe different spatial and temporal scales

(Anderson and Quaranta, 2008; Dada and Mendes, 2011; Walpole et al., 2013). Frameworks that

integrate phenomena that occur over distinct scales are usually termed as multiscale models. The

idea that cells require some kind of nutrient to survive and proliferate has been incorporated into

several models (Gerlee and Anderson, 2007; Dormann and Deutsch, 2002; Lima et al., 2021; Bus-

tamante et al., 2021; Swat et al., 2015) yet only a few have integrated explicit models of glucose

metabolism (Rockne et al., 2019). Multiscale hybrid models are particularly relevant in this re-

search field as they are able to integrate intracellular models of glucose metabolism, enabling

scientists to understand how changes at the metabolic level will affect cell behaviour. A summary

of hybrid models that consider glucose metabolism explicitly can be found in Table 4.3 and Fig

4.9 shows some illustrative results of on-lattice and off-lattice hybrid models.
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Figure 4.9: Examples of multiscale hybrid model results. (A) Illustration of a hybrid model
where cells (outlined in grey) are represented by an on-lattice Cellular Potts model and the mi-
croenvironment consist of PDE-based descriptions of glucose, oxygen, lactate and glutamine.
Single tumour cells consume glucose, glutamine and oxygen and produce lactate based on an in-
tracellular metabolic network represented in the figure which considers both aerobic and anaerobic
metabolism. (B) Model results for an off-lattice centre-based model that simulates tumour cells as
spherical particles represented by their central point and radius. Reaction-diffusion equations are
considered to study the spatial distribution of glucose and oxygen, represented as the colour gradi-
ents shown in the figure. Moreover, cell metabolism is introduced through a flux-balance analysis
model that simulates the Warburg effect, the reverse Warburg effect and glutamine addiction. Sub-
figures A and B were taken from (Roy and Finley, 2019) and (Shan et al., 2018) respectively.

Several of these models were formulated with on-lattice implementations. Starting with mod-

els developed with CPMs, Jiang et al. (2005) proposed a model that was calibrated with experimen-

tal results obtained for EMT6/Ro tumour spheroids, a mammary carcinoma cell line. The authors

explicitly modelled the Warburg effect using PDEs and defined that necrosis was induced when

the glucose and oxygen concentrations went below a given threshold and lactate levels surpassed

a maximum value. Furthermore, at the subcellular scale, the model considered a Boolean regula-

tory network of the cell cycle, which was modulated by growth and inhibitory factors. Using the

CompuCell3D (Swat et al., 2012) modelling framework, Roy and Finley (2019) also implemented

a CPM, but incorporated a much more complex intracellular model of cell metabolism, written as

a set of ODEs that captured all the reactions in both glycolysis and the aerobic respiration cycle.

Cellular automata models have also been used in this field of research. For example, Cleri

(2019) extended a previous agent-based model of cancer growth originally built to account for

the effect of cytotoxic agents (Tomezak et al., 2016) to investigate the impact of metabolism on

spheroid growth. In his work, the author introduced and implemented a simplified model of glu-

cose metabolism and tested the effect of different nutrient sources, such as constant and sinusoidal

glucose supply mechanisms. The model results were qualitatively compared with data from the

literature and were found to be relevant. In addition, Piotrowska and Angus (2009) calibrated a

lattice-gas cellular automaton model with experimental data available from the literature (Freyer
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and Sutherland, 1985). Glucose metabolism was modelled through a set of ODEs as done previ-

ously by Venkatasubramanian et al. (2006). Furthermore, Jagiella et al. (2016) implemented an

intracellular model of glucose metabolism based on ODEs considering the aerobic and anaerobic

pathways effect and investigated which metabolic conditions increased the similarity between the

computational and experimental datasets.

Regarding the off-lattice approach, one previous work has employed a CBM to study MCTS

formation and the role of glucose metabolism on their growth dynamics. In particular, Shan et al.

(2018) used the iDynoMiCS (Lardon et al., 2011) framework to model cell behaviour and in-

tegrated a complex intracellular network based on FBA and explicitly reproduced the Warburg

effect, the reverse Warburg effect and glutamine addiction. In their work, the authors tested how

growth dynamics changed according to the metabolic reprogramming strategy that was adopted

by the cells.

4.4.3 Future perspectives

In the last decades, computational modelling of solid tumour growth has evolved to consider bio-

logical phenomena that occur over different time and spatial scales. Moreover, cell metabolism has

been increasingly recognized as one of the main hallmarks of tumour growth and progression, and

it has been accordingly integrated into computational frameworks to be better understood. Over-

all, these models have been able to simulate experimental data and reveal which type of metabolic

response best fits the available results. Furthermore, with the constant increase in data availability,

models are evolving to become patient-specific (Karolak et al., 2018; Yang et al., 2021). How-

ever, many of the models developed until now are focused on a single scale and there is still a

need for fully coupled models that integrate biochemical networks with cellular and extracellular

behaviour.

We highlight that, although we focus our review on the avascular stages of MCTS growth,

models that take into account neovascularization have also been developed (Patel et al., 2001;

Anderson et al., 2009; Smallbone et al., 2007; Antonopoulos et al., 2019; Shamsi et al., 2018).

Some of these models also investigate invasion since tumour cells are able to metastasize by en-

tering the circulatory system through vascularization (Robertson-Tessi et al., 2015; McEvoy et al.,

2022; Escribano et al., 2019). Nonetheless, these implementations were developed with on-lattice

frameworks, which fail to cell mechanics accurately. Moreover, cell-based multiscale models of-

fer an advantage over population-based models since they are able to capture heterogeneity at the

individual cell level. This is of particular interest when scaling from tumour spheroid to tumour

organoid models. Tumour organoids are 3D self-organized structures grown from patient-derived

cancer stem cells (LeSavage et al., 2022; Tuveson and Clevers, 2019). These models enable a

higher level of personalization since tumours of the same type (e.g., lung, brain, pancreas) can dif-

fer between patients. Henceforth, when developing patient-specific models, it is crucial to be able

to calibrate these models with this level of detail. Besides, the internal structure of organoids can

be more complex than that of tumour spheroids, thus making it necessary to introduce stochasticity

and heterogeneity at the cell level.
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Lastly, multiscale models can be further expanded to consider phenomena at the tissue-level.

Taking into account that the number of cells in a tissue makes it unfeasible to create a tissue of

a model at the individual cell level, this can be achieved by coupling intracellular and cellular

models with continuum representations that capture the tissue’s mechanics (Fletcher and Osborne,

2022). This strategy is traditionally based on treating the tissue as a continuous material, thus

eliminating the heterogeneity that can arise when a tumour is present. Nonetheless, more recent

approaches have solved this issue by selecting a region of interest for which a cell-based model

is used to evaluate the dynamics of tumour growth. Subsequently, this detailed description can

be integrated into a continuum approach (Varella et al., 2022). Therefore, it is possible to reduce

the computational power required to study the effect of tumour growth at the tissue-level, and

it would certainly be invaluable to be able to use these approaches to recognize how metabolic

reprogramming may influence the evolution of a tumour at the tissue-level.

4.5 Summary

In this chapter, we investigated the role of cell-cell mechanics, proliferation and metabolic repro-

gramming on tumour growth. In addition, we based our analysis on the previously discussed effect

of cell motility and the influence of the extracellular microenvironment on cell behaviour. Accord-

ingly, the work developed in this chapter represents the second building block of this dissertation.

Building on the knowledge and applications established in Chapter 3, we were able to research tu-

mour growth and characterize how it is modulated by both chemical and mechanical properties of

the microenvironment. In particular, we extended the computational model implemented in Chap-

ter 3 to account for proliferation and cell-cell mechanics, moving from individual to collective

cell behaviour. On the whole, we concluded that these new mechanisms were relevant to repro-

duce tumour growth dynamics but, interestingly, we found that cell migration greatly influenced

the formation of multicellular structures. Specifically, we observed that when cells were able to

move freely due to the mechanical properties of the ECM, tumour growth was not observed, and

vice-versa.

At this current stage of development, we did not implement the effect of chemical cues in

our computational framework. Nonetheless, we reviewed models of avascular stages of tumour

growth and how these works evolved to recognize the relevance of reproducing nutrient availability

and metabolic reprogramming. Thus, we concluded that our framework can be extended conve-

niently to reproduce this intracellular mechanism by introducing glucose, oxygen, lactate, energy

and other substances that users may find to be relevant in this process as diffusing and reacting

species in the model. Furthermore, cell metabolism can be simulated through simplified consump-

tion/secretion dynamics defined by PDEs or more complex intracellular ODE-based networks can

be implemented as subcellular models. We highlight that these biomechanical models of tumour

growth may be of particular interest to investigate the interplay between glucose consumption

and the mechanical properties of the ECM (Ge et al., 2021; Pickup et al., 2014; Zanotelli et al.,

2022; Salvi and DeMali, 2018). Recent studies have highlighted that changes in the mechanical
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properties of the ECM modulate cancer metabolism, in particular glucose metabolism (Ge et al.,

2021). For instance, it has been shown that cells that are detached from the ECM change their

metabolism and decrease their glucose uptake and that migrating cells regulate their glucose up-

take in response to the ECM’s mechanical properties (Zanotelli et al., 2022; Sullivan et al., 2018).

With this in mind, it is highly relevant to develop models of glucose metabolism that allow for the

study of cell motility and cell mechanics at the individual level, and how cell-cell and cell-matrix

interactions can also play a role in modulating these dynamics.
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5.1 Introduction

Biological tissues exhibit structured, well-defined architectures which arise from balanced chem-

ical and mechanical interactions between cells and the surrounding microenvironment (Masser-

dotti, 2006; Hagios et al., 1998). Thus, deregulated tissue organisation may result from cell-level

disturbances, such as genetic defects or altered phenotypes (Otte et al., 2021). For instance, tu-

mours disrupt the architecture of normal tissues since they impact the mechanical properties of the

microenvironment and the interactions between cells (Almagro et al., 2022; Nelson and Bissell,

2006; Noble et al., 2021). Indeed, pathologists use histologic records to diagnose health prob-

lems, such as cancer and heart diseases, because it is possible to distinguish between healthy and

diseased tissues based on their microarchitecture (Acar et al., 2012). For instance, rosettes are

histologic architectural patterns represented in Fig 5.1 found in a variety of tissues, most notably

the nervous system (Wippold and Perry, 2006; Dell’Aquila et al., 2020).

Rosettes are defined as small groups of cells organised in circular configurations around a

common core, as illustrated in Fig 5.1. There are various subtypes of rosettes, including HW,

true ependymal, and neurocytic rosettes (Wippold and Perry, 2006; Matsumura et al., 2014). HW

rosettes have a well-defined circular geometry, as shown in Figure 5.1a. Moreover, their central

core is composed of neuronal processes, commonly designated as neuropil, which are meshwork

of fibres derived from the developing neuronal processes of the sympathetic nervous system. True

ependymal rosettes (see Figure 5.1b) have a well-defined circular geometry as well, but, unlike

HW rosettes, they enclose an empty lumen. Lastly, neurocytic rosettes (see Figure 5.1c) have

a central core filled with neuropil, but they are usually more elongated and present a more ir-

regular contour than HW rosettes. In addition, reports have also revealed different architectures,

such as rosettes that enclose a lumen with cytoplasmic processes (Wippold and Perry, 2006), pseu-

dorosettes that surround a blood vessel (Chow and Brittingham, 1987) and rosettes with basophilic

cells inside the central core (Das et al., 2014). Nevertheless, in this research work, we primarily

focused on the factors that lead to the emergence of HW rosettes.

HW rosettes are a rosette subtype that arises in neuroblastoma, the most lethal and common

extracranial tumour in infants (Maris, 2010; Wright, 1910; Shimada et al., 1999b). The presence of

HW rosettes in histological records is usually taken into account during the diagnosis of this type

of tumour and it is characterized by the existence of circular arrangements of cells that surround

a common core containing fibres. Although previous studies have suggested that HW rosettes

originate from poorly-differentiated neurons and result from cell-cell interactions (Wippold and

Perry, 2006; Moss, 1983), these observations have not been further confirmed and validated. Tak-

ing into account that these structures originate during neuronal development and are triggered by

specific differentiation stimuli, it is not a trivial task to investigate and characterise their formation

experimentally (Duarte Campos et al., 2019).

Computational modelling has been extensively employed to simulate biological tissues and

tumour environments in order to answer questions that would otherwise be challenging to evaluate

(Bull and Byrne, 2022; Enderling and Rejniak, 2013; Zhang et al., 2007; Krakauer et al., 2011; Li
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Figure 5.1: Simplified representations of different types of rosettes. (a) shows a tissue with
HW rosettes, which are circular arrangements of cells that surround a common core containing a
meshwork of fibres similar to neuropil. HW rosettes are identified by their well-defined circular
structure (marked with a full circle). Yet, spatial architectures with an almost-radial arrangement
(marked with a dashed circle) may also be seen in histological records due to tissue heterogeneity.
(b) shows one true ependymal rosette characterised by an empty lumen at the centre of the radial
structure formed by the surrounding cells. (c) shows one neurocytic rosette, which contains a
meshwork of fibres like an HW rosette but presents a more irregular and elongated structure.

and Lowengrub, 2014; Logan et al., 2010). Previous studies have employed cell-based methods

to show how cells organise into circular arrangements resembling rosettes during morphogenesis

of the nervous system in zebrafish to form neuromasts, which are sensory organs (Colombi et al.,

2020; Di Costanzo et al., 2015; Dalle Nogare and Chitnis, 2017). In addition, new modelling

frameworks have recently arisen to explore neuronal development and the formation of neuronal

structures with both cell bodies and neurites through the inclusion of simulation objects with more

complex geometries (Zubler, 2009; Breitwieser et al., 2022; Miller and Suter, 2018; Koene et al.,

2009; Aćimović et al., 2011). However, to the best of our knowledge, there are no computational

models tailored to account for the interactions between the different components of neurons and

mimic the development of HW rosettes in neuroblastoma.

In this chapter, we intend to achieve a computational framework that can be used to reproduce

the formation of HW rosettes. Therefore, as explained in Section 5.2, we implemented a cell-

based model with an improved representation of cell morphology. Specifically, we used spherical

and cylindrical objects to simulate an approximated geometry of neurons, which are composed

of cell bodies and neuronal processes. In addition, we evaluated the role of mechanical interac-

tions between model components and biological events (i.e., differentiation and proliferation) in

the formation of HW rosettes. Section 5.3 presents three different configurations that were tested

to identify the model parameters that promoted rosette assembly, starting with an idealized sce-

nario and progressing towards a more realistic approximation. In the scope of this dissertation,

this chapter represents the final stage of model complexity, given that we are considering a com-

putational model with all the model components implemented in Chapters 3 and 4, namely cell

motility, cell-matrix and cell-cell interactions and proliferation, and we are introducing a final

element, neuronal differentiation.
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Table 5.1: Reference parameter values for the model. Values in brackets represent ranges,
showcasing that the parameter values were not fixed and varied based on the configuration of the
simulation to reflect the presence and spatial location of chemotactic gradients.

