000127670 001__ 127670
000127670 005__ 20230921142940.0
000127670 0247_ $$2doi$$a10.1103/PhysRevApplied.19.064060
000127670 0248_ $$2sideral$$a134644
000127670 037__ $$aART-2023-134644
000127670 041__ $$aeng
000127670 100__ $$aChiesa, A.
000127670 245__ $$aBlueprint for a molecular-spin quantum processor
000127670 260__ $$c2023
000127670 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127670 5203_ $$aThe implementation of a universal quantum processor still poses fundamental issues related to error mitigation and correction, which demand investigation of also platforms and computing schemes alternative to the main stream. A possibility is offered by employing multilevel logical units (qudits), naturally provided by molecular spins. Here we present the blueprint of a molecular spin quantum processor consisting of single molecular nanomagnets, acting as qudits, placed within superconducting resonators adapted to the size and interactions of these molecules to achieve a strong single spin-to-photon coupling. We show how to implement a universal set of gates in such a platform and to readout the final qudit state. Single-qudit unitaries (potentially embedding multiple qubits) are implemented by fast classical drives, while an alternative scheme is introduced to obtain two-qubit gates via resonant photon exchange. The latter is compared to the dispersive approach, finding in general a significant improvement. The performance of the platform is assessed by realistic numerical simulations of gate sequences, such as Deutsch-Josza and quantum simulation algorithms. The very good results demonstrate the feasibility of the molecular route towards a universal quantum processor.
000127670 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E09-17R Q-MAD$$9info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862893-FATMOLS$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C22
000127670 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000127670 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127670 700__ $$aRoca, S.
000127670 700__ $$aChicco, S.
000127670 700__ $$ade Ory, M.C.
000127670 700__ $$aGómez-León, A.
000127670 700__ $$aGomez, A.
000127670 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, D.
000127670 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, F.
000127670 700__ $$aCarretta, S.
000127670 773__ $$g19, 6 (2023), 064060 [17 pp.]$$pPhys. rev. appl.$$tPhysical Review Applied$$x2331-7019
000127670 8564_ $$s3996206$$uhttps://zaguan.unizar.es/record/127670/files/texto_completo.pdf$$yVersión publicada
000127670 8564_ $$s2689001$$uhttps://zaguan.unizar.es/record/127670/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127670 909CO $$ooai:zaguan.unizar.es:127670$$particulos$$pdriver
000127670 951__ $$a2023-09-21-13:02:48
000127670 980__ $$aARTICLE