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Abstract 14 

15 

Insects are being proposed as an alternative way to ensure world’s food and feed security. 16 

Methods to determine edible insect powder’s origin and specie will be needed for quality 17 

control purposes. Infrared spectroscopy has been extensively used in rapid chemical 18 

fingerprinting of food products. The present research explores a new approach to discriminate 19 

and classify commercial edible insect powders using attenuated total reflectance mid-infrared 20 

spectroscopy combined with multivariate analysis. Infrared spectra of seven commercial edible 21 

insect powders from different species (Tenebrio molitor, Alphitobius diaperinus, Gryllodes 22 

sigillatus, Acheta domesticus and Locusta migratoria) and origins (Netherlands and New 23 

Zealand) were collected to build up soft independent modelling of class analogy (SIMCA) 24 

models. SIMCA models clearly discriminated insects by their specie and origin linking their 25 

differences to lipids and chitin. SIMCA models performance was tested using five spectra of 26 

each class not used to build up the training set. 100% correct predictions were obtained for most 27 

of the samples analysed . predictions were obtained for all the samples analysed with the 28 

exception of one sample of Alphitobius diaperinus. Infrared spectroscopy coupled to 29 

multivariate analysis provided a powerful method for the assurance of insect powder’s 30 

authenticity.   31 

32 

Keywords: rapid method, food authentication, chemometrics, edible insects 33 

34 

Introduction 35 

36 

World population growth combined with an increasing demand for animal-derived products in 37 

both developed and developing countries requires finding other and more sustainable protein 38 

sources. Insects are being considered as an alternative way to ensure food and feed security 39 

(Belluco et al., 2017; Belluco et al., 2013; van Huis et al., 2013; van Huis and Oonincx, 2017). 40 

Entomophagy, namely the habit of eating insects, arachnids and arthropods, has been practiced 41 

by humans for centuries in several countries of Africa, Asia, Australia and Latin America, with 42 

more than 2,000 insects considered edible (Belluco et al., 2017, Belluco et al., 2013; Premalatha 43 

et al., 2011; Rumpold and Schlüter, 2013; Sun-Waterhouse et al., 2016; van Huis et al., 2013; 44 

van Huis and Oonincx, 2017). Edible insects are good sources of proteins, polyunsaturated fatty 45 

acids, vitamins and minerals such as iron, calcium and zinc. Despite the fact that insects can 46 

also produce greenhouse emissions and ammonia, most commercially reared edible insect 47 

species have lower environmental impact than conventional livestock (Belluco et al., 2017; 48 

Sánchez-Muros et al., 2014; Sun-Waterhouse et al., 2016; van Huis et al., 2013; van Huis and 49 

Oonincx, 2017). In terms of productivity, insects have a higher growth rate and fecundity as 50 
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well as higher feed conversion efficiencies since they are poikilothermic (i.e. they do not invest 51 

energy to maintain a constant body temperature). Additionally, insects can be reared on organic 52 

side streams and therefore they are able to transform waste into high value food and feed 53 

resources (Makkar et al., 2014; Premalatha et al., 2011; Rumpold and Schlüter, 2013; Sánchez-54 

Muros et al., 2014; van Huis et al., 2013; van Huis and Oonincx, 2017).  55 

56 

Even though the use of insects seems encouraging, its incorporation to the market could be 57 

slowed down by the long approval process stated by the current legislation and the poor 58 

acceptance of entomophagy in Western countries (Belluco et al., 2017). Concerning the low 59 

acceptance of entomophagy, innovative ways to incorporate insects into the human diet have 60 

been proposed. Edible insects can be processed into more palatable forms by drying and 61 

grinding them, thus obtaining a powder that can be used as an ingredient to increase the protein 62 

content of several food products (van Huis et al., 2013).  63 

64 

Accordingly, methods are required in order to discriminate and classify edible insect powder’s 65 

origin and specie to prevent fraud and adulterations. Ulrich et al. (2017)  have already 66 

discriminated several whole insects (Tenebrio molitor, Alphitobius diaperinus, Acheta 67 

domesticus and Locusta migratoria) commercially available for human consumption through 68 

protein profiling using mass spectrometry (MS). Moreover, Köppel et al. (2019) developed a 69 

multiplex real-time PCR method for the detection of insect DNA and determination of contents 70 