Symbol Parameter Value Unit References

Tsim Total simulation time [5-24] h Estimated
∆t Simulation time step 0.1 min Estimated
µ Drag Coefficient 10.0 Pa ⋅ s Estimated
rdiv Proliferation rate 0.0007 1/min Estimated
rdi f f Differentiation rate [0.0007-0.07] 1/min Zubler (2009), estimated
nneighbours Number of neighbours 19 - Estimated
nneurites Number of neurites [2-7] - Estimated
θturn Neurite elongation turning angle π/30 - Mortimer et al. (2009)
Rc Cell radius 7.0 µm Ghaffarizadeh et al. (2018)
Rc,int Cell interaction radius 1.25Rc µm Ghaffarizadeh et al. (2018)
Rn Neurite radius 0.5 µm Zubler (2009)
Rn,int Neurite interaction radius 1.5 µm Zubler (2009)
kspring Neurite spring constant 10.0 - Zubler (2009)
L Neurite default length 10.0 µm Zubler (2009)
Lmin Neurite minimum length 3.0 µm Zubler (2009), estimated
ccca Cell-cell adhesion coefficient [0.0-15.0] - Ghaffarizadeh et al. (2018), estimated
cccr Cell-cell repulsion coefficient 50.0 - Ghaffarizadeh et al. (2018), estimated
αcc Cell-cell smoothness factor 1.0 - Ghaffarizadeh et al. (2018), estimated
ccna Cell-neurite adhesion coefficient 5.0 - Ghaffarizadeh et al. (2018), estimated
ccnr Cell-neurite repulsion coefficient 100.0 - Ghaffarizadeh et al. (2018), estimated
αcn Cell-neurite smoothness factor 1.0 - Ghaffarizadeh et al. (2018), estimated
cnna Neurite-neurite adhesion coefficient 5.0 - Ghaffarizadeh et al. (2018), estimated
cnnr Neurite-neurite repulsion coefficient 25.0 - Ghaffarizadeh et al. (2018), estimated
αnn Neurite-neurite smoothness factor 1.0 - Ghaffarizadeh et al. (2018), estimated

5.2 Methodology

We designed an open-source modelling framework to simulate the formation of HW rosettes in

neuroblastoma. We implemented different types of physical interactions and biological events, as

explained in more detail below. Furthermore, we wrote our model in the Python 3 programming

language due to its simple syntax and popularity in the biological sciences community and neu-

roscience, in particular (Muller et al., 2015). We created this framework to be intuitive, require

minimal code and provide high-quality renderings of the results in real-time, making it attractive

and easily useable by the general scientist. Henceforth, we simulated tissues in 2D to ease the

comparison between our results and the histological records found in the literature. Furthermore,

users can define model parameters in configuration files uncoupled from the main code, making

the framework accessible to a general audience. The numerical values used in this work are pre-

sented in Table 1. Our package can be installed easily through Python’s package installer, pip1,

and the source code files are publicly available (Gonçalves and García-Aznar, 2022).

One of our goals in the model design process was to create a framework that enabled real-time

rendering of the simulation results to help users assess them visually. Therefore, we used the vedo

package (version 2022.1.0) as our rendering engine since it creates high-quality interactive plots

1https://pypi.org/project/neurorosettes/
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and animations and it has a shallow learning curve (Musy et al., 2022). Although we developed our

framework to work primarily with this package, it is not strictly coupled to the code. Thus, it can

be replaced by other rendering tools, such as PyVista (Sullivan and Kaszynski, 2019), according

to the users’ needs and preferences. In addition, screenshots of the model results can be taken, and

simulation objects can be saved as meshes, to be further processed with visualisation tools such as

ParaView (Ahrens et al., 2005).

5.2.1 Study design

Neuroblastoma develops when neuronal differentiation is blocked, which can happen at differ-

ent stages of development. Due to the highly heterogeneous nature of neuroblastoma, different

tissue phenotypes have been observed based on the differentiation grade of neuroblastic tumours

(Westermark et al., 2011). On one end of the spectrum, undifferentiated tissues present multiple

round cell bodies that remained undifferentiated. On the other end of this spectrum, differenti-

ated neuroblastoma tissues share similarities with healthy tissues and present both cell bodies and

well-differentiated neuronal processes that have a fibre-like appearance (Shimada et al., 1999b).

Between these two distinct phenotypes, it is observed that poorly-diifferentiated neuroblasts that

present round cell bodies with short neuronal processes organize into circular spatial arrangements.

In particular, it can be observed that the cell bodies surround a common core filled with neuropil,

a fibre-like material from which neuronal processes are made.

Figure 5.2a illustrates the neuronal differentiation process in healthy tissues. Conversely, as

shown in Figure 5.2b, this differentiation process is blocked in neuroblastoma due to genetic fac-

tors and environmental cues. Undifferentiated tissues are composed mainly of cell bodies, whereas

differentiating phenotypes have more regions filled with neuronal processes. Nonetheless, in their

majority, neuroblastic cells have a cell body and a few short neurites (Kholodenko et al., 2018).

The current hypothesis for explaining the emergence of HW rosettes assumes that these histologi-

cal patterns are a result of the interactions between the cell bodies and neurites of neuroblastoma

cells, as illustrated in Figure 5.2b (Wippold and Perry, 2006; Moss, 1983). Studies have revealed

that cells undergoing neuronal differentiation secrete cell surface receptors that facilitate cell-cell

recognition and adhesion (Moscona, 1976). It is therefore assumed that as cell bodies become

adhered, their neurites interact and entangle, creating the radial structure of the rosette (Katsetos

et al., 1988).

With this in mind, we developed a computational approach that could replicate the process

of neuronal differentiation at distinct grades. In other words, we established that neuronal differ-

entiation could occur yet it could be blocked at different development stages to simulate distinct

neuroblast phenotypes. Furthermore, we designed a simplified simulation setup to reproduce the

assembly of HW rosettes as represented in Fig 5.2. In particular, we investigated how this process

occurred in an ideal scenario where undifferentiated cells were arranged in a circular pattern and,

subsequently, compared the results obtained in this configuration to a more realistic cell distribu-

tion.
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Figure 5.2: Simplified representations of the neuronal differentiation process in healthy tis-
sues and neuroblastoma. On the one hand, in healthy tissues, neural crest cells differentiate
into cells of the nervous system and create long neurites, adopting the structure of a neuron. On
the other hand, in neuroblastoma, neuronal differentiation is blocked at the early stages. Conse-
quently, the neuronal processes of neuroblastic cells are shorter and less differentiated than those
seen in healthy tissues. Furthermore, in neuroblastoma, the morphology of poorly-differentiated
neurons leads to the formation of a specific rosette subtype (Homer-Wright rosette). Specifically,
the poorly-differentiated neuroblastoma cells take on a radial spatial arrangement as neurites be-
come tangled and cell bodies adhere to each other. As a result, their neurites fill the central core
of the rosette structure.
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5.2.2 Neuron representation

We modelled neurons as it was previously simulated by Zubler (2009) by representing each neuron

as a chain of springs and masses in series. As shown in Figure 5.3a, two types of physical objects

were considered to reproduce neuronal system components and compute agent interactions: cell

bodies were modelled as spheres, and neurites as cylinders. On the one hand, each cell body was

represented by its central point mass and radius (Rc). On the other hand, neurites were defined by

a spring and a point mass at one of their extremities, as well as their radius (Rn). When mechanical

interactions were computed, the forces acting on the agent mass were calculated. Subsequently,

the mass point was moved. For neurites, only one of the extremities was moved, while the other

was considered to be the mass point of its adjacent object (cell body or neurite). Consequently,

neurite rotation was neglected in this model. Furthermore, we assumed that each new neuron in

the simulation was composed of a cell body in an undifferentiated state, whereas differentiated

neurons were composed of a cell body and one or more neurites (Fletcher et al., 2000). Since

we aimed to model the formation of HW rosettes and these structures are observed in poorly-

differentiated tissues (Wippold and Perry, 2006), we did not implement the formation of multiple

primary neurites in distinct directions. Instead, we considered the creation of a single primary

neurite that could be extended by adding secondary neurites along the same outgrowth axis.

5.2.3 Cell biological events

We implemented simplified models of cell proliferation and differentiation into our computational

framework. As illustrated in Figure 5.3b, we defined that only undifferentiated neurons could

undergo cell division since studies have shown that proliferation stops once neurons become com-

mitted to neuronal differentiation (Hardwick and Philpott, 2014). Moreover, we assumed new

neurons inherited the same attributes as the neurons from which they were created, including their

physical properties and biological event rates. Hereafter, as developed in previous works (Ghaf-

farizadeh et al., 2018), we established that cells presented a probability to divide (Pdiv ) at a given

time interval ∆t that was based on a user-defined proliferation rate (rdiv) and given by Equation

5.1.

Pdiv = rdiv∆t (5.1)

Additionally, we introduced some control mechanisms to replicate the neurons’ response to high

cell densities and simulate the effect of contact inhibition on cell cycling (Pavel et al., 2018).

Consequently, we defined the maximum number of neighbours cell bodies could have inside a

given interaction region. If the number of cell bodies inside this area surpassed the threshold

established (nneighbours), proliferation was inhibited, as shown in Figure 5.3b. The proliferation

parameter values are defined in Table 5.1.

Neuronal differentiation, represented in Figure 5.3c, was also modelled based on the probabil-

ity of a neuron to differentiate at a given time interval (rdiff) as given by Equation 5.2.
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Figure 5.3: Neuron implementation and rules. (a) Neurons were modelled as a combination
of a single cell body, represented by a sphere, and neurites, depicted as cylinders with a spring
axis. In addition, neurons were able to undergo (b) proliferation or (c) differentiation based on
user-defined rates. (b) During proliferation, an undifferentiated neuron originated two new cell
bodies. This mechanism was arrested when the number of neighbours in a region surpassed a given
threshold to replicate contact inhibition. (c) During differentiation, new primary or secondary
neurites were created. The latter were able to turn slightly to mimic the turning mechanisms
observed during neurite outgrowth. The degree of freedom for this process was defined by the
angle θturn. Furthermore, we prevented that new neurites were placed on top of existing neurites
by decreasing their length until no collisions were detected. Nonetheless, if the length of the new
neurite was smaller than a defined threshold Lmin , it would not be created
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Pdiff = rdiff∆t (5.2)

Here, Pdi f f represents the probability of a neuron cell body to differentiate and create a new neurite

in a time step ∆t. We defined that the direction of a primary neurite, i.e., the first neurite to be

created, would follow a direction specified by the user. If no preferential direction was defined, a

random growth axis was chosen. Furthermore, secondary neurites tended to follow the direction

of their mother’s axis. Previous neurite outgrowth models considered that neurites adjusted their

direction of growth by turning slightly at small angles towards the left or right in regards to its cur-

rent growth axis (Mortimer et al., 2009, 2010; Catig et al., 2015). Consequently, we incorporated

this turning mechanism into our model by introducing an angle of freedom (θturn ), which dictated

how much secondary neurites could stray away from their mother’s growth axis, as illustrated in

Figure 5.3c.

Furthermore, Figure 5.3c also shows how we avoided the overlap between neurites of distinct

neurons, as these structures cannot physically occupy the same area in space. Specifically, when a

new neurite was created, we evaluated whether it would come into contact with an already existing

neurite. If this was the case, we decreased the length of the neurite to avoid collisions between the

two agents. Moreover, if the minimum length required to avoid contact between the objects was

smaller than a given threshold (Ln,min), the neuron would not differentiate. Lastly, we modelled the

differentiation blocking process by defining a maximum number of neurites that a neuron could

have (nneurites). When a neuron differentiated up until the point where this threshold was reached,

neuronal differentiation was blocked. The differentiation parameter values can be found in Table

5.1.

5.2.4 Cell mechanics and physical interactions

We introduced cell mechanics functions in our model to reproduce the physical interactions be-

tween cell bodies and neurites as proposed by Zubler (2009). Henceforth, we took into account

the internal forces created in the springs that connected neurites and cell bodies, as well as the

forces resulting from interactions between neighbouring objects, as represented in Figure 5.4. In-

teractions were computed by taking into account the forces acting on the objects’ mass point (i.e.,

the central point of cell bodies and the mass point of neurites). An object was able to interact

with a neighbour object if it was inside a radius of interaction (Rc,int for cell bodies and Rn,int for

neurites).

Forces acting on cell bodies

Since cell bodies were represented by a single mass with no attached spring, the forces acting di-

rectly on them were, primarily, interaction forces (see Figure 5.4a). Here, we considered that ob-

ject interactions were represented by sphere-sphere contacts (Zubler, 2009). Henceforth, although

cell-cell interactions could be easily calculated by taking into account the central position of the

cell body, the geometry of the neurites required some adjustments. Accordingly, as illustrated in
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Figure 5.4: Representation of the mechanics module which considered agent interactions
based on adhesion/repulsion dynamics and neurite spring forces. (a) Interaction forces (F i, j)
between two cell bodies, i and j, inside a radius of interaction (represented as dashed spheres)
were computed through sphere-sphere contacts. (b-c) Interactions between a neurite j and a cell
body/neurite k were also computed as sphere-sphere interactions. Consequently, we identified
the closest point on the neurite’s axis to its neighbour and, subsequently, calculated the resulting
force assuming that the neurite behaved as a sphere centred on that point. The resulting force
was then distributed by the neurite extremities according to their distance to the interaction point.
Accordingly, a fraction of the force (F j,k) was applied on the neurite’s mass, while the remaining
fraction (F i

d,int) was transmitted to its mother, i. (d) As neurites were represented as Hookean
springs, forces originated when they were stretched or compressed. Therefore, when the length of
a neurite j changed, a force was applied on its mass point (F j

spring) and an opposite force (F i
d,spring)

was transmitted to its mother, i.
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Figure 5.4b, cell-neurite interactions were computed by identifying the point on the neurite axis

that was closest to the cell body and computing the interaction forces between a virtual sphere,

centred at this point and with the same radius as the neurite, and the cell body.

We defined that the interaction force between neighbouring objects was composed of adhe-

sion and repulsion components. Furthermore, we modelled physical interactions with interaction

potentials as implemented previously by Ghaffarizadeh et al. (2018). Hence, interactions between

a cell i and its neighbour j were regulated by adhesion and repulsion coefficients and were given

by Equations 5.3 and 5.4:

∇φ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1− ∣r∣RA
)

2 r
∣r∣ if ∣r∣ ≤ RA

0, otherwise
(5.3)

∇ψ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(1− ∣r∣R )
2 r
∣r∣ if ∣r∣ ≤ R

0, otherwise
(5.4)

where r is the distance vector between the masses of two neighbouring objects. R],int represents

the cell body radius of interaction, which is the maximum distance at which adhesion forces are

present, and Rc is the cell body radius. Furthermore, cadh and crep represent the adhesion and

repulsion coefficients, respectively, and α is a smoothness factor of the potentials function. In this

model, we consider that cell-cell and cell-neurite interactions were defined by different coefficient

values. Thus, on the one hand, in cell-cell interactions cadh , crep and α represent the cell-cell

adhesion coefficient ccca , the cell-cell repulsion coefficient cccr and the cell-cell smoothness factor

αcc , respectively. On the other hand, in cell-neurite interactions these coefficients correspond to

ccna , ccnr and αcn. The values for these coefficients can be found in Table 1.

In addition, cell bodies took into account the forces transmitted by their daughter neurites,

if they had any. Due to the cylindrical geometry of neurites, interaction forces were distributed

between their extremities, as explained in further detail in the subsection to follow. Consequently,

progenitor cell bodies received a fraction of the interaction forces acting on their daughters (Fd,int),

as illustrated in Figure 5.4b. Moreover, since this model considered that cell bodies did not have

springs, the internal forces for those that had daughter neurites was not computed directly. Instead,

the internal forces of daughters (Fd,spring) were transmitted to the progenitors when forces were

computed for the corresponding neurite agents, as illustrated in Figure 5.4d. Taking this into

account, the force that was exerted on a cell body i by its daughter could be given by Equation 5.5.

F i
daughter = F i

d,spring+F i
d,int (5.5)

Consequently, the sum of the forces acting on a cell body was computed and its centre of mass

was moved. To achieve this, we took the inertialess assumption and defined that the equation of

motion used to update the velocity of a cell i based on all of the forces acting on it was defined by

Equation 5.6:



98 Pattern formation

µv ≈ ∑
j∈N(i)

(Fi j
cca+Fi j

ccr)+Fi
drag+Fi

loc (5.6)

where µ represents the drag coefficient of the tissue where cells are located.

Forces acing on neurites

Neurites, just like cell bodies, were able to interact with neighbouring objects. As previously

explained, since neurites were modelled as their mass point, the resulting force from the interaction

between a neurite and a cell body was computed by finding the point on the neurite axis closest

to the cell body and assuming that the neurite could be represented by a sphere centred at this

point. A similar approach was employed to compute neurite-neurite interactions, as represented

in Figure 5.4c. Therefore, as explained in the previous section, the adhesion and repulsion forces

between a neurite i and its neighbour j were given by Equations 5.7 and 5.8.

