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A B S T R A C T

When monitoring combustion conditions, detecting minor variations, which may be complex even for the
human eye, is critical for providing a fast response and correcting deviations. The aim of this study is to
detect slight variations in combustion conditions by developing a flame monitoring system using machine
learning and computer vision techniques applied to color images. Predictive models are developed for fuel
blends with different heating values. The predictive models classify the combustion equivalence ratio based
on multiple conditions, using a mean step size of 0.10 between states, a lower value than previously reported
in related studies. Three machine learning algorithms are used for each fuel blend: logistic regression, support
vector machine, and artificial neural network (multilayer perceptron). These models are fed the statistical,
geometrical, and textural features extracted from the color images of the flames. The classification achieves
accuracies from 0.78 to 0.97 in the detection of slight variations in the combustion conditions for all heating
values. Thus, the monitoring system developed in this study is a promising alternative for implementation on
an industrial scale and quick detection of changes in combustion conditions.
. Introduction

Combustion disturbances may shift controlled combustion condi-
ions towards abnormal operation regimes, leading to flashback or
xtinction of the flame in the worst-case scenario. Measuring minor de-
iations in combustion conditions from standard combustion operations
an enable an early detection of abnormal operation regimes. This early
etection is necessary to quickly adjust the process, thereby reducing
he operating time under suboptimal conditions and other efficiency
roblems. Machine learning (ML) techniques can be used to enable
dvanced combustion monitoring.

Currently, ML techniques are employed in many fields, such as agri-
ulture (Lawal, 2021), surveillance (Matkvoic et al., 2022), biochemical
ngineering (Mowbray et al., 2021; Roy, 2022), heat pipes (Wang et al.,
021), power systems (Vaish et al., 2021), control systems (Singer
nd Cohen, 2021), and combustion engines (Aliramezani et al., 2022).
L techniques are employed to analyze data for obtaining insights

nd achieving higher levels of automation in data analysis. Thus, ML
rovides powerful tools for analyzing large datasets and addressing
roblems that are extremely complex or unviable with traditional data
nalytics. Within the field of combustion, ML has been recently used

Abbreviations: ANN, artificial neural network; ANOVA, analysis of variance; BFG, blast furnace gas; CV, cross-validation; DL, deep learning; ER, equivalence
atio; GLCM, grey level co-occurrence matrix; IF, image feature; LHV, low heating value; LR, logistic regression; ML, machine learning; MLP, multilayer
erceptron; PCA, principal component analysis; SVM, support vector machine
∗ Corresponding author.
E-mail address: jarroyo@fcirce.es (J. Arroyo).

to optimize the trade-off between emissions and efficiency (Cheng
et al., 2018) and to predict multiple characteristics, such as dynamic
and steady behavior (Jung et al., 2023), emissions (González-Espinosa
et al., 2020; Park et al., 2022), fuel oil viscosity (Ibargüengoytia et al.,
2013), and long-term furnace temperature (Quesada et al., 2021).
Flame images have been used to predict the operating conditions
related to the air–fuel equivalence ratio (ER), such as the air ratio (Bai
et al., 2017), O2 concentration (Yang et al., 2022), and combustion
regimes (Abdurakipov et al., 2018; Han et al., 2020, 2021). Combustion
conditions were examined in discrete ranges at different values (steps).
Mean step widths (step size) of 0.20 (Han et al., 2020) and 0.35
(Abdurakipov et al., 2018) were used to evaluate the influence of the
ER on combustion performance. However, the ER can be measured with
a higher level of detail by increasing the number of steps (i.e., reducing
the step size).

Several ML algorithms have been used to predict combustion con-
ditions, such as logistic regression (LR) (Abdurakipov et al., 2018;
Han et al., 2021; Hanuschkin et al., 2021), Gaussian processes (Han
et al., 2021), decision trees (Han et al., 2021; Hanuschkin et al.,
2021), k-nearest neighbor (Bai et al., 2017; Abdurakipov et al., 2018),
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linear discriminant analysis (González-Espinosa et al., 2020), support
vector machines (SVMs) (Bai et al., 2017; Abdurakipov et al., 2018;
Han et al., 2020, 2021), and artificial neural networks (ANNs) (Bai
et al., 2017; Abdurakipov et al., 2018; González-Espinosa et al., 2020;
Han et al., 2020, 2021; Hanuschkin et al., 2021; Yang et al., 2022).
Predictive models are typically fed with relevant features obtained from
flame images, which correlate with the combustion variables. Many
of these features are extracted from flame images by using computer
vision techniques. Features are typically based on statistical (González-
Cencerrado et al., 2012, 2013; Sun et al., 2013; González-Cencerrado
et al., 2015; Sun et al., 2015; Mathew et al., 2016; Bai et al., 2017;
Katzer et al., 2017; González-Espinosa et al., 2020; Compais et al.,
2022a,b; Zhu et al., 2023), geometrical (Sun et al., 2013, 2015; Katzer
et al., 2017; Hanuschkin et al., 2021; Liu et al., 2021; Compais et al.,
2022a), and textural measures (Bai et al., 2017; Compais et al., 2022a;
Yang et al., 2022).