of Tenebrio molitor, Locusta migratoria and Acheta domesticus in several food matrixes. Even 71 

though aforementioned techniques have been gaining attention from both scientific and 72 

industrial communities because of their accuracy and reliability, both of them present several 73 

drawbacks. In one hand, DNA-based molecular methods need to be cost-effective, as well as 74 

they require highly trained operators and set-up optimization, which is not easily achieved (Ali 75 

et al., 2014; Levin et al., 2018). On the other hand, MS implies a high initial cost due to the 76 

purchase of the equipment and a fractionation of the sample must be done before collecting the 77 

spectra in some applications (Sébédio and Malpuech-Brugère, 2016; Singhal et al., 2015).  78 

79 

Infrared spectroscopy combined with multivariate analysis has also been applied for 80 

authentication of fruit juices, edible oils and dairy products, among others (Rodriguez-Saona 81 

and Allendorf, 2012). This technique is fast, cheap, non-destructive, robust,simple to use and a 82 

minimum training for the operator is needed. However, infrared spectroscopy is highly affected 83 

by changes in sample’s preparation (Wenning et al., 2014), which is easily overcome when the 84 

procedure is properly standardized. As far as we know, no previous research has investigated 85 

the potential of using attenuated total reflectance Fourier transform mid-infrared spectroscopy 86 

combined with supervised pattern recognition techniques to discriminate and classify 87 

commercial edible insect powders by species and origins. The objective of the present work 88 

was to obtain mid-infrared spectroscopy profiles from commercial edible insect powders and 89 

to develop multivariate classification models to rapidly discriminate and classify edible insect 90 

powder’s specie and origin.  91 

92 

Materials and methods 93 

94 

Edible insect samples 95 

96 

Tenebrio molitor (mealworm), Alphitobius diaperinus (Buffalo worm), Gryllodes sigillatus 97 

(banded cricket), Acheta domesticus (house cricket) and Locusta migratoria (grasshopper) 98 

powders were purchased from Kreca Ento-Food BV (Ermelo, Netherlands), DeliBugs 99 
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(Lelystad, Netherlands) and Eat Crawlers (Auckland, New Zealand) (more details are shown in 100 

Table 1).   101  1 
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Attenuated total reflectance Fourier transform mid-infrared spectroscopy 102 

103 

Insect powders were mixed thoroughly and 4 mg were taken randomly (per each spectrum 104 

collected) and placed onto the sample stage of a portable spectrometer Cary 630 (Agilent 105 

Technologies Spain SL, Madrid, Spain), equipped with a single bounce ATR diamond crystal 106 

accessory and a deuterated triglycine sulfate (DTGS) detector. A pressure clamp was used to 107 

ensure optimal contact between samples and the diamond crystal. A background scan was taken 108 

before every sample scan to prevent the environment from interfering the measurements. 109 

Spectra were obtained from 4000 to 800 cm-1 with 8 cm-1 of resolution. Data acquisition was 110 

controlled using MicroLab PC software (Agilent Technologies SL, Madrid, Spain). Two 111 

different batches of each edible insect powder were analysed during three different days 112 

obtaining five spectra per day and batch (30 spectra in total per edible insect powder). 113 

114 

Multivariate analysis 115 

116 

Multivariate analysis and data preprocessing were performed using a chemometric software 117 

(Pirouette version 4.0. Infometrix Inc., Washington, US). Second derivative transformation (13-118 

point window second order polynomial-fit Savitzky-Golay function) and multiplicative scatter 119 

correction (MSC) were performed on mean-centred data. A PCA-based pattern recognition 120 

method, Soft Independent Modelling of Class Analogy (SIMCA), was performed to obtain 121 

classification models in order to discriminate the chemical differences between insect powders 122 

and for predicting unknown samples (Wold and Sjöström, 1977). Sample residuals and 123 

Mahalanobis distances were used for outlier diagnostics (Shah and Gemperline, 1990). Three 124 

SIMCA models were built up in order to assess differences between edible insect powders, a 7-125 

class SIMCA model with all samples tested (whole model), a 3-class SIMCA model with 126 

Mealworm, Buffalo worm A and Buffalo worm B (worm model) and a 3-class SIMCA model 127 

with Banded cricket, House cricket A and House cricket B (cricket model). SIMCA models 128 

were interpreted according to class projections, interclass distances and discriminating power. 129 