∇φ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1− ∣r∣RA
)

2 r
∣r∣ if ∣r∣ ≤ RA

0, otherwise
(5.7)

∇ψ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(1− ∣r∣R )
2 r
∣r∣ if ∣r∣ ≤ R

0, otherwise
(5.8)

Here, Rn,int represents the neurites’ radius of interaction, Rn represents their radius and r repre-

sents the distance vector between the two neighbours. Furthermore, cadh and crep are the adhesion

and repulsion coefficients and α is the potentials function smoothing factor for neurite interac-

tions. Thus, these coefficients represent ccna , ccnr and αcn in cell-neurite interactions and cnna ,

cnnr and αnn neurite-neurite interactions. The values for these coefficients can be found in Table 1.

Subsequently, the interaction forces were distributed by the two extremities neurite based on their

distance to the closest point to the interaction point.

In addition, given that neurons were simulated as a system of spring in series, the tension force

inside a neurite i (F i
spring) was given by Hooke’s law (Zubler, 2009; Dennerll et al., 1989) as written

in Equation 5.9:

F i
spring = kspring

(Li−L0)
L0

ei (5.9)

where, kspring is the neurite’s linear spring constant (see Table 1), Li is the current length of the

neurite, and L0 is its resting length, which is the length at which the neurite is initialized, and ei

represents the unit vector that defines the neurite’s growth axis. As illustrated in Figure 4d, when

computing the forces acting on this system, the spring forces were applied directly to the neurite’s

mass. In addition, an opposite force Fd,spring was transmitted to their progenitors. As done for the

cell bodies, the forces transmitted by daughter neurites could be defined by the sum of Fd,spring

and Fd,int , as given by Equation 5.5.
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The equation of motion for a given neurite i was defined by taking into account the inertialess

assumption and considering all the forces acting on the neurite’s mass as defined in Equation 5.10.

µv ≈ ∑
j∈N(i)

(Fi j
cca+Fi j

ccr)+Fi
drag+Fi

loc (5.10)

5.3 Results

5.3.1 Simplified model of Homer-Wright rosette formation

In this work, we designed three computational studies to identify the factors that modulate the for-

mation of HW rosettes. Firstly, we implemented a simulation to reproduce the current theoretical

model that describes the formation of HW rosettes as previously explained in Section 1. Funda-

mentally, some previous studies hypothesized that the neurites of poorly-differentiated neurons

interact and bind to each other, causing cell bodies to arrange in a circular geometry that encloses

a meshwork of neuropil fibres (Wippold and Perry, 2006). Accordingly, to replicate this scenario,

we created a simulation where cell bodies were placed in a radial arrangement, as shown in Figure

5 (see the subfigure for t = 0 min). We established that neuronal differentiation could occur up to

a maximum of 2 neurites per neuron (nneurites = 2) and at a rate rdi f f of 0.007 1/min. We defined

the differentiation rate based on previous works that showed that neurites grow at a rate of some

microns per minute (Miller and Suter, 2018) and we established a maximum of 2 neurites per neu-

ron to simulate how differentiation is blocked at early stages in neuroblastoma (Otte et al., 2021;

Mora and Gerald, 2004). At the cell mechanics level, we calibrated the adhesion and repulsion

parameters to promote cell-cell and neurite-neurite adhesion (Wippold and Perry, 2006; Katsetos

et al., 1988; Goodman et al., 1984). These values can be found in Table 1, except for the cell-cell

adhesion coefficient, which was varied in different studies. Here, it was considered that ccca = 5.

Furthermore, in these simulations, we established that the growth axis of new neurites pointed

towards the centre of the circular arrangement of neurons. We defined these conditions to model

an ideal scenario of HW rosette formation in which neurites would be more likely to come into

contact with each other and form the characteristic structure of this rosette subtype. Biologically,

neurites have been shown to extend towards sources of chemical substances, such as nerve growth

factors and neurotrophins (Catig et al., 2015; Liu et al., 2005). For instance, Schwann cells,

which are present in some neuroblastoma subtypes, are known to increase neurite outgrowth rates

(Koppes et al., 2011). Therefore, this simulation aimed to simulate neurite outgrowth towards a

source of differentiation-inducing signals at the centre of the rosette.

The results obtained in this initial study are presented in Figure 5.5, from which it is possible

to conclude that the simulated neurons adopted the structure and morphology of an HW rosette.

We highlight that this process was promoted by the adhesion between the neurons’ cell bodies and

the subsequent formation and growth of neurites that became adhered as they grew into the cen-

tre of the rosette. Since our model considered that neurites could turn and change their direction

of growth slightly as they grew, it was also possible to discern this behaviour in the simulation
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Figure 5.5: Computational model results obtained for an HW rosette formed under ideal
conditions. Neuron cell bodies were placed in a circular arrangement, and neuronal differentia-
tion was enabled. Yet, each neuron could only grow two neurites. We adjusted cell mechanics
parameters to promote adhesion cell-cell and neurite-neurite interactions. As a result, we achieved
a stable rosette pattern, as cells became adhered and neurites grew into the centre of the circular
arrangement and started interacting with other neurites. The model was run for a total of 8 simu-
lated hours.

outputs. Further turning and changes in the structure of the neurites were induced by the interac-

tions with the neurites of other neurons. This computational simulation was also used to evaluate

how the mechanical interactions between neuron cell bodies and the rates of neuronal differentia-

tion modulated the morphology of HW rosettes. These results are presented and discussed in the

section to follow.

5.3.2 Numerical sensitivity analysis studies

Having defined our base model of HW rosette formation, we designed a numerical analysis to

evaluate how the model’s response changed in response to different parameter values. We selected

two main parameters for this study: the differentiation rate, defined by rdi f f (see Equation 2),

and the adhesion levels between cells, given by ccca (see Equation 3). At the biological level,

we decided to study the effect of the differentiation rate and not the proliferation rate to avoid

disrupting the circular geometry of the rosette. In addition, while differentiation may occur at

a time scale of minutes (Miller and Suter, 2018), proliferation should only occur after several

hours or days. At the mechanics level, we focused on the interactions between cell bodies because

they appeared to dominate how pattern formation occurred Since neurites were programmed to

grow inwards, we observed that cell-neurite interactions did not play a major role in this system.

Likewise, due to the reduced size of the rosette, it was highly probable for neurites to be in contact

with each other. Hence, their interactions were regulated mainly by the adhesion forces induced

by the cell bodies. Due to the lack of experimental data on HW rosettes and their origin, we could

not fit these parameter values according to neuroblastoma cases. Consequently, in this work, we

evaluated our results based on the morphology of the simulated HW rosettes, as there were no

quantifiable data values that we could use to calibrate our model.
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Figure 5.6: Computational results of HW rosette formation at different differentiation rates
and cell-cell adhesion levels. At balanced differentiation rates, the adhesion between cell bodies
appeared to regulate the radius and the stability of the rosette structure. Furthermore, at high
differentiation rates, the radius of the rosette appeared to be maintained regardless of the adhesion
levels between cell bodies. Yet, the mechanical interactions modulated the morphology of the
rosette since neighbouring neurons became attached and disrupted the circular architecture of the
rosette. Consequently, the rosette presented gaps between groups of cell bodies. The model was
run for a total of 5 simulated hours

The results obtained for these simulations are shown in Figure 5.6. Overall, in these compu-

tational assays, we recognized that both the adhesion levels between cells and the differentiation

rates of neurons caused an impact on the morphology of HW rosettes. Starting with the results

obtained at balanced levels of differentiation (rdi f f = 0.007 1/min), the model outputs suggest that

balanced adhesion levels (ccca = 5) promoted the formation of well-defined circular geometries

with connected cell bodies. Neurites from opposite neurons also became adhered since the cell-

cell adhesion levels induced a more compact radial geometry. We did not identify this behaviour

when cell-cell adhesion was not present in the model (ccca = 0). When only repulsion was consid-

ered, neurons were organized in a radial geometry, but the cell bodies were not connected. Also,

there were fewer contact points between neurites, as the neurons were more distanced. Contrarily,

at high adhesion levels (ccca = 15), the circular geometry of the rosettes became smaller and dis-

rupted. Snapshots of replicates for each condition are presented in Appendix B, Section B.3.1 to

show that these results were consistent over different simulations.

In simulations performed at high differentiation rates (rdi f f = 0.07 1/min), the simulation out-

puts appeared to indicate that the creation and growth of neurites at a faster rate disrupted the

circular arrangement of the neurons, specifically at balanced and high cell-cell adhesion levels.
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Based on the model results, neurites started to grow into the centre of the rosette before cell bod-

ies were adhered. Hence, the interactions between neurites of neighbouring neurons induced the

formation of disjointed circular architectures. This effect was promoted further at high adhesion

levels, for which the results show that cell bodies were grouped into smaller clusters. We highlight

that the radius of the rosette was also not decreased at this differentiation rate, as the mechanical

interactions between the neurites that were already created balanced the adhesion forces between

cell bodies. Conversely, at low adhesion levels, this effect was not observed, as there were no

relevant cell-cell interactions in these simulations.

5.3.3 Tissue-scale simulations

Finally, in our last example application, we performed a study to confirm the relevance of the

creation and extension of neuronal processes at larger scales. Hence, we designed a simulation

to reproduce a tissue section comparable to those captured in histological images. We created an

initial configuration where neurons with no neurites were placed in a hexagonal grid. In addition,

cell clocks were initialized to model the three types of tissue in neuroblastoma: (i) undifferen-

tiated, (ii) poorly-differentiated and (iii) differentiated (Shimada et al., 1999b). In case (i), we

programmed cells to exhibit high division rates to capture the enhanced proliferative behaviour of

undifferentiated tumour cells. Neuronal differentiation was completely blocked. In case (ii), we

established that cells should have the same proliferation rate as in (i), but we introduced neuronal

differentiation. In this case, we defined a maximum number of neurites per neuron to simulate

the blocking of the differentiation process in poorly-differentiated tissues. Lastly, in case (iii), we

blocked cell proliferation and kept the differentiation rates. We also increased the maximum num-

ber of neurites, thus resembling a normal process of neuronal differentiation. Given the stochastic

nature of our model, we performed multiple simulations for each of the previously mentioned

conditions and assessed the results to identify the conditions that enable and promote the rosette

formation process.

Some representative results for this study are depicted in Figure 5.7. In undifferentiated tis-

sues, labelled as case (i), cells formed more homogeneous tissues, with many cell bodies and a

constrained amount of extracellular space. On the other end of the spectrum, differentiated tissues

were characterized by regions of low cell density with abundant neuropil and extracellular space.

We did not observe the presence of HW rosettes in either of these tissue types (i and iii). However,

in poorly-differentiated tissues (ii), the balance between proliferation and differentiation promoted

the formation of HW rosettes, as cell density levels enabled interactions between cells and neu-

rites. Moreover, we observed that the maximum number of neurites was a relevant factor in the

rosettes’ radial structure maintenance.

Interestingly, we observed that cell bodies could be organised around a central empty core in

poorly-differentiated and undifferentiated tissues. As previously explained in Section 1, rosette

patterns that surround an empty lumen are usually classified as "true ependymal rosettes." Al-

though these structures were the result of the mechanical interactions between cell bodies and cell

proliferation in our model, it is relevant to highlight that studies attribute the formation of this
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Figure 5.7: Histological records and simulation data for different stages of neuronal differ-
entiation. All simulations were initialized with neurons with a cell body and no neurites in a 7x7
hexagonal grid. We analysed three groups of simulations, each corresponding to a type of tis-
sue, namely undifferentiated, poorly-differentiated and differentiating tissues. Neuron biological
clocks were programmed to create the structure of these tissues by: (a) blocking differentiation,
(b) combining proliferation and differentiation, and (c) blocking proliferation. Results were eval-
uated by visually identifying the existence of HW rosettes which were only observed in poorly-
differentiated tissues. Histology images were taken from (Wang et al., 2013) (A) and (Shimada
et al., 1999a) (B, C).
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rosette subtype to a more complex process. Several studies have thoroughly studied and modelled

the formation of true ependymal rosettes in vitro and associated it with ependymal differentiation.

During this process, cells become more elongated and present a polar geometry, forming an empty

lumen in the middle of a group of cells (Wilson and Stice, 2006).

Lastly, even though HW rosettes were induced by the balanced levels of proliferation and dif-

ferentiation, we still observed that this process was very stochastic and could not be predicted

easily. We attribute this to the fact that, in contrast with the studies presented in the previous

sections, neurite outgrowth was assumed to be a random process, i.e., the direction of growth of

new neurites was chosen randomly. Thus, we did not consistently observe significant interactions

between neurites, and could not confirm that neurites from different cells became tangled to form

the rosette patterns (Wippold and Perry, 2006). Instead, we observed that new neurites appeared in

intercellular spaces with a circular geometry. In this study, we investigated whether HW rosettes

could be produced in the absence of a distinct chemical signal by establishing that neuronal devel-

opment would follow no preferential orientation. Our findings led us to the conclusion that these

structures could appear spontaneously due to mechanical interactions and differentiation rates, but

their morphology was not as well-defined as in the studies presented in the previous sections. Ac-

cordingly, when additional data about these chemical gradients becomes available, signalling may

be a pertinent component to incorporate in future iterations of this computational framework.

5.4 Summary

This chapter presents the last component of our computational approach to simulate collective

cell behaviour in a bottom-up approach. In particular, we created a framework that integrated cell

motility and mechanics, proliferation and neuronal differentiation. We achieved this by imple-

menting a mechanics-based modelling framework to study the dynamics of the formation of HW

rosette patterns in the early development of neuroblastoma. The occurrence of rosettes in cancer

progression is still not properly understood and there is a shortage of experimental data to sup-

port the existing assumptions about this developmental process due to the difficulties in recreating

these biological conditions in vitro (Wippold and Perry, 2006). Numerical and computational

simulations are of great value in these scenarios because they can be used to simulate these mor-

phological patterns in a virtual environment without these constraints. Using our computational

framework, we evaluated how distinct factors modulated this process and identified that this col-

lective behaviour was the result of an intricate interplay between cell-cell mechanics, proliferation

and differentiation.

To achieve this, our model included cell mechanics and different biological events, namely cell

division and neuronal differentiation. In addition, we examined distinct conditions to showcase the

model’s ability to simulate the formation of HW rosettes. Firstly, we simulated an ideal scenario

of the assembly of these structures as described by the current theoretical hypotheses that explain

their formation. Subsequently, we performed a numerical study to evaluate how mechanical inter-

actions and differentiation rates regulated the formation of rosette-like structures using the same
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ideal configuration. Lastly, we conducted some larger-scale simulations in which we investigated

the presence of HW rosettes in tissues with distinct proliferation and differentiation dynamics (i.e.,

undifferentiated, poorly-differentiated, and differentiating tissues). We hypothesize that stages of

poor neuronal differentiation in our model created a balance between proliferation and differenti-

ation levels. Consequently, differentiation modulated the formation and presence of HW rosettes.

Furthermore, model parameters that regulated tissue mechanics also played a relevant role in reg-

ulating the morphology of HW rosettes.

One of the limitations of our approach is that Python is a less powerful programming language

than other low-level languages, such as C and C++. Therefore, the current implementation may

require long computation times for simulations at the tissue-level. However, the scope of our study

was to analyse the formation of spatial structures in small tissue regions that could be compared

to histological pictures. Accordingly, we consider that our framework’s flexibility, ease of use and

simulation rendering capabilities outweigh its limitations.
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6.1 Introduction

This chapter gives a comprehensive summary of the dissertation’s primary findings as well as

the contributions made to this field of study over the course of the candidate’s PhD studies. The

overall conclusions of this work are discussed in Section 6.2, which also provides a summary of

the specific findings presented in each chapter. Then, in Section 6.3 some of the shortcomings of

the work done for this dissertation are discussed, along with suggestions for improvements and

potential directions for future research.
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6.2 Main conclusions

The research presented in this dissertation demonstrated the capability of computational modelling

to deconstruct and comprehend challenging issues in cancer biology. We specifically demonstrated

how model elements could be utilized to represent particular features of cancer biology that can be

optimized and simulated using experimental data. Furthermore, the need for modelling multiscale

biological events was explored, and it was demonstrated that particular cell behaviours were only

observed when multiple behaviours were simulated simultaneously. In particular, we observed

that tumour growth resulted from cell proliferation, cell-cell mechanics and single-cell motility.

Furthermore, morphological patterns resulted from balanced mechanics, proliferation and differ-

entiation. Accordingly, this dissertation highlights the relevance of integrating simple and well-

characterized biological models into mechanistic multiscale frameworks that can combine them

and simulate how complex behaviour arises.

