000127687 001__ 127687
000127687 005__ 20241125101157.0
000127687 0247_ $$2doi$$a10.1109/JSEN.2023.3277714
000127687 0248_ $$2sideral$$a134782
000127687 037__ $$aART-2023-134782
000127687 041__ $$aeng
000127687 100__ $$0(orcid)0000-0002-1229-8591$$aDomínguez-Gimeno, Sergio$$uUniversidad de Zaragoza
000127687 245__ $$aAn Optimization Approach to Eliminate Crosstalk in Zero-Potential Circuits for Reading Resistive Sensor Arrays
000127687 260__ $$c2023
000127687 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127687 5203_ $$aCrosstalk is a well-known problem in resistive sensor arrays (RSAs). The zero-potential method (ZPM) is a commonly used readout circuit that uses multiplexers and demultiplexers to reduce the main sources of crosstalk. However, the internal resistors of these switches cause a secondary crosstalk in the RSA that alters the RSA sensor values read. The solution to the effects of this secondary crosstalk is still a case of study. In previous literature, these resistances have been considered as known and, in most cases, equal for all switch channels. However, in a real situation, they are unknown and may vary between channels. In this work, a least-squares (LSQR) method is presented to obtain the true values of the switches from the read voltage signals. Calibration columns are added to the RSA for this purpose. To prove the performance of the method proposed, several simulations have been carried out with different values of RSA sensors, switch resistances, size of the RSA, and noise level. Results show that the proposed LSQR method allows obtaining simultaneously accurate values for both the RSA sensors and switch internal resistors. In this way, the problem of secondary crosstalk is neutralized. It also shows better performance when compared with existing approaches.
000127687 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T49-20R$$9info:eu-repo/grantAgreement/ES/MCIN/PID2021-125091OB-I00$$9info:eu-repo/grantAgreement/ES/MCIU/FPU18-04282$$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-04578
000127687 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127687 590__ $$a4.3$$b2023
000127687 592__ $$a1.084$$b2023
000127687 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b84 / 353 = 0.238$$c2023$$dQ1$$eT1
000127687 593__ $$aInstrumentation$$c2023$$dQ1
000127687 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 76 = 0.197$$c2023$$dQ1$$eT1
000127687 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000127687 591__ $$aPHYSICS, APPLIED$$b48 / 179 = 0.268$$c2023$$dQ2$$eT1
000127687 594__ $$a7.7$$b2023
000127687 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127687 700__ $$0(orcid)0000-0001-7671-7540$$aMedrano-Sánchez, Carlos$$uUniversidad de Zaragoza
000127687 700__ $$0(orcid)0000-0002-1561-0536$$aIgual-Catalán, Raúl$$uUniversidad de Zaragoza
000127687 700__ $$aMartínez-Cesteros, Javier$$uUniversidad de Zaragoza
000127687 700__ $$0(orcid)0000-0001-7550-6688$$aPlaza-García, Inmaculada$$uUniversidad de Zaragoza
000127687 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000127687 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000127687 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000127687 773__ $$g23, 13 (2023), 14215-14225$$pIEEE sens. j.$$tIEEE SENSORS JOURNAL$$x1530-437X
000127687 8564_ $$s856124$$uhttps://zaguan.unizar.es/record/127687/files/texto_completo.pdf$$yVersión publicada
000127687 8564_ $$s3187488$$uhttps://zaguan.unizar.es/record/127687/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127687 909CO $$ooai:zaguan.unizar.es:127687$$particulos$$pdriver
000127687 951__ $$a2024-11-22-12:09:47
000127687 980__ $$aARTICLE