000127670 001__ 127670 000127670 005__ 20241125101155.0 000127670 0247_ $$2doi$$a10.1103/PhysRevApplied.19.064060 000127670 0248_ $$2sideral$$a134644 000127670 037__ $$aART-2023-134644 000127670 041__ $$aeng 000127670 100__ $$aChiesa, A. 000127670 245__ $$aBlueprint for a molecular-spin quantum processor 000127670 260__ $$c2023 000127670 5060_ $$aAccess copy available to the general public$$fUnrestricted 000127670 5203_ $$aThe implementation of a universal quantum processor still poses fundamental issues related to error mitigation and correction, which demand investigation of also platforms and computing schemes alternative to the main stream. A possibility is offered by employing multilevel logical units (qudits), naturally provided by molecular spins. Here we present the blueprint of a molecular spin quantum processor consisting of single molecular nanomagnets, acting as qudits, placed within superconducting resonators adapted to the size and interactions of these molecules to achieve a strong single spin-to-photon coupling. We show how to implement a universal set of gates in such a platform and to readout the final qudit state. Single-qudit unitaries (potentially embedding multiple qubits) are implemented by fast classical drives, while an alternative scheme is introduced to obtain two-qubit gates via resonant photon exchange. The latter is compared to the dispersive approach, finding in general a significant improvement. The performance of the platform is assessed by realistic numerical simulations of gate sequences, such as Deutsch-Josza and quantum simulation algorithms. The very good results demonstrate the feasibility of the molecular route towards a universal quantum processor. 000127670 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E09-17R Q-MAD$$9info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862893-FATMOLS$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C22 000127670 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000127670 590__ $$a3.8$$b2023 000127670 592__ $$a1.335$$b2023 000127670 591__ $$aPHYSICS, APPLIED$$b54 / 179 = 0.302$$c2023$$dQ2$$eT1 000127670 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1 000127670 594__ $$a7.8$$b2023 000127670 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000127670 700__ $$aRoca, S. 000127670 700__ $$aChicco, S. 000127670 700__ $$ade Ory, M.C. 000127670 700__ $$aGómez-León, A. 000127670 700__ $$aGomez, A. 000127670 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, D. 000127670 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, F. 000127670 700__ $$aCarretta, S. 000127670 773__ $$g19, 6 (2023), 064060 [17 pp.]$$pPhys. rev. appl.$$tPhysical Review Applied$$x2331-7019 000127670 8564_ $$s3996206$$uhttps://zaguan.unizar.es/record/127670/files/texto_completo.pdf$$yVersión publicada 000127670 8564_ $$s2689001$$uhttps://zaguan.unizar.es/record/127670/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000127670 909CO $$ooai:zaguan.unizar.es:127670$$particulos$$pdriver 000127670 951__ $$a2024-11-22-12:09:05 000127670 980__ $$aARTICLE