6.2.1 Single cell motility

In Chapter 3, the first computational model of this dissertation was presented. We designed this

model to simulate single-cell motility and how it is modulated by the mechanical and chemical

properties of the extracellular microenvironment. In addition, we employed model calibration

techniques to reproduce empirical data from in vitro studies, which allowed us to pose hypotheses

of mechanisms that might explain the observed biological behaviours. Two studies were per-

formed to investigate this research question, the first of which relied on qualitative data to describe

the role of drag and cell-generated forces on cancer cell motility, while the latter integrated origi-

nal quantitative in vitro results to assess how fibroblast motility changed in response to chemical

factors.

In the first study presented in this chapter, we implemented the computational model that

served as the first template for the subsequent iterations presented in this dissertation. We initiated

this model implementation process with a straightforward approach to characterize individual cell

motility, which we defined as this work’s first building block. Accordingly, we simulated migra-

tion as the result of cell-generated locomotive forces regulated by the mechanical properties of

the ECM. As a first approach, we assumed a simplified homogeneous representation of the mi-

croenvironment. Furthermore, we estimated and derived a force generator module to reproduce

cell movement. With this approach, we were able to confirm that collagen density limited cell

motility.

In the second application, we extended our model and designed a calibration pipeline to inter-

pret experimental data from migration assays conducted with growth factors and different collagen

densities. Generally, the experimental observations indicated that the presence and spatial loca-

tion of PDGF-BB in the microfluidic devices regulated motility. Using statistical inference, we

identified model parameters and values that can justify these findings. In particular, we predicted

that collagen invasion was not solely modulated by an increase in cell forces and cell movement
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due to the presence of PDGF-BB, as seen in studies that consider chemokinesis, but it was also

influenced by enhanced directionality and cell persistence through chemotaxis.

Overall, these two models of single-cell motility collectively illustrate the process of develop-

ing and fine-tuning a computational framework. We could translate components from a first imple-

mentation to an improved second approach which was complemented and strengthened through

model extensions and optimization techniques. We consider the second approach more complete,

providing more information and, thus, more confidence to both modellers and experimentalists

to interpret its outputs. Nevertheless, we also recognize that a simple and generalizable frame-

work such as the first one can be meaningful in research, specifically when quantitative data is not

accessible to permit data-driven optimization routines.

6.2.2 Tumour growth

In Chapter 4, we took the first step to move from individual to collective cell behaviour by study-

ing tumour growth and how it is affected by cell dynamics and cell-cell interactions. With this

goal in mind, we extended the computational model implemented in Chapter 3 and simulated the

growth of multicellular structures from individual cells. We based this model on experimental

previously published data obtained for NSCLC cells seeded in microfluidic devices with collagen

matrices of different densities. We simulated this experimental setup with a simulation workflow

similar to that implemented in Chapter 3. Yet, collective behaviour was investigated by enabling

proliferation and cell-cell and cell-matrix mechanics. As observed in the original experiments,

our results showed that high-density matrices produced large multicellular structures. Conversely,

low-density matrices resulted in sparse and individual cells and small clusters. These findings were

interesting since that several previous studies link high-density matrices to compressive forces that

lead to limited growth.

Remarkably, our computational approach revealed that, in spite of cell-cell interaction forces

and the cells’ ability to proliferate, motility played a dominant role in the growth of multicellular

structures. Accordingly, we concluded that cell behaviour arises from complex interactions be-

tween different model components and that it is essential to acknowledge both cell motility and

cell proliferation to simulate tumour development accurately. Consequently, it is highly relevant

to consider the mechanical properties of tissues when studying metastatic colonization and how

they modulate cell motility, given that it can impact the development of secondary tumours. Fur-

thermore, we observed that our computational framework had a limited ability to accurately depict

cluster eccentricity results observed in vitro. However, we were able to take this information into

account and generate new hypotheses to explain that elongated morphologies may be a result of

collective cell motility patterns, which were not modelled in this work and would require cell-cell

signalling. Henceforth, despite its limitations, our model was still a critical resource to identify

that our assumptions were insufficient to reproduce the intended biological behaviour and that new

model assumptions should be added to re-evaluate model adequacy and accuracy.

Moreover, we reviewed models of avascular tumour growth, focusing on how these pre-

vious works contemplated the presence of nutrients and chemical factors involved in glucose
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metabolism. This review was relevant to understand the current state-of-the-art in tumour growth

modelling, specifically in multiscale modelling of glucose metabolism and its impact on tumour

development. Overall, we concluded that although several models of avascular tumour growth

at the cell-level exist and network models have been employed simulate glucose metabolism at

different complexity levels, few models combine these two scales. Therefore, we believe it would

be highly relevant to include subcellular representations of glucose metabolism in future iterations

of out computational framework.

6.2.3 Pattern formation

The model development process carried out in this dissertation culminated in Chapter 5, where we

presented computational framework that integrated cell motility, cell-cell interactions, prolifera-

tion and, lastly, differentiation. We focused on modelling HW rosettes, a particular case of pattern

formation observed in neuroblastoma. We implemented modules for simulating cell cycling, dif-

ferentiation, contact inhibition and cell mechanics. Moreover, our approach to modelling neurons

as a combination of two independent types of physical objects, namely spheres and cylinders, al-

lowed us to obtain a more realistic depiction of neuron morphology than a standard sphere-based

CBM would enable. Once more, we observed that the biological behaviour under study resulted

from the interplay between different model components, namely cell-cell mechanics, proliferation

and differentiation.

Moreover, in this work, we proposed some simple simulation setups to evaluate the mecha-

nisms that lead to rosette assembly. Firstly, we implemented an ideal scenario where cells were

placed in a circular arrangement since the start of the simulation and differentiation was allowed,

but limited, to reproduce the formation of poorly-differentiated neurites. This simulation was de-

signed to emulate the current theories that explain the formation of HW rosettes and could be

used to evaluate if the model was behaving as expected. Furthermore, a numerical study was im-

plemented to use this simulation design and quantify how different cell-cell and differentiation

levels affected rosette morphology. With this methodology, we identified that fast differentiation

rates compromised the structure of HW rosettes, as did high cell-cell adhesion levels. Lastly, we

progressed from simulations with a single rosette to tissue-scale scenarios and studied more real-

istic cell distributions, initializing cells into a grid. In this study, we aimed to reproduce the three

distinct neuroblastoma phenotypes, i.e., undifferentiated, poorly-differentiated and differentiated.

Thus, we evaulated the effect of differentiation rates and maximum number of neurites. As ex-

pected, based on the reports available in the literature, we only observed HW-like structures in the

poorly differentiated subtype.

We believe this model is a critical first step towards understanding HW rosettes and the mech-

anisms that lead to their formation. Despite being recognized in clinical diagnosis as a hallmark of

poorly-differentiated neuroblastoma, HW are, overall, not sufficiently understood. For instance,

only recently did in vitro experiments reproduce spatial patterns that share similarities with HW

rosettes (Duarte Campos et al., 2019). Besides, the theoretical literature on these structures is very

sparse and limited. Thus, to the best of our knowledge, this is not only the first computational
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model of HW rosette formation, but also a novel resource that can be of interest to experimental-

ists and clinicians to visualize this process and plan new experiments to evaluate it in vitro, which

would result in new findings in this uncharted research field.

6.3 Future work

The research questions studied in this dissertation enabled advances in the computational oncology

research field. However, due to the fast developments in this research field, multiple aspects can

be further investigated and enhanced. Generally, we remark that further characterization of model

performance could be of value. In Chapters 3 and 4, we relied on PhysiCell’s ability to scale and

efficiently compute the dynamics of multiple substances and cells. Overall, we did not experience

a substantial increase in computational times due to our numerical implementations. In Chapter

5, we implemented a Python model, less computationally powerful than PhysiCell, that could be

improved by further parallelization, for instance. In the context of our study, the scale of the

tissues did not compromise computation times, yet this should be improved in simulations with

more agents (Breitwieser et al., 2023). Furthermore, we identified three critical aspects that could

be improved in future iterations of this work, as described in the following sections.

6.3.1 Improved representations of the physical microenvironment

In spite of using PhysiCell, a hybrid modelling framework, extensively, the focus of this disser-

tation was mainly on the discrete model components. In other words, we studied cell behaviour

in detail and took microenvironment cues into account in our models, yet we did so through sim-

plified representations of the environment. In the future, it would be meaningful to improve the

projects developed in this dissertation to account for more realistic models of the mechanical and

chemical properties of the extracellular microenvironment. Starting with the mechanical proper-

ties, we could represent the heterogeneity of collagen matrices through a model that might relate to

a local collagen concentration with local viscosity values and reproduces the heterogeneous nature

of the ECM. For instance, further characterization experiments as those performed by Valero et al.

(2018) could be conducted to obtain more data, with which it would be possible to understand a

more accurate description of this relationship. Besides matrix density, additional properties, e.g.,

anisotropy and orientation, could also be included in this model (Metzcar et al., 2022).

Moreover, it would be advantageous to include the effects of matrix secretion and degradation

by cells, which we did not consider in this work (Shuttleworth and Trucu, 2020; Merino-Casallo

et al., 2022b). In fact, it is currently possible to simulate ECM secretion and degradation with

PhysiCell’s built-in functions. Therefore, through this model, we could also study how cells mod-

ulate the ECM’s mechanical properties and how, in turn, this effect regulates cell migration and

tumour formation. The idea of simulating ECM fibres as discrete agents is also of interest, de-

spite the increased computational costs that it entails. Using a PhysiCell addon called PhysiBoSS

(Letort et al., 2019), it is possible to simulate the ECM as agents with a spherical geometry.

Furthermore, it could be an option to implement fibres as the cylinder objects used to simulate
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neuronal processes in Chapter 5. This approach has been shown to be more realistic than previous

sphere-based frameworks (Macnamara et al., 2020) and could also be applied to simulate blood

vessels (Breitwieser et al., 2022).

At the chemical level, explicitly modelling reaction and diffusion could provide more realistic

descriptions of the changes in substance concentration as a dynamic process in space and time. In

Chapter 3, it was assumed that PDGF-BB gradients were mostly unaffected by cell consumption

given that the cell number was small in comparison to the microfluidic device dimensions and

because the chemotactic gradient was maintained by introducing PDGF-BB to one of the media

channels every two days. Nevertheless, in the case of tumour growth and MCTSs in particular, as

discussed in Chapter 4, it becomes crucial to be able to simulate local changes in concentration to

reproduce the internal structure of spheroids (Murphy et al., 2022; Jagiella et al., 2016) and other

spatial patterns commonly observed in nutrient deprived regions, e.g., finger-like invasion patterns

that arise from migrating cells trying to escape the tumour (Rocha et al., 2021; Anderson et al.,

2006; Colombi et al., 2017). In addition, if fibres were modelled as agents, it could be relevant to

have these objects behave as sinks to simulate the binding of molecules to the ECM, which has

been shown to occur in in vitro studies (Moreno-Arotzena et al., 2014) but was disregarded in this

work.

6.3.2 Integrated intracellular models

In Chapter 4, we discussed tumour growth models that reproduce nutrient availability and glu-

cose metabolic pathways. This review was a theoretical overview, and we did not model cell

metabolism or the effects of chemical substances on cell cycling. However, our computational

framework can be extended to include representations of glucose and its metabolic pathways. In

fact, Jacquet and Stéphanou (2023) recently investigated glucose metabolic pathways in PhysiCell

using a reduced model of anaerobic-aerobic metabolism in altered tumour microenvironments.

Furthermore, recent advances in the PhysiCell ecosystem enable the creation and reuse of sub-

cellular models written in Systems Biology Markup Language (SBML), a standardized format to

save and share computational models of biological processes (Heiland, 2020). Therefore, pre-

viously published models can be loaded into PhysiCell, thus enhancing model reproducibility.

Other open-source modelling platforms, e.g., CompuCell3D, offer functionalities to read and run

SBML models (Swat et al., 2015) as well, which we consider being revealing of its capabilities

and potential to be used in a standardized manner by the mathematical biology community.

Furthermore, intracellular networks are not limited to metabolic models. In particular, signal

transduction pathways can also be simulated at the subcellular level (Letort et al., 2019; Tyson

et al., 2003). For instance, neuronal differentiation in neuroblastoma is regulated by signal-

transducing pathways modulated by the presence of Schwann cells and growth factors (Weiss

et al., 2021; Persson et al., 2017). In addition, it has been revealed that the mechanical properties

of the ECM, namely its stiffness, may promote tumour differentiation, slowing down proliferation

and modulating the expression of transcription factors associated with high-risk neuroblastoma
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(Lam et al., 2010). Henceforth, future iterations of our neuroblastoma model could include sub-

cellular differentiation models, which would allow more control over which conditions could lead

to poorly-differentiated states. It would be particularly relevant to simulate how these signalling

pathways are activated through the inclusion of subcellular model components to account for cell-

cell junctions and cell-matrix adhesion complexes (McEvoy et al., 2022; Vargas et al., 2020).

6.3.3 Optimization and parameter identifiability

Throughout this dissertation, we strived to calibrate our models with experimental data to enhance

their biological relevance. Furthermore, we developed some additional work on optimization of

PhysiCell models. We specifically developed PhysiCOOL (Gonçalves et al., 2022), a tool that

makes the studies presented in this dissertation more accessible to the general mathematical bi-

ology community. PhysiCOOL is an open-source Python library tailored to create standardized

calibration and optimization routines of PhysiCell models. Besides adding features that provide

a user-friendly interface to run PhysiCell studies through Python, it also introduces optimization

routines based on multilevel grid-search that fits model parameters to user-defined data. A detailed

description of PhysiCOOL’s implementation and use cases is presented in Appendix C. Nonethe-

less, we belive this framework can still be improved, for example, through the implementation of

distinct optimization techniques and the additional features to quantify parameter uncertainty and

identifiability.

ABMs are highly complex and are many times characterized by a large number of parame-

ters that describe biological phenomena yet cannot be experimentally quantified and need to be

inferred (Gábor and Banga, 2015). Besides, biological data is intrinsically noisy, making pa-

rameter estimation a more challenging function. Hence, parameter identifiability analysis, which

can determine if model parameters can be obtained from a given dataset (Maclaren and Nicholson,

2019), and uncertainty analysis, which quantifies how parameter uncertainty affects model outputs

(Vernon et al., 2018), are increasingly relevant to provide model developers with more confidence

about their models and model results. Simpler models with fewer parameters can evade these is-

sues since they can be characterized at lower computational costs. Consequently, new surrogate

modelling techniques have been developed to build representations of complex non-identifiable

models that may not be directly associated with biological mechanisms, but can be tested through-

outly and provide insights translatable to the original mechanistic models (Browning and Simpson,

2023; Kennedy, 2000). In the future, it would certainly be relevant to apply these techniques to

our computational frameworks to confirm our hypotheses and evaluate model accuracy.
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6.4 Thesis contributions

6.4.1 Journal publications

Published work

1. Inês G. Gonçalves and José Manuel Garcia-Aznar. "Extracellular matrix density regu-
lates the formation of tumour spheroids through cell migration." PLoS computational

biology 17.2 (2021): e1008764. doi: 10.1371/journal.pcbi.1008764.

2. Inês G. Gonçalves and Jose Manuel Garcia-Aznar. "Hybrid computational models of
multicellular tumour growth considering glucose metabolism." Computational and Struc-

tural Biotechnology Journal 21 (2023): 1262-1271. doi: 10.1016/j.csbj.2023.01.044.

3. Inês G. Gonçalves, Nieves Movilla, Carlos Borau and José Manuel Garcia-Aznar. "A novel
integrated experimental and computational approach to unravel fibroblast motility
in response to chemical gradients in 3D environments." Integrative Biology zyad002

(2023). doi: 10.1093/intbio/zyad002.

4. Inês G. Gonçalves, David A. Hormuth II, Sandhya Prabhakaran, Caleb M. Phillips, José

Manuel García-Aznar. "PhysiCOOL: A generalized framework for model Calibration
and Optimization Of modeLing projects" GigaByte (2023). doi: 10.46471/gigabyte.77.

