000127692 001__ 127692
000127692 005__ 20250214141227.0
000127692 0247_ $$2doi$$a10.1016/j.electacta.2023.142964
000127692 0248_ $$2sideral$$a134834
000127692 037__ $$aART-2023-134834
000127692 041__ $$aeng
000127692 100__ $$0(orcid)0000-0001-9942-9322$$aVillanueva-Martínez, Nicolás I.
000127692 245__ $$aInvestigation of the properties influencing the deactivation of iron electrodes in iron-air batteries
000127692 260__ $$c2023
000127692 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127692 5203_ $$aIron-air batteries hold the potential to be a key technology for energy storage, thanks to their energy density, low cost, safety and abundance of their materials. In order to scale the technology up and optimize the cell formulations, it is key to obtain a clear understanding of how the physical-chemical properties of the electrode influence their electrochemical behaviour, in particular, the capacity loss. In this work, we propose for the first time mathematical correlations between textural and crystallographic properties of iron electrodes and their electrochemical stability. By adjusting synthesis parameters, we were able to tune pore size and volume, surface area and crystal size of iron oxides, and found that stability is highly correlated to both surface area and pore size. Large surface area and small average pore size provide electrodes with enhanced stability. We hypothesize that the cause for deactivation is the passivation of the electrodes ascribed to the formation of a non-conductive, non-reactive iron (II) hydroxide layer during discharge, which then cannot be reduced to iron again. We validate this hypothesis with electrochemical impedance spectroscopy studies, which show that, in the more stable electrodes, the charge transfer resistance in the Fe(OH)2 to Fe reduction does not significantly change after cycling, contrary to the behaviour of the less stable electrodes, corroborating our hypothesis. Furthermore, the electrode with the best properties was cycled 100 times, retaining almost 75% of its initial capacity at the end of the 100 cycles. These results are highly relevant for the future design and operation of iron-air batteries.
000127692 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T06-20R Grupo de Conversión de Combustibles$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-115848RB-C21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130279A-I00
000127692 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127692 590__ $$a5.5$$b2023
000127692 592__ $$a1.159$$b2023
000127692 591__ $$aELECTROCHEMISTRY$$b11 / 45 = 0.244$$c2023$$dQ1$$eT1
000127692 593__ $$aElectrochemistry$$c2023$$dQ1
000127692 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000127692 594__ $$a11.3$$b2023
000127692 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127692 700__ $$aAlegre, Cinthia
000127692 700__ $$0(orcid)0000-0003-1029-3751$$aRubín, Javier$$uUniversidad de Zaragoza
000127692 700__ $$aMckerracher, Rachel
000127692 700__ $$ade León, Carlos Ponce
000127692 700__ $$aRodríguez, Horacio Antonio Figueredo
000127692 700__ $$aLázaro, María Jesús
000127692 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000127692 773__ $$g465 (2023), 142964 [12 pp.]$$pElectrochim. acta$$tElectrochimica Acta$$x0013-4686
000127692 8564_ $$s3409312$$uhttps://zaguan.unizar.es/record/127692/files/texto_completo.pdf$$yVersión publicada
000127692 8564_ $$s2341635$$uhttps://zaguan.unizar.es/record/127692/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127692 909CO $$ooai:zaguan.unizar.es:127692$$particulos$$pdriver
000127692 951__ $$a2025-02-14-14:11:21
000127692 980__ $$aARTICLE