Predicting ability of SIMCA models was tested using five spectra of each class not used to build 130 

up the training set (25 spectra per class) (Vandeginste et al., 1998). 131 

132 

Results and discussion 133 

134 

Mid-IR raw spectra 135 

136 

Mid-infrared spectroscopy can provide information on the composition of complex chemical 137 

mixtures by studying the IR bands arising from their functional groups, whose assignment is 138 

known in most of the cases (Rodriguez-Saona and Allendorf, 2012). Raw IR spectra of several 139 

edible insect powders are shown in Figure 1. Different spectral regions linked to several 140 

components could be identified from the insect powder’s spectra. In all samples, one broad 141 

band was observed at 3000-3500 cm-1 caused by the H-bonded O-H stretching of chitin, other 142 

polysaccharides and residual water. The spectral region at 2800-3000 cm-1 represented the C-143 

H stretching of methyl groups of lipids and chitin (Ibitoye et al., 2018; Marchessault et al., 144 

2003; Paulino et al., 2006). The IR band located at 1740 cm-1 was assigned to C=O stretching 145 

of esters of lipids. IR bands from amide I, II and III regions linked to proteins or chitin were 146 

observed as well at 1700-1600, 1600-1500 and 1300-1200 cm-1, respectively. Infrared spectra 147 

also showed an IR band around 1200-1000 cm-1 mainly attributed to carbohydrates (Socrates, 148 

2001; Stuart, 2012; Talari et al., 2017).  149 

150 
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Discrimination and classification of commercial edible insect powders by ATR-FT-MIR 151 

combined with SIMCA 152 

 153 

Class projections plots, namely PCAs of the entire training set, were generated through SIMCA 154 

to visualize class separation among samples and spectra reproducibility (Figure 2). The ellipses 155 

represent the regions in which samples belonging to a certain class fall into with a 95% of 156 

confidence (Kvalheim and Karstang, 1992). Each data point in the plot represents one insect 157 

powder’s spectrum. Tight clustering and good separation was obtained among powders of 158 

different insect species for all three SIMCA models. Spectra collected from insect powders 159 

made from same insect species but produced by different manufacturers (i.e. House cricket A 160 

and House cricket B, see Table 1) displayed clearly distinguishable clusters as well (Figure 2 161 

b). On the other hand, Buffalo worm powders (i.e. Buffalo A and Buffalo B), which were 162 

elaborated by the same manufacturer, showed overlapping clusters and poor differentiation 163 

(Figure 2 c).  164 

 165 

Another way to evaluate class separation (i.e. distance between two classes) is the interclass 166 

distance (ICD) value. In SIMCA, PCA models are built up for all the classes in the training set. 167 

In Table 2 number of factors and outliers per each class for the whole model are shown. After 168 

building the PCA class models, the residuals are computed by fitting the objects of every class 169 

of the training set to the PCA model of each class. The overall standard deviations of the 170 

residuals (i.e. Euclidean distances) are used for calculating the ICD, which is a ratio of interclass 171 

to intraclass distance. ICD values close to 0  indicate that the two classes compared are almost 172 

identical and values larger than 1 show differentiation (Wold and Sjöström, 1977). As a rule of 173 

thumb, ICDs above 3.0 are considered significant to discriminate two clusters of samples as 174 

distinct classes (Dunn and Wold, 1995). ICDs among insect powders for the whole model are 175 

displayed in Table 3, and are comparable to the clustering patterns obtained in class projections 176 

plots (Figure 2 a). ICD values above 3.0 were achieved when comparing powders made of 177 

different insect species, but lower values (ICD < 3.0) were obtained when comparing products 178 

elaborated with the same insect species (Buffalo worm A-Buffalo worm B and House cricket 179 

A-House cricket B clusters). In spite of that, the ICD for house cricket clusters was higher than 180 

the one obtained for Buffalo worm clusters. The nutritional and bioactive profiles of edible 181 

insects are affected by factors such as habitat, feed, sex, stage and preparation/processing 182 

methods applied prior to consumption, among others (Rumpold and Schlüter, 2013; Sun-183 