Under review

1. Inês G. Gonçalves and José Manuel Garcia-Aznar. "neurorosettes: A novel computational
modelling framework to explore the formation of Homer-Wright rosettes in neurob-
lastoma." Computational Particle Mechanics

6.4.2 Conferences and workshops

Oral communications

1. "The role of cell migration on tumour spheroid growth".

VPH2020 - Virtual Physiological Human. Paris, France (online).

2. "Collagen Density Regulates Tumour Spheroid Growth through Cell Motility".

16th U.S. National Congress on Computational Mechanics. Chicago, USA (online).

3. "Combined in vitro and computational models of neuroblastoma growth".

11th European Solid Mechanics Conference. Galway, Ireland.

4. "2021 Workshop Highlights: PhysiCOOL".

2022 PhysiCell Workshop and Hackathon. USA (online).

Invited oral communication.

https://doi.org/10.1371/journal.pcbi.1008764
https://doi.org/10.1371/journal.pcbi.1008764
https://doi.org/10.1016/j.csbj.2023.01.044
https://doi.org/10.1016/j.csbj.2023.01.044
https://doi.org/10.1093/intbio/zyad002
https://doi.org/10.1093/intbio/zyad002
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5. "Locomotive forces and chemical gradients regulate human fibroblast motility in 3D
environments: Insights from an integrated experimental and computational approach".

Hausdorff Summer School "Inverse problems for multi-scale models". Bonn, Germany.

Recipient of a travel grant.

6. "Agent-based models for biomedical applications: An introduction to PhysiCell".

XI MEETING OF THE SPANISH CHAPTER OF THE EUROPEAN SOCIETY OF BIOME-

CHANICS. Zaragoza, Spain.

Lecturer of a hands-on workshop.

Poster communications

1. "Collagen Density Regulates Tumour Spheroid Growth Through Cell Motility: A
Computational Study".

II Jornada del I3A y X Jornada de Jóvenes Investigadores. Zaragoza, Spain.

Participation

1. PDBEB Courses 2021/2022 - Computational Biology. Coimbra, Portugal (online).

Presentation of a short project titled "Using text-mining techniques in literature reviews".

2. 2021 Network Modeling Virtual Summer School & Hackathon. USA (online).

3. 2021 PhysiCell Workshop and Hackathon. USA (online).

Part of the runner-up team for the "Best Tool" prize in the Hackathon.

4. Short Course on Particle-Based Methods in Engineering and Applied Science. Hamburg,

Germany (online)

6.4.3 Supervising and mentoring activities

MSc thesis

1. "In silico modeling of single-cell fibroblast migration in response to 3D chemical gradients."

Ijeoma Charity Asilebo. 2020/2021.

2. "Computational simulation of the T cell migration process using a discrete model."

Imán Laga Boul-Atarass. 2021/2022.

3. "Modelling of tumoral cells metabolism in tumoral spheroids formation and development."

Alejandro Modrego Bravo. 2022/2023

BSc final project

1. "Simulation by methods based on agents of immunotherapy techniques against cancer."

Guillermo Villamor Aparicio. 2022/2023
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6.4.4 Open-source software

1. "PhysiCell-ECM: A PhysiCell extension to account for the extracellular matrix".

Available on GitHub1 (MIT License).

2. "pdgf-induced-motility: Computational model of chemotaxis calibrated with Bayesian Op-

timization."

Available on GitHub2 (BSD-3-Clause License).

3. "neurorosettes: An agent-based framework to model the formation of rosette patterns in

tissues of the nervous system."

Available on Zenodo (BSD-3-Clause License) (Gonçalves and García-Aznar, 2022).

4. "PhysiCOOL: A generalized framework for model Calibration and Optimization Of mod-

eLing projects".

Available on Zenodo (BSD-3-Clause License) (Gonçalves et al., 2023).

6.4.5 Collaborations

PhysiCell Workshop 2021

During their doctoral studies, in 2021, the PhD candidate participated in an online workshop

and hackathon organized by the team responsible for developing PhysiCell (Paul Macklin’s Math

Cancer Lab, Indiana University). During this hackathon, the PhD candidate joined a team to

implement PhysiCOOL, a tool designed to calibrate and optimize PhysiCell models. The team

was composed by the PhD candidate, Inês G. Gonçalves, David Hormuth II and Caleb M. Phillips

(members of the Center for Computational Oncology group at the Oden Institute in Texas) and

Sandhya Prabhakaran (member of the Integrated Mathematical Oncology department at H.Lee

Moffitt Cancer Center and Research Institute in Florida) and they were awarded the "Best Tool"

runner-up prize at the end of the hackathon. Since then, the team has collaborated to improve this

tool and make it a standard framework in the PhysiCell ecosystem through the development of

new features, creation of documentation and interactive examples and publishing and distribution

of the software as a publicly-available a Python library. Moreover, this work has been accepted

for publication and can be found on bioRxiv (Gonçalves et al., 2022).

MAtrix Group - KU Leuven

Furthermore, during the first year of their PhD, the candidate collaborated with the research group

where they completed their MSc thesis, supervised by Diego A. Vargas and Hans Van Oosterwyck

(members of the Mechanobiology and Tissue Engineering group at KU Leuven), to publish this

work. In particular, the candidate studied the role of mechanosensing mechanisms in single-cell

motility and how substrate stiffness and cell-substrate adhesions influenced the cell’s migration

1https://github.com/m2be-igg/PhysiCell-ECM
2https://github.com/m2be-igg/pdgf-induced-motility
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phenotype. Therefore, the knowledge acquired in this project was of particular relevance to this

PhD dissertation and could be applied to model and evaluate migration patterns in single-cell

motility as a response to the properties of the surrounding environment. Furthermore, this publi-

cation resulted in the publication of an original article:

1. Vargas, D. A., Gonçalves, I. G., Heck, T., Smeets, B., Lafuente-Gracia, L., Ramon, H.,

& Van Oosterwyck, H. "Modeling of mechanosensing mechanisms reveals distinct cell
migration modes to emerge from combinations of substrate stiffness and adhesion re-
ceptor–ligand affinity." Frontiers in Bioengineering and Biotechnology 8 (2020): 459.

LEPABE/BioSIM - Faculty of Engineering of University of Porto

Lastly, during the first two years of their doctoral studies, the PhD candidate established a collabo-

ration to continue and finish a previous research project developed under the supervision of Manuel

Simões (member of the LEPABE research group at the Faculty of Engineering of the University

of Porto). This collaboration was not directly linked to the candidate’s doctoral studies and was

developed in parallel to the PhD thesis but was relevant to the candidate’s academic path. In this

work, the PhD candidate aimed to build an online database with data from peer-reviewed reports

of Legionella outbreaks to identify the environmental factors that may have promoted these out-

breaks. To achieve this, the student gathered and analysed peer-reviewed data on Legionella cases

and worked together with members of the Biomolecular SIMulations (BioSIM) research group to

implement and publish the online database, LegionellaDB3. This collaboration also resulted in the

publication of one original article and a review paper, listed below:

1. Gonçalves, I. G., Fernandes, H. S., Melo, A., Sousa, S. F., Simões, L. C., & Simões, M. "Le-
gionellaDB–A database on Legionella outbreaks." Trends in Microbiology 29.10 (2021):

863-866.

2. Gonçalves, I. G., Simões, L. C., & Simões, M. "Legionella pneumophila." In Trends in

Microbiology 29.9 (2021): 860–861.
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A.1 Introducción

Este capítulo ofrece un resumen completo de los principales resultados de la tesis, así como las

contribuciones realizadas a este campo de estudio a lo largo de los estudios de doctorado de la

candidata. Las conclusiones generales de este trabajo se discuten en la Sección A.2, que también

proporciona un resumen de los resultados específicos presentados en cada capítulo. Luego, en la

Sección 6.3 se discuten algunas de las limitaciones del trabajo realizado para esta tesis, junto con

sugerencias para mejoras y propuestas para futuras investigaciones.
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A.2 Conclusiones generales

La investigación presentada en esta tesis demostró la capacidad del modelado computacional para

deconstruir y comprender cuestiones desafiantes en la biología del cáncer. Se demonstra especí-

ficamente cómo los elementos de los modelos se pueden utilizar para representar características

particulares de la biología del cáncer, los cuales se pueden optimizar y simular utilizando datos

experimentales. Además, se exploró la necesidad de modelar eventos biológicos multiescala y

se demostró que solo se observaban comportamientos celulares particulares cuando se simula-

ban múltiples comportamientos simultáneamente. En particular, se observa que el crecimiento

tumoral se debió a la proliferación celular, la mecánica celular y la motilidad unicelular. Además,

los patrones morfológicos observados en neuroblastoma resultaron de la mecánica, proliferación

y diferenciación. En consecuencia, esta tesis destaca la relevancia de integrar modelos biológi-

cos simples y bien caracterizados en herramientas de múltiples escalas que puedan combinarlos y

simular cómo surge un comportamiento complejo.

A.2.1 Migración celular

En el capítulo 3, se presentó el primer modelo computacional de esta tesis. Este modelo fue

diseñado para simular la motilidad de una sola célula y como las propiedades mecánicas y quími-

cas del entorno extracelular modulan su comportamiento. Además, se utilizaron técnicas de cali-

bración para reproducir datos empíricos de estudios in vitro, lo que nos permitió formular hipótesis

sobre mecanismos que podrían explicar los comportamientos biológicos observados. Se realizaron

dos estudios para investigar esto, el primero de los cuales se basó en datos cualitativos para de-

scribir el papel del arrastre y las fuerzas generadas por las células en la motilidad de las células

cancerosas, mientras que el último integró resultados cuantitativos originales in vitro para evaluar

cómo la motilidad de fibroblastos cambió en respuesta a factores químicos.

En el primer estudio presentado en este capítulo, se implementó el modelo computacional

que sirvió como primera instancia para las iteraciones posteriores presentadas en esta tesis. Este

proceso de implementación del modelo comenzó con un enfoque para caracterizar la motilidad

celular individual, que se definió como el primer bloque de construcción de este trabajo. En

consecuencia, se simuló la migración como resultado de las fuerzas locomotoras generadas por

las células reguladas por las propiedades mecánicas de la matriz extracelular. Como primera

aproximación, se asumió una representación homogénea simplificada del entorno. Además, se

estimó y derivó un módulo de generación de fuerza para reproducir el movimiento celular. Con

este enfoque, fue posible confirmar que la densidad de colágeno limitaba la motilidad celular.

En la segunda aplicación, este modelo fue ampliado y se diseñó una batería de calibración para

interpretar datos experimentales de ensayos de migración realizados con factores de crecimiento

y diferentes densidades de colágeno. En general, las observaciones experimentales indicaron que

la presencia y la ubicación espacial de PDGF-BB en los dispositivos de microfluídica regulaban

la motilidad. Utilizando la inferencia estadística, se identificaron los parámetros y valores del

modelo que pueden justificar estos hallazgos. En particular, fue posible predecir que la invasión
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de colágeno no solo fue modulada por un aumento en las fuerzas celulares y el movimiento celular

debido a la presencia de PDGF-BB, como se vio en estudios que consideraron la quimiocinesis,

sino que también estuvo influenciada por una direccionalidad mejorada. persistencia celular por

quimiotaxis.

En general, estos dos modelos de motilidad unicelular ilustran colectivamente el proceso de

desarrollo y ajuste de un marco computacional. Componentes de una primera implementación

fueron aplicadas a un segundo enfoque mejorado que se complementó y fortaleció a través de

extensiones de modelo y técnicas de optimización. Este segundo enfoque es más completo, ya que

proporciona más información y, por lo tanto, más confianza tanto a los modeladores como a los

experimentadores para interpretar sus resultados. Sin embargo, un modelo simple y generalizable

como el primero puede ser significativo en la investigación, específicamente cuando no se puede

acceder a los datos cuantitativos para permitir las rutinas de optimización basadas en datos.

A.2.2 Crecimiento tumoral

En el Capítulo 4, se definió el primer paso para pasar del comportamiento celular individual al

colectivo, estudiando el crecimiento tumoral y cómo se ve afectado por la dinámica celular y las

interacciones célula-célula. Con este objetivo en mente, se amplió el modelo computacional imple-

mentado en el Capítulo 3 y se simuló el crecimiento de estructuras multicelulares a partir de células

individuales. Este modelo se basó en datos experimentales publicados previamente obtenidos para

células tumorales sembradas en dispositivos microfluídicos con matrices de colágeno de diferentes

densidades. Esta configuración experimental se simuló con un flujo de trabajo de simulación sim-

ilar al implementado en el Capítulo 3. Sin embargo, se investigó el comportamiento colectivo

que permite la proliferación y la mecánica célula-célula y célula-matriz. Como se observó en los

experimentos originales, los resultados mostraron que las matrices de alta densidad produjeron

grandes estructuras multicelulares. Por el contrario, las matrices de baja densidad dieron como

resultado células individuales dispersas y la formación de pequeños grupos celulares. Estos re-

sultados son relevantes, ya que varios estudios previos relacionan matrices de alta densidad con

fuerzas de compresión que conducen a un crecimiento limitado.

Sorprendentemente, el enfoque computacional reveló que, a pesar de las fuerzas de interacción

célula-célula y la capacidad de las células para proliferar, la motilidad desempeñó un papel dom-

inante en el crecimiento de las estructuras multicelulares. En consecuencia, el comportamiento

celular surge de interacciones complejas entre diferentes componentes del modelo y que es esen-

cial reconocer tanto la motilidad celular como la proliferación celular para simular el desarrollo

tumoral con precisión. En consecuencia, es muy relevante considerar las propiedades mecánicas

de los tejidos al estudiar la colonización metastásica y cómo modulan la motilidad celular, dado

que puede impactar en el desarrollo de tumores secundarios. Además, este modelo computacional

tenía una capacidad limitada para representar con precisión los resultados de excentricidad de cú-

mulos observados in vitro. Sin embargo, esta información permitió generar nuevas hipótesis para

explicar que las morfologías alargadas pueden ser el resultado de patrones de motilidad celular

colectivos, que no fueron modelados en este trabajo y requerirían señalización celular. A pesar de
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sus limitaciones, este modelo seguía siendo un recurso fundamental para identificar que nuestras

hipótesis eran insuficientes para reproducir el comportamiento biológico previsto y que debían

agregarse nuevas suposiciones del modelo para reevaluar la adecuación y precisión del modelo.

Además, se revisaron modelos de crecimiento tumoral avascular, centrándonos en cómo es-

tos trabajos previos contemplaban la presencia de nutrientes y factores químicos implicados en

el metabolismo de la glucosa. Esta revisión fue relevante para comprender el estado del arte

actual en el modelado del crecimiento tumoral, específicamente en el modelado multiescala del

metabolismo de la glucosa y su impacto en el desarrollo tumoral. En general, aunque existen var-

ios modelos de crecimiento tumoral avascular a nivel celular y se han empleado modelos de red

para simular el metabolismo de la glucosa en diferentes niveles de complejidad, pocos modelos

combinan estas dos escalas. Por lo tanto, sería muy relevante incluir representaciones subcelulares

del metabolismo de la glucosa en futuras iteraciones de este modelo computacional.

A.2.3 Formación de patrones

El proceso de desarrollo del modelo llevado a cabo en esta tesis culminó en el Capítulo 5, donde

se presenta un modelo computacional que integraba la motilidad celular, las interacciones célula-

célula, la proliferación y, por último, la diferenciación. En este capítulo se modeló la formación

de las rosetas HW, un caso particular de formación de patrones observado en el neuroblastoma.

Se implementaron módulos para simular ciclos celulares, diferenciación, inhibición por contacto

y mecánica celular. Además, el enfoque para modelar neuronas como una combinación de dos

tipos independientes de objetos físicos, a saber, esferas y cilindros, nos permitió obtener una rep-

resentación más realista de la morfología de las neuronas que la que permitiría un modelo basado

en esferas estándar. Una vez más, se observó que el comportamiento biológico bajo estudio re-

sultó de la interacción entre los diferentes componentes del modelo, a saber, la mecánica celular,

la proliferación y la diferenciación.

Además, en este trabajo, algunas configuraciones de simulación simples fueron utilizadas para

evaluar los mecanismos que conducen al ensamblaje de rosetas. En primer lugar, se implementó

un escenario ideal donde las células se colocaron en un arreglo circular desde el inicio de la sim-

ulación y se permitió la diferenciación, pero limitada, para reproducir la formación de neuritas

pobremente diferenciadas. Esta simulación fue diseñada para emular las teorías actuales que ex-

plican la formación de rosetas HW y podría usarse para evaluar si el modelo se estaba comportando

como se esperaba. Además, se implementó un estudio numérico para cuantificar cómo los difer-

entes niveles de diferenciación y interacciones célula-célula afectaban la morfología de las rosetas.

Con esta metodología, se identificó que las tasas de diferenciación rápida comprometían la estruc-

tura de las rosetas HW, al igual que los altos niveles de adhesión célula-célula. Por último, se pasó

de simulaciones con una sola roseta a escenarios a escala de tejido y se estudiaron distribuciones

de células más realistas. En este estudio, el objetivo fue reproducir los tres fenotipos distintos

de neuroblastoma, es decir, indiferenciado, pobremente diferenciado y diferenciado. Por lo tanto,

se evaluó el efecto de las tasas de diferenciación y el número máximo de neuritas. Como era de
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esperar, según los informes disponibles en la literatura, solo se observaron estructuras similares a

HW en el subtipo pobremente diferenciado.

Este modelo es un primer paso crítico hacia la comprensión de las rosetas HW y los mecan-

ismos que conducen a su formación. A pesar de ser reconocido en el diagnóstico clínico como

un sello distintivo del neuroblastoma pobremente diferenciado, las rosetas HW, en general, no

se comprenden lo suficiente. Por ejemplo, solo recientemente los experimentos in vitro reprodu-

jeron patrones espaciales que comparten similitudes con HW rosetas (Duarte Campos et al., 2019).

Además, la literatura teórica sobre estas estructuras es muy escasa y limitada. Por lo tanto, hasta

donde se conoce hoy en día, este no es solo el primer modelo computacional de formación de

rosetas HW, sino también un recurso novedoso que puede ser de interés para experimentadores y

clínicos para visualizar este proceso y planificar nuevos experimentos in vitro, lo que daría lugar a

nuevos hallazgos en este campo de investigación desconocido.

A.3 Trabajo futuro

A pesar de usar PhysiCell, una herramienta de trabajo de modelado híbrido, el enfoque de esta

tesis se centró principalmente en los componentes discretos del modelo. En otras palabras, se

estudiaron el comportamiento celular en detalle y se tomarón en cuenta las señales del microen-

torno en estos modelos, pero a través de representaciones simplificadas del entorno. En el futuro,

sería significativo mejorar los proyectos desarrollados en esta tesis para dar cuenta de modelos

más realistas de las propiedades mecánicas y químicas del entorno celular. Comenzando con las

propiedades mecánicas, se podría representar la heterogeneidad de las matrices de colágeno a

través de un modelo que podría relacionarse con una concentración de colágeno local con valores

de viscosidad y reproducir la naturaleza heterogénea de la matriz. Por ejemplo, se podrían realizar

más experimentos de caracterización como los realizados por Valero et al. (2018) para obtener

más datos, con los cuales sería posible comprender una descripción más precisa de esta relación.

Además de la densidad de la matriz, también podrían incluirse en este modelo propiedades adi-

cionales, por ejemplo, anisotropía y orientación de las fibras (Metzcar et al., 2022).

Además, sería ventajoso incluir los efectos de la secreción y degradación de la matriz por parte

de las células, que no fueron consideradas en este trabajo (Shuttleworth and Trucu, 2020; Merino-

Casallo et al., 2022b). De hecho, actualmente es posible simular la secreción y degradación de

matriz con las funciones integradas de PhysiCell. Por lo tanto, a través de este modelo, también

se podría estudiar cómo las células modulan las propiedades mecánicas de la matriz y cómo, a

su vez, este efecto regula la migración celular y la formación de tumores. La idea de simular

fibras de colágeno como agentes discretos también es interesante, a pesar de los mayores costos

computacionales que implica. Usando un complemento de PhysiCell llamado PhysiBoSS (Letort

et al., 2019), es posible simular la matriz extracelular como agentes con una geometría esférica.

Además, podría ser una opción implementar fibras como objetos cilíndricos utilizados para simular

procesos neuronales en el Capítulo 5. Se ha demostrado que este enfoque es más realista que los
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marcos anteriores basados en esferas (Macnamara et al., 2020) y también podría aplicarse para

simular vasos sanguíneos (Breitwieser et al., 2022).

A nivel químico, modelar explícitamente la reacción y la difusión de las substancias del en-

torno podría añadir descripciones más realistas de los cambios en la concentración como un

proceso dinámico en el espacio y el tiempo. En el capítulo 3, se asumió que los gradientes de

PDGF-BB no se vieron afectados en su mayoría por el consumo de células, dado que el número

de células era pequeño en comparación con las dimensiones del dispositivo de microfluídica y

porque el gradiente quimiotáctico se mantuvo constante. Sin embargo, en el caso del crecimiento

tumoral, y en esferoides en particular, como se discutió en el Capítulo 4, se vuelve crucial poder

simular cambios locales en la concentración para reproducir la estructura interna de los esferoides

(Murphy et al., 2022; Jagiella et al., 2016), bien como otros patrones espaciales comúnmente

observados en regiones privadas de nutrientes, por ejemplo, patrones de invasión similares a pro-

tusiones que surgen de células migratorias que intentan escapar del tumor (Rocha et al., 2021;

Anderson et al., 2006; Colombi et al., 2017). Además, si las fibras se modelaran como agentes,

podría ser relevante que estos objetos se comportaran como sumideros para simular la unión de

moléculas a la ECM, lo que se ha demostrado que ocurre en estudios in vitro (Moreno-Arotzena

et al., 2014), pero no fue considerado en este trabajo.

A.3.1 Modelos intracelulares

En el Capítulo 4, los modelos de crecimiento tumoral que reproducen la disponibilidad de nu-

trientes y las vías metabólicas de la glucosa fueron revisados. Esta revisión fue una descripción

general teórica y el metabolismo celular no fue modelado, ni los efectos de las sustancias quími-

cas en el ciclo celular. Sin embargo, nuestro modelo computacional se puede ampliar para incluir

representaciones de la glucosa y sus vías metabólicas. De hecho, Jacquet and Stéphanou (2023) in-

vestigó recientemente las vías metabólicas de la glucosa en PhysiCell usando un modelo reducido

de metabolismo anaeróbico-aeróbico en entornos tumorales. Además, los avances recientes en

el ecosistema PhysiCell permiten la creación y reutilización de modelos subcelulares escritos en

SBML, un formato estandarizado para guardar y compartir modelos computacionales de procesos

biológicos (Heiland, 2020). Por lo tanto, los modelos publicados anteriormente se pueden cargar

en PhysiCell, mejorando su reproducibilidad. Otras plataformas de modelado de código abierto,

por ejemplo, CompuCell3D, también ofrecen funcionalidades para leer y ejecutar modelos SBML

(Swat et al., 2015), lo que es revelador de sus capacidades y potencial para ser utilizado de manera

estandarizada.

Además, las redes intracelulares no se limitan a modelos metabólicos. En particular, las vías

de transducción de señales también se pueden simular a nivel subcelular (Letort et al., 2019; Tyson

et al., 2003). Por ejemplo, la diferenciación neuronal en el neuroblastoma está regulada por vías

de transducción de señales moduladas por la presencia de células de Schwann y factores de crec-

imiento (Weiss et al., 2021; Persson et al., 2017). Además, se ha revelado que las propiedades

mecánicas de la matriz extracelular, como su rigidez, pueden promover la diferenciación tumoral,

ralentizar la proliferación y modular la expresión de factores de transcripción asociados con el
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neuroblastoma de alto riesgo (Lam et al., 2010). De ahora en adelante, las iteraciones futuras de

nuestro modelo de neuroblastoma podrían incluir modelos de diferenciación subcelular, lo que per-

mitiría un mayor control sobre qué condiciones podrían conducir a estados pobremente diferenci-

ados. Sería particularmente relevante simular cómo se activan estas vías de señalización mediante

la inclusión de componentes del modelo subcelular para dar cuenta de las uniones célula-célula y

los complejos de adhesión célula-matriz (McEvoy et al., 2022; Vargas et al., 2020).

A.3.2 Optimización y identificabilidad de parámetros

A lo largo de esta tesis, nuestros modelos fueron calibrados con datos experimentales para mejorar

su relevancia biológica. Además, se desarrolloró un trabajo adicional sobre la optimización de los

modelos, llamado PhysiCOOL (Gonçalves et al., 2022). Esta herramienta hace que los estudios

presentados en esta tesis sean más accesibles para la comunidad general de biología matemática.

PhysiCOOL es una biblioteca Python de código abierto diseñada para crear rutinas estandarizadas

de calibración y optimización de modelos PhysiCell. Además de agregar características que brin-

dan una interfaz fácil de usar para ejecutar estudios de PhysiCell a través de Python, también

presenta rutinas de optimización que ajustan los parámetros del modelo a los datos definidos por

el usuario. En el Apéndice C se presenta una descripción detallada de su implementación y sus

casos de uso. No obstante, esta herramienta aún se puede mejorar, por ejemplo, mediante la im-

plementación de distintas técnicas de optimización y de funciones adicionales para cuantificar la

incertidumbre y la identificabilidad de los parámetros.

Los modelos basados en agentes son altamente complejos y muchas veces se caracterizan por

una gran cantidad de parámetros que describen fenómenos biológicos que aún no pueden cuantifi-

carse experimentalmente y deben inferirse (Gábor and Banga, 2015). Además, los datos biológi-

cos son intrínsecamente ruidosos, lo que hace que la estimación de parámetros sea un reto. Por

lo tanto, el análisis de identificabilidad de parámetros, que puede determinar si los parámetros del

modelo se pueden obtener de un conjunto de datos determinado (Maclaren and Nicholson, 2019),

y el análisis de incertidumbre, que cuantifica cómo la incertidumbre de los parámetros afecta los

resultados del modelo (Vernon et al., 2018), son cada vez más relevantes para proporcionar a los

desarrolladores de modelos con más confianza acerca de sus modelos y resultados del modelo. Los

modelos más simples y con menos parámetros pueden evadir estos problemas, ya que se pueden

caracterizar a costos computacionales más bajos. En consecuencia, se han desarrollado nuevas

técnicas de modelado para construir representaciones de modelos complejos no identificables. Es-

tas herramientas pueden no estar directamente asociadas con mecanismos biológicos, pero pueden

probarse en su totalidad y proporcionar información traducible a los modelos mecanicistas origi-

nales (Browning and Simpson, 2023; Kennedy, 2000). En el futuro, sin duda sería relevante aplicar

estas técnicas a nuestros modelos computacionales para confirmar nuestras hipótesis y evaluar su

precisión.
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B.1 Single cell migration

B.1.1 Study 1: Model identification for the locomotive forces generator function

We identified that the model parameters that play a significant role in our obtained results are

related to the cell-generated locomotive forces. Taking this into consideration, we will mainly

focus on how the function we have used to generate these cell-generated locomotive forces affects

the model outputs. Since our work regarded the qualitative trends observed experimentally, we

have mostly focused on studying how different forces distributions influence our results, focusing

on the shape of the distributions. Based on the assumption that the main factors acting on cell

velocity (in the single-cell setup) are the cell-generated locomotive forces, as well as the drag

forces determined by the ECM, and to avoid the computational cost of the model, we have built

a simplified script to study the effect of these forces. In particular, we built a Python script that

implements the equation below, taking into account values from a given force distribution and the

effect of the ECM, through the dynamic viscosity of the matrix.

vi ≈
1
µ

Fi
loc (B.1)

Here, Fi
loc is a value chosen at random from the chosen distribution and µ is the dynamic viscosity

of the collagen matrix. For this sensitivity study, we have considered a normal distribution with a

mean value, µ, of 0.15 and a standard deviation, σ, of 0.2; a normal distribution with µ = 0.0, σ

= 0.45; and a lognormal distribution with µ = 0.0, σ = 0.7. The parameters of each function were

fitted to provide the best possible results, and we compiled a number of velocity values comparable

to that measured experimentally. The results obtained for this study are summarized in Fig , from

which we conclude that the shape of the chosen distribution is highly significant and can lead to

different cell behaviours.

Extending this analysis, we have also studied how the coefficients of our force generator func-

tion may influence our results. For our implementation, which was based on the empirical velocity

distributions and fitted accordingly, the velocity values depend on the coefficients of a function

given by a general third-degree polynomial form

y(x) = ax3+bx2+cx+d (B.2)

which we fitted to become

Floc(x) = 1.56x3+3.27x2+0.07x+0.06 (B.3)

B.1.2 Study 1: Sensitivity analysis

Particularly, we studied how these coefficients influence the mean, median and maximum cell

velocity values. We have chosen to use the cells grown in medium-density matrices as an example

since the viscosity of the matrix affects all these parameters equally, and, thus, we expect the
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Figure B.1: Estimated results for cell velocities in function of different force generator func-
tions. (A) Estimated velocity distributions for a normal distribution, a normal distribution centred
at zero and a lognormal distribution (top). To study how the force generator influences the com-
putational results, we have studied multiple force distribution functions and their effect on cell
velocity. It can be concluded that, despite capturing the median velocities, these distributions fail
to replicate the range of the experimental values, as well as the lack of outliers. Hence, we con-
clude that the chosen distribution highly impacts the obtained results.

Figure B.2: Comparison between a simplified model of cell motility based on experimental
data and PhysiCell results. Experimental results (left), the simplified model (centre) and the com-
putational results obtained with the actual model (right). Although the simplified model predicted
a broader distribution for cells grown in low-density matrices, we consider that the conclusions
obtained with this implementation apply to our proposed model.
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Figure B.3: Effect of the generator function coefficients on the cell velocity results. Mean (red),
median (green) and maximum (blue) values for the instantaneous cell velocities of cells grown
in medium-density matrices, for different parameter values. For each plot, a single parameter
was changed, while the others were kept at the values presented in the paper (a = 1.56, b = 3.27,
c = 0.07, d = 0.06). The coefficients were varied based on their magnitude. For small changes,
especially those regarding coefficients c and d, the velocity values do not appear to be largely
affected. However, for more significant increases both in a and b, the velocities values increase
with these parameters, in particular the maximum velocity value.

changes to be comparable between matrix densities. The results of this study are summarized in

Fig B.3. Based on this figure, we conclude that our model is robust to small variations in these

coefficients.

B.1.3 Study 2: Relevance of the administration methods of chemotactic substances

We performed some additional assays to assess whether (i) increasing the concentration of PDGF-BB

or (ii) discontinuing its administration would modify the fibroblasts’ chemotactic response. We

performed these studies with the experimental setup described as Condition 1 in our manuscript.

That is, we used a microfluidic device with a single chamber, surrounded by two media channels.

Subsequently, we created a chemotactic gradient through the introduction of PDGF-BB in the

channel opposite to the cell monolayer. In the first study, we considered a PDGF-BB concentra-

tion of 50.0 ng/mL and compared the results to those obtained for a concentration of 5.0 ng/mL.

These results are presented in Table B.1.

Overall, we observed that the changes in the chemotactic response were almost negligible and

we could not identify any trend originated by the concentration change. We believe that these

Table B.1: Relative increase of the mean distance travelled by fibroblasts in response to dif-
ferent concentrations of PDGF-BB. Results were obtained by comparing the mean travelled
distance in the presence of PDGF-BB to those obtained under control conditions.

Time (hours) 5 ng/mL 50 ng/mL

48 1.98 1.89
96 1.83 1.87
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Figure B.4: Displacement values for migrating fibroblasts over 4 days when PDGF-BB ad-
ministration was ceased after 48 hours of experiments. Distances were computed based on the
perpendicular distance between the current position of each cell and the position of the monolayer.
Results were taken at 24, 48, 72 and 96 hours.

findings are in accordance with previous studies that have shown that cell velocity is proportional

to the magnitude of a chemotactic gradient but only up to a certain concentration value, at which

cell velocity values saturate (Chertock et al., 2012). Henceforth, it is possible that fibroblasts are

already experiencing this saturation limit at a concentration of 5.0 ng/mL.