Waterhouse et al., 2016).  Since house cricket powders were produced by different 184 

manufacturers (see Table 1), our data confirmed that product origin plays an important role in 185 

insect powder differentiation. On the other hand, the ICD between House cricket B-Banded 186 

cricket clusters was 2.5. Considering that both species belong to the same family (Gryllidae), 187 

low ICD values could be expected (Krinsky, 2019). However, the same outcome was not 188 

observed in House cricket A-Banded cricket powders (ICD = 3.5), which were produced by 189 

different manufacturers, confirming again the assumption of differentiation by origin. From the 190 

results presented in both class projections plots and ICD values, it is possible to conclude that 191 

product origin (i.e. manufacturer) was a key factor for the differentiation in powders made from 192 

same insect species, even though no significant differences were found on them (i.e. ICD < 193 

3.0).  194 

 195 

Wavenumbers in the spectral range analysed were plotted against their capability to classify 196 

and discriminate insect powders tested (Wold and Sjöström, 1977). Discrimination power plots 197 

of all models are shown in Figure 3, displaying the IR bands responsible for the discrimination 198 

among classes. For the whole model (Figure 3 a), the IR bands at 2945, 2919 and 2851-2825 199 

cm-1 could be attributed to CH3 and CH2 asymmetric stretching and CH2 symmetric stretching 200 
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of lipids and chitin, respectively (Ibitoye et al., 2018; Marchessault et al., 2003; Paulino et al., 201 

2006; Socrates, 2001; Stuart, 2012). The IR bands at 1744-1722 cm-1 might be linked to C=O 202 

stretching of lipids. Aforementioned IR bands were also present in the regions previously 203 

commented in the insect powder’s raw spectra (Figure 1). Nonetheless, SIMCA analysis 204 

revealed which of them were mainly responsible of the discrimination of the samples analysed, 205 

hardly detected from just observing their raw spectra. The data obtained suggests that the 206 

chemical differences among the insect powders analysed related to their chitin and fat fractions 207 

when all products were included in a single model (i.e. whole model). 208 

 209 

Similar IR bands were obtained for cricket (Figure 3 b) and worm models (Figure 3 c), as well 210 

as new ones related to the insect protein and carbohydrate fractions, which were also present in 211 

the raw spectra (Figure 1). The IR band at 3114 cm-1 could be associated to O-H stretching of 212 

carbohydrates (chitin) or N-H stretching of amide A of proteins or chitin. Furthermore, several 213 

IR bands in the spectral region of 1700-1500 cm-1 were detected, and could be attributed to 214 

amide I and II regions of proteins or chitin (Ibitoye et al., 2018; Marchessault et al., 2003; 215 

Paulino et al., 2006; Socrates, 2001; Stuart, 2012; Talari et al., 2017). Once again, the chemical 216 

differences between cricket powders were mainly related to lipid and chitin components. Worm 217 

powders gave the same output as well.  218 

 219 

Prediction of unknown samples 220 

 221 

SIMCA models performance (whole, worm and cricket models) was tested using five spectra 222 

of each class not used to build up the training set. Every data point (spectrum) falling inside the 223 

95% confidence interval boundary of a certain class (i.e. class’ PCA model) would be assigned 224 

as a member of that class, otherwise would be rejected. Class prediction in SIMCA provides 225 

three possibilities, whether the observation belongs to one, more than one (next best prediction) 226 

or none of the predefined classes (He et al., 2007). 100% of correct predictions into the 227 

appropriate class were obtained for most of the insect powders. Nonetheless, it is important to 228 

mention that for Buffalo worm clusters (A and B) some of the next best predictions were 229 

assigned to the other Buffalo worm cluster (see Table 4). These results, which are in line with 230 

both ICD values and class projections plots obtained through SIMCA, confirmed that there are 231 

not significant differences between Buffalo worm A and Buffalo worm B. Lastly, even though 232 

an ICD lower than 3.0 was obtained when comparing House cricket A and House cricket B 233 

clusters, 100% of the spectra tested in the validation set were correctly assigned to each class 234 

without obtaining next best predictions. These results confirmed that our SIMCA models could 235 

discriminate and properly classify the commercial insect powders tested by specie and origin.  236 
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Conclusions 237 

 238 

The current study has given the framework for a cheap, rapid and easy technique in edible insect 239 

powder’s discrimination (i.e. origin and specie) by using ATR-FTIR combined with SIMCA. 240 