In regard the second study, which aimed to identify changes in the chemotactic behaviour

when PDGF-BB stopped being administrated, we used the same experimental setup and stopped

adding PDGF-BB to the cell media after 48 hours. These results are shown in Fig R1, shown

below. Fundamentally, we observed that, even though we removed PDGF-BB after 48 hours, the

fibroblasts travelled as much as those that had access to PDGF-BB during 96 hours. We believe

that this may have occurred due to the binding of chemical factor to the collagen matrix, which has

been shown to occur in previous studies (Moreno-Arotzena et al., 2014). Consequently, fibroblast

motility might have been a result of haptotaxis even after PDGF-BB was no longer administrated

and the chemical gradient was reduced.

In future experimental studies, the relevance of these haptotactic cues could be further as-

sessed. We propose that the computational model parameters found to best fit this experimental

setup could be used to simulate the experiments performed under control conditions, and, in addi-

tion, a model extension could be introduced to modify the parameters responsible for simulating

the cells’ response to migration-inducing factors, namely the forward bias. We believe that it

would be expected that forward bias value would decrease, as it represents the cell’s ability to

follow a given direction and the chemotactic gradient would no longer be present. The factor by

which the value should decrease could be manually varied and, subsequently, the value that best

fitted the experimental results performed with PDGF-BB would be chosen. This would be particu-
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larly helpful to further support the hypothesis that haptotactic cues were important (we believe that

a slight decrease would signify a less powerful signal), or if cells adopted a more random pattern,

similar to the cells seeded under control conditions (i.e., a large decrease would signify that there

were no relevant migration-inducing signals).

Furthermore, at the experimental level, a new experimental configuration could be imple-

mented where, instead of stopping the administration of PDGF-BB after 48 hours, the placement of

the PDGF-BB source would be changed instead. In other words, a new experimental design could

be considered in which PDGF-BB would be introduced in the opposite channel until 48 hours and,

at this timepoint, stop the administration in this channel and, instead, introduce PDGF-BB in the

monolayer channel. Henceforth, it could be evaluated whether fibroblasts showed a preferential

migration response to the initial chemotactic gradient and the haptotactic cues generated by it,

or if the new stimulus introduced by the new chemotactic signal in the opposite direction would

lead to cell arrest or even a change in direction. These results could also be integrated into the

computational approach to further validate the model.

B.1.4 Study 2: Direct comparison between 2.5 mg/mL and 4.0 mg/mL matrices

As presented in the main text of this work, our experimental results show that the final displace-

ment values for fibroblasts seeded in collagen matrices of distinct collagen densities were rela-

tively similar. Taking into consideration the effect of the ECM and its mechanical properties on

cell motility, and how an increased matrix density may impair cell movement due to reduced pore

sizes, we include a direct analysis between these datasets to better understand why the displace-

ment values were not largely affected by the differences in the matrices’ structure. These results

are shown in Fig B.5. It is apparent that, for both fibroblasts seeded under control conditions and

those seeded in the presence of PDGF-BB, the displacement values start by being different during

the first two days between the two collagen densities. Yet, this difference is reduced over time.

B.1.5 Study 2: Spatial organization and intercellular distance

In addition to the distance travelled by cells from the position of the initial fibroblast monolayer,

we have computed the intercellular distance for the single-channel studies. We considered the

average distance between each fibroblast and its five nearest neighbours. The obtained results are

shown in Fig B.6. Overall, it is apparent that, although cells migrated individually, some common

patterns were shared between cells, even under different experimental conditions. In particular,

we concluded that the intercellular distances in the control and MC experiments tended to be

similar. However, we observed that these values were slightly smaller for the OC experiments.

Furthermore, we obtained larger distance values in the experiments with higher collagen density.

Similarly to what was seen for less dense matrices, the presence of PDGF-BB in the channel

opposite to the monolayer promoted a slight decrease in the intercellular distance values. Com-

paring the experimental and computational data, we conclude that the experimental results dif-

fered less between conditions than the computational results. Moreover, the computational results
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Figure B.5: Displacement values measured for migrating fibroblasts over 4 days in 2.5 mg/mL
and 4.0 mg/mL collagen matrices. Distances were computed based on the perpendicular distance
between the current position of each cell and the position of the monolayer. Results were taken
at 24, 48, 72 and 96 hours. Results are statistically different (p < 0.001) between the two matrix
densities for the first day of experiments.

Figure B.6: Experimental and computational results for the intercellular distances between
fibroblasts seeded in single-chamber devices. Normalized intercellular distance values for the
experiments and simulations performed with single-chamber devices. Distances were computed as
the average distance between each cell and a number of neighbours, n = 5, at day 4 of experiments.
Values were normalized using the median distance value obtained for the corresponding control
study as the reference value. Differences between the experimental results obtained for 2.5 mg/mL
matrices (represented on the left) are statistically significant between the cell channel condition
and opposite channel condition (p < 0.01). Differences between the experimental results obtained
for 4.0 mg/mL matrices are also statistically significant (p < 0.001).
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suggest that the enhanced motility of fibroblasts seeded in the presence of PDGF-BB produced

increased intercellular distance values. However, given that these results differed from those ob-

tained in vitro, we suggest that proliferation may have been promoted by the presence of PDGF-BB

in the experiments, which resulted in new cells appearing in the intercellular space (47). Subse-

quently, the intercellular distance values decreased due to the new cells. Since we did not include

the effect of PDGF-BB on cell proliferation in our computational model, as this was beyond the

scope of our work and we focused primarily on modelling single-cell motility, this behaviour was

not captured in the computational results.

B.1.6 Study 2: Model predictions evaluation of the estimated cell persistence time

As an example of how our model predictions can be used to plan future validation experiments to

confirm them, we quantified the persistence time of fibroblasts’ migration under different condi-

tions by tracking the cell trajectories at a shorter time scale. To do so, we used the experimental

configuration described as Condition 1 in our manuscript and, at 96 hours of settling time, we

tracked the cells’ positions every 10 minutes for a period of 4 hours. To obtain the numerical

values, we fitted the Mean Squared Displacement (MSD) of the individual cell trajectories to an

Anisotropic Persistent Random Walk model as described by Wu et al. (2015) .The MSD of indi-

vidual trajectories at different time lags was computed from the following equation:

MSD(τ) = (x(t +τ)−x(t))2+(y(t +τ)−y(t))2 (B.4)

where τ = n∆t and n = 1,2, ...,N f rames−1. ∆t is the time step used during image acquisition, and

then fitted to the following model:

MSD(τ) = 2S2P(τ −P(1−e(−τ/P)))+4σ
2 (B.5)

where S is the cell speed, P is its persistence time, and 4σ
2 is the noise (error) in the position of

the cell. The results for this study are show in Fig B.7.

Note that these assays were posterior to the model calculations and that the involved parame-

ter values were nor directed nor limited in any way during the optimization process. Thus, even

though the experimentally measured persistence time median values were slightly smaller than

those obtained with the computational model, we verified that they are on the same order of mag-

nitude, which is relevant considering that the experimental data used to calibrate the model was

obtained on a scale of days (every 24h), and yet we were able to estimate proper values through

our optimization pipeline. Furthermore, we identified that there was an increase in the persistence

times both in the presence of PDGF-BB and in denser collagen matrices, again in accordance with

our model predictions.
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Figure B.7: Distribution of the fibroblast persistence times quantified experimentally at 96
hours of experiments. Results were obtained for both 2.5 and 4.0 mg/mL collagen matrices and
in the presence of PDGF-BB, which was placed in the channel opposite to the initial fibroblast
monolayer. The quantified values were in the order of minutes, as it had been predicted by our
computational model. Furthermore, it is apparent that both the addition of PDGF-BB and the use
of denser collagen matrices enhanced fibroblast persistence, which had also been predicted by the
model.

B.2 Tumour growth

B.2.1 Automatic cluster classification and quantification

Apart from the model parameters, some aspects of the data processing methodology used may

influence our results, particularly for the multicellular setup. In order to quantify the area and ec-

centricity of the multicellular clusters observed after some days of growth, cells must be classified

into clusters. Although we have tried to replicate the type of processing used in the experimen-

tal results, this was not completely possible, as there are some differences the experimental and

image-based data and our computational results, that are based on the coordinates of the centres

of the cells. Henceforth, some parameters had to be chosen and fitted, namely the radius and the

minimum number of cells considered by the clustering algorithm, as well as the height of interest

that we have defined to replicate the effect of an image-based analysis.

We have chosen to classify cells into clusters through the implementation of the DBSCAN

(Ram et al., 2010; Pedregosa et al., 2012), which requires the user to define the radius of interaction

and the minimum number of cells in a cluster. For these parameters, we have aimed to choose a

radius of interaction that was slightly larger than the radius of two cells, so that only cells that were

close to each other were selected. Moreover, we initially defined that the minimum of clusters of

cells in the radius of interaction should be 3. However, given that the experimental results suggest

that there are clusters at day 1, and cells are only able to replicate once in that period, we have

defined that, at day 1, clusters could be composed by a minimum number of cells of 2. We
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have only used this value for day 1, though, as we have observed that this also promoted the

classification of single cells into clusters. More information on the effect of these parameters can

be found in Fig B.8.

We quantified cluster area by assuming that multicellular clusters had a spherical geometry.

Accordingly, we found the approximate radius of the multicellular cluster and computed its area

as a circle with that radius. However, other options are available to obtain this metric, assuming

other geometries. For example, an ellipsoid shape could be considered to account for cluster

elongation along one of its axis. In addition, the convex hull could be evaluated to provide a more

accurate area description considering the clusters’ specific geometry. However, it must be taken

into account that this detailed representation is based on the cells’ centre positions and imaging

data does not have this resolution level, which can lead to differences between computational and

experimental data. Examples of alternative cluster area classification metrics and its corresponding

values can be seen in Fig B.9.

Cluster eccentricity

Regarding the eccentricity values, we have used the same parameter values for our cluster area

study, as we have observed that changes in these parameters would not lead to significant dif-

ferences in eccentricity values, as presented in Fig B.8. We would also like to comment on the

fact that cluster eccentricity values are highly sensitive to small variations in cluster dimensions.

Accordingly, although the computational results are robust to small perturbations in parameter

values, there are some differences between the experimental and computational results, as can be

seen in Fig . In particular, we have observed that it was very difficult to obtain eccentricity values

as low as those seen experimentally.

Cluster eccentricity is computed based on the dimensions of the ellipse that best fits the cluster.

In particular, taking an ellipse’s major, a, and minor, b, axis, we compute its eccentricity using the

following equation

eccentricity =
√
(a2−b2)

a2 (B.6)

Therefore, we can plot cluster eccentricity in function of the ratio between a and b, as presented

in Fig B.11. This plot allows us to confirm that cluster eccentricity is particularly sensitive at low

eccentricity values. In this range (between 0-0.3, approximately), very small differences between

the length of the ellipse axes greatly influence the eccentricity values. We note that our computa-

tional data is very sensitive to these differences, which are in the order of <10 µm, as we can keep

track of the coordinates of each cell. However, the experimental results, which are image-based,

present a lower sensitivity, as they are limited by the size of each pixel. Henceforth, experimental

results present lower eccentricity values.
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Figure B.8: Effect of the DBSCAN parameters on cluster metrics. Mean cluster area for differ-
ent values of the radius of interaction and the minimum number of cells in said radius, at day 5. On
the one hand, the effect of different values of the minimum number of cells is mainly noticeable
between 2 and 3. A smaller minimum number of cells leads to the detection of small aggregates,
that do not truly classify as clusters, reducing the value of the mean cluster area. On the other
hand, the value of the radius of interaction appears to have a more significant effect, particularly
for clusters grown in medium-density matrices. This is probably explained by having more cells
scattered through the domain, which may be detected through an increase in the radius magnitude.
Contrarily, high-density matrices produce large clusters that are fairly distanced from each other
and do not present individual cells. Changes in the DBSCAN parameters do not produce signifi-
cant changes in the computed eccentricity values. Therefore, we opted to keep the same values as
those used to compute cluster area, to keep our methods consistent.
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Figure B.9: Cluster area quantification approaches. Examples of alternate area quantification
approaches, such as the smallest enclosing circle (orange), smallest enclosing ellipse (green) and
convex hull (blue) and their evolution over time. The convex hull provides the most accurate area
depiction based on the cluster specific geometry, yet its values may vary when compared with
imaging data with lower resolution. In said cases, the smallest enclosing ellipse or circle may
prove to be better options.

Figure B.10: Differences between the experimental and computational values for cluster ec-
centricity. Experimental (left) and computational (right) results for cluster eccentricity (the com-
putational results also present the equivalent ellipse from which these values have been calculated).
It must be noted that an eccentricity of zero indicates a round cluster, whereas an eccentricity of
one indicates a cluster that resembles a line. The experimental and computational results present
differences in cluster eccentricity, although a visual analysis may suggest comparable eccentricity
values. For instance, the centre cluster in the computational dataset presents an eccentricity of
0.3. Compared to the experimental results for day 4, it seems to be as round, if not more, than the
experimental cluster. Yet, the eccentricity value of the latter is of 0.19. Similarly, we observed this
pattern for several of the computational clusters.
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Figure B.11: Effect of the ratio between the major and minor axes of an ellipse on cluster
eccentricity. The relationship between ellipse eccentricity and the ratio between its major and
minor axes dictates that, for low eccentricity values, the outcome is highly sensitive to differences
in the dimensions of the ellipse. For a cluster with a major axis of 100 µm, a difference of just 5%
between a and b (which, in this case, is just around 5 µm) produces an eccentricity of around 0.3
(green lines). Furthermore, a difference of just 2 µm between the two axes of this cluster produces
an eccentricity value of 0.2 (black lines). Contrarily, as the eccentricity values increase, the output
becomes less sensitive to these differences.

B.2.2 Oxygen diffusion and consumption dynamics

Although we have included oxygen and the effects that this substance may have on cells into our

model, we do not consider it to play a significant role in our simulations. Considering the pres-

ence of oxygen and the cells’ dependence on oxygen allows for a more accurate representation of

cellular systems and can be useful to study other experimental configurations, to which our model

can easily be adapted. Nevertheless, the experimental settings in which we base our simulations

for this particular study are not expected to promote hypoxia, nor do we believe that changes in

oxygen levels affected cell migration. Consequently, we do not consider oxygen to have a relevant

effect on cell cycle or cell motility, either.

Here we aim to present a study conducted with the simulated data for our model, to show that

oxygen is present but does not play a significant role in our simulations. Hypoxia levels are defined

in the model as oxygen pressure values below 15 mmHg, and cell necrosis starts occurring when

pressure levels reach values lower than 5 mmHg. Furthermore, we set an initial oxygen concen-

tration of 38 mmHg, which we expect to be lower than that found in experimental conditions. To

evaluate oxygen dynamics, we considered only the simulations that refer to multicellular cluster

growth, as the oxygen consumption by a single cell in the individual cell motility study is not sig-

nificant. We selected the middle plane (z=0) of the domain, as we expect this to be the plane with

the highest cell density and, consequently, where oxygen consumption is maximal. Subsequently,

we plotted a heatmap representing the oxygen concentration at each voxel for each of the studied

collagen densities after seven days of growth, as seen in Fig B.12. From this data, it is possible to
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Figure B.12: Oxygen levels over the simulation timespan. Oxygen levels decrease over time and
in response to differences in the matrix properties. Specifically, matrices of high density present
lower oxygen levels, which can be attributed to the cells’ restrained motility. As cells adopt a
packed distribution, oxygen diffusion is hindered at the centre of the cell cluster. Contrarily, in
lower density matrices, cells can migrate through the matrix and oxygen consumption does not
overpower its diffusion. We also present a quantitative analysis of the minimum concentration
values at the middle plane of the simulated domain. Our results show that the minimum values
decrease through time but never reach pressure levels lower than 29 mmHg.

conclude that oxygen levels decrease over time, but never reach values lower than 30 mmHg.

Finally, for an extended quantitative analysis, Fig B.12 showcases how the minimum oxygen

concentrations at the middle plane change over time, for all 10 replicates. From this, we can

conclude that the results are coherent throughout all of the replicates and that minimum values

never adopt values lower than 29 mmHg, which is higher than the hypoxic threshold that activates

cell necrosis and hindered cell proliferation. In conclusion, we infer that oxygen does not play a

role in our simulations, due to our initial conditions, but its effect could be studied through our

model, for different experimental configurations.

B.3 Pattern formation

B.3.1 Rosette formation at distinct adhesion and differentiation levels

In the numerical study performed to evaluate how cell-cell adhesion and neuronal differentiation,

three replicates were considered, even though only one was shown in the main text. Fig B.13

shows the results for all the replicates evaluated, showing that the results were consistent in all the

simulations.
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Figure B.13: Computational results of HW rosette formation at different differentiation rates
and cell-cell adhesion levels. Results are shown for three replicates and the overlap of all repli-
cates is also presented, which shows that results are consistent over multiple replicates.
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C.1 Introduction

In silico models of biological systems are usually very complex and rely on a large number of

parameters describing physical and biological properties that require validation. As such, explo-

ration of parameter space is an essential component of computational model development to fully

characterize and validate simulation results. Experimental data may also be used to constrain

parameter space (or enable model calibration) to enhance the biological relevance to model pa-

rameters. One widely used computational platform in the mathematical biology community is

PhysiCell which provides a standardized approach to agent-based models of biological phenom-

ena at different time and spatial scales. One limitation of PhysiCell, however, is that there has

not been a generalized approach for parameter space exploration and calibration that can be run

without high-performance computing access. Taking this into account, we present PhysiCOOL,

an open-source Python library tailored to create standardized calibration and optimization routines

of PhysiCell models.

C.2 Statement of Need

Mathematical biology is a field of study that aims to represent biological systems through the

language of mathematics as a set of mathematical rules which can be used to test hypotheses and

make predictions (Clermont and Zenker, 2015). There are several types of mathematical models

that can be used to simulate biological systems at varying complexity levels. Agent-based models

are one of the most popular implementations to develop models that consider the cellular and

sub-cellular scales. Currently, multiple computational frameworks are available to facilitate the

creation of agent-based models based on previously built templates, making mathematical biology

more accessible to researchers from different backgrounds (Metzcar et al., 2019). Among these

platforms, PhysiCell (Ghaffarizadeh et al., 2018) is an open-source hybrid framework that is able

to simulate cells as discrete agents and model the reaction-diffusion dynamics of the substances

present in the surrounding microenvironment through a continuous approach. Furthermore, recent

add-ons have been developed to introduce new biological processes into the PhysiCell ecosystem

(Letort et al., 2019; Bergman et al., 2022; Gonçalves and Garcia-Aznar, 2021).

Despite the recent advances in the development of additional PhysiCell plugins, the new mod-

ules are mostly centred around model extensions. Nevertheless, model exploration can be as im-

portant as model development to validate results and evaluate whether the model predictions about

the underlying biological mechanisms are plausible (Hasenauer et al., 2015). Furthermore, experi-

mental data could be used to provide biological and/or physical constraints on model parameters to

validate whether the model captures the range of expected biological behaviors (Kazerouni et al.,

2020), they can be used in computational biology to understand which model parameters maxi-

mize the similarity between the model results and a target data set, for example experimentally

measured data. Subsequently, model developers may take these optimal solutions into account
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to identify which biological mechanisms captured by the computational model may explain the

experimental data.

We highlight that previous works have developed model exploration routines with PhysiCell

(Duggan et al., 2021; Ozik et al., 2018), but these were specifically designed for high-performance

computing (HPC) and distributed systems. Hence, currently, general PhysiCell users without

access to such resources, or whose needs do not require them, must develop their own scripts to

process simulation results and perform model exploration studies. As well as introducing a barrier

to scientific progress depending on the researchers’ programming knowledge level and computing

resources, bespoke HPC work flows lack standardization that may enable a widespread use in the

mathematical biology community (Banga, 2008).

Taking into account that there is still a need in the PhysiCell community for a standardized

tool that implements calibration and optimization routines, we present PhysiCOOL, a general-

ized framework for model calibration and optimization of modeling projects written in PhysiCell.

PhysiCOOL aims to be model agnostic, in the sense that models are treated as a black-box that

can be executed through Python, making it suitable to several kinds of biological problems. More-

over, our library includes a built-in multilevel optimization routine for parameter estimation that is

constrained by target output (experimental or otherwise). A visual representation of the new func-

tionalities added by PhysiCOOL to the PhysiCell ecossystem is shown in Fig C.1. We also provide

two practical examples of how PhysiCOOL can be used, showcasing PhysiCOOL’s optimization

routine at two distinct complexity levels. Furthermore, we show how PhysiCOOL black-boxes can

be used to couple PhysiCell with other publicly-available Python libraries for model optimization.

C.3 Implementation

PhysiCOOL is a Python library that requires Python 3.8 or higher. This package was created to

work specifically with PhysiCell models and it fully supports PhysiCell v.1.10.2 and lower, and

has partial support for PhysiCell v1.10.3 and higher. Furthermore, PhysiCOOL has been tested

extensively and includes several unit tests to assure that its modules are working as expected and

that it can be used in different platforms.

C.3.1 Configuration file parser

As for many several computational modelling frameworks, PhysiCell models are initialized with

values stored in a text-based configuration file, namely a Extensible Markup Language (XML)

file (Ghaffarizadeh et al., 2018). Thus, in parameter sweeps and sensitivity analysis studies it is

necessary to open these files and modify the parameter values to be studied every time a new

simulation is run. This process can be done manually, either by editing the XML file directly or

using graphical user interface (GUI) tools such as xml2jupyter (Heiland et al., 2019). However,

it becomes unfeasible to repeat this action several times in large scale studies. Henceforth, it

is crucial to automate this process to run optimization and calibration workflows. Although it

is possible to create Python scripts that will edit these files automatically with a standard module
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Figure C.1: PhysiCOOL’s contributions and advantages to the PhysiCell ecossystem. PhysiCOOL
aims to improve the way researchers design and implement their parameter and calibration studies
for models written in PhysiCell. To this end, PhysiCOOL introduces new functionalities, such
as configuration file parser that updates configuration files in an error-free and user-friendly man-
ner. PhysiCOOL also enables users to turn models into black-box models, making the optimization
pipeline model-agnostic, and it implements a multilevel parameter sweep routine to optimize mod-
els using some target data. Lastly, PhysiCOOL facilitates the integration of third-party libraries,
which makes PhysiCell more accessible.

such as ElementTree1, doing so requires users to identify the values to be updated with long strings

that reflect the structure of the XML file, as shown in the code snippet below.

Here, we aimed to develop a Python class that enables users to read the data from these config-

uration files in a more efficient manner, making this process less prone to errors. We implemented

a ConfigurationFileParser class that reads the data from the configuration file into custom Python

objects that follow the expected structure and data requirements defined in the XML file. Variable

types and numerical constraints are validated when new instances of these data classes are created

and when their values are updated. To achieve this, we implemented our classes using Pydantic2

which improves data validation in Python. An example of how the task described in the code

snippet presented previously may be implemented in a more user-friendly way with PhysiCOOL

can be found below.

C.3.2 Black-box models

In complex and large computational models, it may be challenging or even impossible to estimate

the model outputs analytically. Consequently, it is common to conduct calibration and optimiza-

tion studies by running several simulations and performing sensitivity analysis studies to identify

1https://docs.python.org/3/library/xml.etree.elementtree.html
2https://github.com/samuelcolvin/pydantic
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how model outputs change in response to different input parameter values. This process is recog-

nized as simulation-based optimization or black-box optimization Alarie et al. (2021). PhysiCell

models are written in C++ and should be compiled to produce an executable file that can be run

to produce simulation results. In order to test and characterize the response of these models, it is

generally necessary to conduct three tasks:

1. Update the PhysiCell configuration file with input parameters values;

2. Run the PhysiCell model;

3. Read the model outputs and compute a desired output metric.

These tasks can be performed manually. Nonetheless, it is not feasible or productive to do so

in large computational studies, specifically when trying to characterize the model’s response to

a large number of input parameter values that can be inside a large range and require multiple

simulation runs. Hence, PhysiCOOL allows users to create black-box models using the PhysiCell-

BlackBox class and automatically perform the aforementioned tasks through Python.

These black-box models are modular in the sense that the users can select what functions to

use to update the configuration file (i) and to process the results (iii). For instance, users can

decide to change the cells’ motility parameters and evaluate the effect on the distance traveled by

cells over time. Alternatively, the cell cycling rates could be varied to analyze the evolution of the

number of cells. Furthermore, it is not essential that both (i) and (iii) are defined in the black-box.

In fact, users can also create black-box models composed only of the PhysiCell executable and

use our approach to run multiple simulation replicates.

PhysiCOOL offers some built-in data quantification methods that can be used to extract and

process data in step (iii). For example, functions are provided to obtain the final number of cells in

a simulation, the final coordinates of the cells and the concentration of a given substance over the

simulation domain. Furthermore, these methods can be employed by users to process simulation

results and generate 2D and 3D plots of the cells and the microenvironment.

C.3.3 Multilevel parameter sweeps

Parameter optimization studies require the definition of a search space, which defines the range

of the parameter values that will be studied. There are multiple approaches to defining this space

and how to explore it. For example, random search algorithms can be employed to randomly

sampling points within a defined bounded parameter space. Alternatively, a grid search, while

a more computationally expensive option, systematically samples every point within a defined

parameter grid space providing a more comprehensive overview of the model’s response than that

offered by random search.

PhysiCOOL implements a multilevel parameter sweep class (MultiLevelSweep) that is aimed

at identifying the parameters that best fit a target data set through a grid search. In this example,

the parameter sweep considers two PhysiCell parameters for which the user should provide initial
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Table C.1: Parameter values used in the multilevel optimization examples.

Example Initial point Points Percentage Levels Estimated Target

Logistic growth [0.15, 1000.0] 8 50 % 7 [0.10, 994.7] [0.10, 1000.0]
Chemotaxis [3.0, 0.7] 6 50 % 4 [3.0, 0.75] [2.0, 0.9]

values. At each level, MultiLevelSweep creates a search grid based on these two values, the number

of points per direction and the percentage per direction. These values should be configured by the

user.

The results for each simulation are compared to the target data and the error between both

datasets is computed and stored. At the end of the level, the parameters that provided the minimum

error value are selected as the center of the parameter exploration grid for the next level and the

parameter bounds are updated accordingly. The number of levels can be defined by the user.

C.4 Examples

C.4.1 Simple model of logistic growth

The first example was implemented to calibrate two parameters of a simple model of logistic

growth based on some target data that defines a generated growth curve. Therefore, it serves as

an introduction to this PhysiCOOL feature, as users are able to fully understand the behaviour of

this simple model. We modelled the number of agents in a population, N, over a period of time t

through a logistic function given by Eq C.1:

N(t) = KN0

N0+(K−N0)exp(−rt)
(C.1)

where K represents the carrying capacity, i.e., the maximum population size, N0 represents the

number of initial agents and r is the proliferation rate. In this study, we fixed the initial number

of agents and evaluated how the carrying capacity and the proliferation rate regulated the growth

curve of a population. An example of two growth curves obtained for different model parameters

is shown in Fig C.2(a).

We generated some target data using this model (K = 1000,r = 0.1) and, subsequently, we used

PhysiCOOL’s multilevel sweep algorithm to evaluate if we could estimate these model parameters

based on their resulting growth curve. To do so, we first created a search grid based on a set of

user-defined values: an initial estimate for both parameters, the number of points to search in each

direction of the search grid, the percentage to vary in each direction and the number of levels to

search. These values can be found in Table C.1.

Fig C.2(b) shows the error between the target and simulated datasets for every cell of the pa-

rameter space after one level of the multilevel search. At this point, a new point estimate was

calculated based on the parameter values that minimized the error between the two datasets. Like-

wise, the parameter space was adjusted to the area of interest and the process was repeated in the
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Figure C.2: Model and optimization results for the logistic growth example. (a) Growth curves
obtained for different parameter sets (carrying capacity, K, and proliferation rate, r). (b) Opti-
mization results after the completion of the first level of the multilevel optimization algorithm.
The heatmap shows the difference, as given by the summed squared error, between the target data
and the data produced by each cell’s input parameters. (c) Optimization results after 7 levels of the
multilevel optimization algorithm. Results converged to the parameters that originated the target
data.
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new parameter grid. This process was repeated for each level of the search and the results are

shown in Fig C.2(c).

C.4.2 PhysiCell chemotaxis model

The second example can be classified as a more complex problem, since it was developed to

calibrate a chemotaxis model written in PhysiCell. In this modelling framework, the cells’ chemo-

tactic response, i.e., the ability to migrate along a substance gradient, is dictated by a bias value

defined between 0 and 1 (Ghaffarizadeh et al., 2018). When cells have a migration bias of 0, they

move according to a random walk. Conversely, if the value is set to 1, cells follow the substance

gradient in a deterministic manner. Therefore, we developed a model to estimate the migration

bias of the cells in response to an oxygen gradient, as well as their speed, based on their travelled

distances.

We implemented a 2D simulation with an oxygen source on one of the domain walls, as defined

by the model’s boundary conditions, and a group of cells placed on the opposite wall, as shown in

Fig C.3(a). We expected that the cells’ final position would be modulated by the cells’ sensitivity

to the oxygen chemotactic gradient. On the one hand, if a cell population had low sensitivity and,

thus, moved randomly, they would likely remain close to their initial position as they would move

around without following any specific direction. On the other hand, cells that followed oxygen

would move towards the opposite wall, as seen in panel C.3(b).

We generated some target data by running a simulation with a migration bias of 0.9 and a

speed value of 2.0 µm/min and storing the final y coordinates of the cells. Subsequently, we ran

our multilevel sweep pipeline to evaluate whether we could estimate the parameter values that

originated this data with a set of initial points different from the target parameter values. The

results for this study are shown in Fig C.3(c).

C.4.3 Connecting to third-party libraries

Given that PhysiCOOL makes it possible for users to turn their PhysiCell models into black-

box models that receive some input parameters and return an output metric, it is straightforward

to couple them with third-party Python libraries that accept this kind of models. For example,

psweep (Schmerler, 2022) is a Python library developed to run parameter studies that saves the

input parameters values and the returned output metrics into a database. Users must define a set of

parameters and, for each of the defined values, psweep will (i) run a given user-defined function

that takes these parameters as input, and (ii) save the input and output values returned by this

function into the database. Therefore, a PhysiCOOL black-box could seamlessly be integrated

into step (i).

In addition, more sophisticated libraries could be considered to perform advanced optimiza-

tion studies such as Approximate Bayesian Computation (ABC) and Bayesian Optimization for

Likelihood-Free Inference (BOLFI) (Lintusaari et al., 2018). Henceforth, although PhysiCOOL

offers built-in optimization routines, it can be used in a modular way to take advantage of other
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Figure C.3: Model and optimization results for the chemotaxis example. (a) Initial model configu-
ration design. Cells (represented as grey circles) were placed close to a domain wall and an oxygen
source (represented by the blue arrows) was simulated on the opposite wall, creating a chemotactic
gradient that cells could follow. This gradient is illustrated by the colour gradient shown in the
figure. (b) Expected model results for cells with different migration bias values. High migration
bias populations were expected to migrate in a deterministic manner and follow the oxygen gra-
dient, crossing the domain and arriving at the opposite wall, as shown by their trajectories, shown
as grey dashed lines. On the other hand, cells with low migration bias were expected to move
randomly and, thus, present low net displacement values. (c) Optimization results after 4 levels
of the multilevel optimization algorithm. Results converged to the parameters that originated the
target data. The colormap was updated for each level, describing the minimum and maximum
error values at the current level.
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libraries that may be more appropriate to a certain study or type of research, without the need to

implement these optimization algorithms from scratch.

C.5 Future directions

At its current state of development, we believe that PhysiCOOL will already improve PhysiCell’s

accessibility as it provides an intuitive interface to run studies in Python, which is more popular

among biology researchers than C++, in which PhysiCell was originally written. Additionally,

this standardized approach provides a straightforward workflow for integrating target data (de-

fined from simulations or biological observations) to constrain parameter space for agent-based

models. In the future, new features can be added to PhysiCOOL, such as the ability to generate

non-linear parameter spaces and employ alternative optimization algorithms. Although future it-

erations of this library may include different optimization approaches, its modular design assures

that advanced users are still able to build pipelines that suit their needs.
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