Our findings are the first step towards a reliable and easy-to-implement way of preventing fraud 241 

and adulterations in the emerging insect sector. A further important implication is the possibility 242 

of extrapolating this approach to any insect-derived product. For this reason, future work should 243 

concentrate on the creation of models that include a wide range of products and, in collaboration 244 

with insect farmers, taking into consideration factors such as feed, sex and stage when 245 

discriminating them. Additionally, to further our research we plan to determine the feasibility 246 

of this technique for detecting insect powders in several food matrixes.  247 
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Table 1. Edible commercial insect powders tested in this research. 

Insect powder Supplier Manufacturer Amount  per packagedc (g) Sample tag 

Mealworm Kreca Ento-Food 1a 100 Mealworm 

Buffalo 
DeliBugs 1 50 Buffalo worm A 

Kreca Ento-Food 1 100 Buffalo worm B 

Grasshopper Kreca Ento-Food 1 100 Grasshopper 

Banded cricket Kreca Ento-Food 1 100 Banded cricket 

House cricket 
Eat Crawlers 2b 50 House cricket A 

Kreca Ento-Food 1 100 House cricket B 
a Netherlands (origin). 

b New Zealand (origin). 

c Two different batches analysed per product tested. 

Table 1



Table 2. Cumulative variance obtained for each factor and number of outliers 

considered per each class (disjoint PCA model) of 7-class soft independent modeling 

of class analogy whole model. 

Class 
Factor 1 

(%) 

Factor 2 

(%) 

Factor 3 

(%) 

Factor 4 

(%) 

Factor 5a  

(%) 

Number 

outliersb

Mealworm 78.7 91.9 94.8 96.9 97.6 3 

Buffalo worm A 76.5 84.9 90.3 94.1 95.5 0 

Buffalo worm B 47.7 73.8 87.9 91.5 94.5 2 

Grasshopper 83.1 94.7 96.9 97.8 98.4 2 

Banded cricket 61.4 83.5 90.0 92.6 94.5 8 

House cricket A 44.4 75.0 83.2 89.1 91.8 3 

House cricket B 62.7 82.4 87.9 91.3 93.8 1 
a The number of factors selected per model was to obtain at least 90% of variance. This criteria was 

established according to the number of optimal factors obtained through Pirouette’s SIMCA algorithm 

(seven for the whole model), which performs an F-test with 95% confidence on the reduced eigenvalues 

(i.e. latent factors’ variances; Malinowski, 1989).  

b Sample residuals and Mahalanobis distances were used for outlier determination. 

Table 2



Table 3. Interclass distances of transformed (second derivative, 25 13 points 

window) attenuated total reflectance Fourier transform mid-infrared spectroscopy (ATR-

FT-MIR) spectra (4000-800 cm-1 region) of all edible insect powder model (7-class 

soft independent modeling of class analogy whole model). 

Meal-

worm 

Buffalo 

worm A 

Buffalo 

worm B 

Grass-

hopper 

Banded 

cricket 

House cricket 

A 

House 

cricket B 

Mealworm 0.0 

Buffalo worm A 3.3 0.0 

Buffalo worm B 3.1 0.9 0.0 

Grasshopper 4.5 3.3 3.6 0.0 

Banded cricket 6.3 5.0 4.9 4.3 0.0 

House cricket A 8.2 7.2 6.7 7.1 3.5 0.0 

House cricket B 7.8 7.1 7.1 6.4 2.5 2.2 0.0 

Table 3



Table 4. Insect powder model predictionsvalidation of all edible insect powder 

model (7-class soft independent modeling of class analogy whole model) by internal 

validation using 5 spectra per sample. 

Insect powders 

Prediction 
Meal-

worm1 

Buffalo 

worm A2 

Buffalo 

worm B3 

Grass-

hopper4 

Banded 

cricket5 

House 

cricket A6 

House 

cricket B7 

Besta 100% 100% 80% 100% 100% 100% 100% 

Next bestb - 
60%3

20%1 75%2 - - - - 

a Percentages refer to spectra that were correctly identified by SIMCA model. 

b Percentages were obtained from the number of correctly identified samples. Next best prediction is 

indicated by superscript numbers (1-7). 

Table 4