Owing to the many available features, most applications choose
a limited data subset tailored to the case study. To compress and
visualize feature information, some researchers have employed prin-
cipal component analysis (PCA) (Bai et al., 2017; Abdurakipov et al.,
2018; Hanuschkin et al., 2021; Yang et al., 2022). However, PCA does
not consider the relevance of features for predicting a target. Thus,
other techniques are preferred because PCA is not recommended for
addressing overfitting (Hanuschkin et al., 2021; Yang et al., 2022).
After the predictive models are developed, their performance is usually
evaluated using accuracy, F1-score or R2 metrics, and training-test
split and cross-validation (CV) methods. However, predictive models
may suffer from overfitting and provide overly optimistic performance
results. Several alternatives, such as feature selection, regularization
term, and CV, can be used to address overfitting and obtain more robust
measures (Bai et al., 2017; Abdurakipov et al., 2018; Han et al., 2020,
2021; Hanuschkin et al., 2021; Quesada et al., 2021). Features can
be manually or automatically selected by using other techniques, such
as Pearson’s correlation coefficient or analysis of variance (ANOVA).
CV can be employed for model evaluation and hyperparameter tuning.
However, using a unique CV for both tasks may result in overfitting
(Cawley and Talbot, 2010). Two different CVs can address this risk: one
for hyperparameter tuning and the other for performance evaluation
(Cawley and Talbot, 2010; Hanuschkin et al., 2021). Thus, the CV
for hyperparameter tuning (inner CV) is nested under the CV for
performance evaluation (outer CV), resulting in a nested CV. Owing to
model overfitting, using a non-nested CV instead of a nested CV may
provide overly optimistic results for model performance. For example,
a 13% accuracy reduction was reported in classification models using
nested CV instead of non-nested CV (Abdulaal et al., 2018). Thus,
the validation procedures used should be considered when comparing
quantitative results from other studies. However, nested and non-nested
CVs generally result in the selection of the same model for prediction
applications (Wainer and Cawley, 2018).

This study presents an advanced monitoring system based on ML
and computer vision to detect minor variations in the combustion con-
ditions. Several ML models are developed and tested on a laboratory-
scale burner using different proportions of pure methane (CH4), a
aseline fuel, and blast furnace gas (BFG), a lean fuel. BFG, which is a
y-product of the integrated steelmaking sector and decreases the low
eating value (LHV) of the gas mixture, thereby leading to different
urner behaviors under premixed combustion conditions. Using BFG
s fuel in the steel sector is encouraged to improve energy efficiency
nd reduce fossil fuel consumption and global CO2 emissions (Cuervo-

Piñera et al., 2018). Thus, advanced combustion monitoring systems
based on image sensors are helpful tools for this purpose.

This work presents the development of predictive models for ER
classification with a significantly high level of detail, using a mean step
size of 0.10 between consecutive combustion conditions. This accuracy
exceeds the human eye’s sensibility and implies accurate control of
combustion processes (Bai et al., 2017). The methodology includes
2

three characteristics that had not been implemented together before
and whose separate use is scarcely reported in the field of combustion
monitoring. First, whereas most combustion studies only include one
or two image features (IFs), in this work, statistical, geometrical, and
textural IF are extracted to achieve a complete combustion characteri-
zation. Second, ANOVA F-tests are performed to automatically select
IFs for training predictive models. This approach is implemented to
overcome the potential issue of overfitting, which is a significant
obstacle to minor ER changes.

Finally, while other studies involved the use of less robust methods,
such as a unique CV for model evaluation and hyperparameter turning
or no CV at all, we use nested CV for model evaluation and hyper-
parameter tuning. Here, the hyperparameters for predictive models
are automatically defined with the nested CV. The model accuracy is
measured for each hyperparameter combination in the inner CV, and
the combination with the highest accuracy is selected for the outer
CV. The objective of implementing a nested CV is the same as that of
the ANOVA F -tests: the reduction of overfitting in detecting slight ER
variations. Predictive models are developed using three different ML
algorithms: LR, SVM, and ANNs with multilayer perceptron (MLP). The
performance of the predictive models is evaluated to study their behav-
ior and compare the differences between the models, ML algorithms, ER
classes, and fuel blends.

2. Material and methods

2.1. Experimental setup

Experimental tests were performed in a combustion chamber
equipped with a premixed gas fuel burner with a maximum power of
20 kWth. Fig. 1 shows a schematic of the experimental setup. The burner
comprised two separate fuel and air inlets with diameters of 25 mm and
10 mm. Air and fuel were premixed in a plenum inside the burner, and
the mixture left through a 100-mm-diameter header and a pattern of
5-mm-diameter holes.

The burner was fed from bottles of gaseous fuel through two in-
dependent lines. Each line was designed to feed gaseous fuel with
different heating values. The fuel mixtures were prepared by using a
gas supplier based on the composition and quality requirements. A
compressor supplied the combustion air, and an ITV2000 electropneu-
matic regulator (SMC España S.A., Spain) controlled the pressure (and
thus the airflow rate). The airflow rate was measured before burner
connection using an SD6000 airflow switch (IFM Electronic GmbH,
Germany). The pressure control and airflow rate were digitized using
a data acquisition system and computer. Flame color images were
acquired by using a DFK 33GX174 color camera (The Imaging Source
Europe GmbH, Germany) with a IMX174LQJ sensor (Sony Europe,
Netherlands) of 2.3 MP.

Three fuel blends with different LHV values (Table 1) were tested
during the experiment. Fuels were selected based on interest in using
BFG, a low-calorific power gas, in the steel sector. Blends with a high
percentage of BFG led to increased combustion instability owing to the
composition of the inert gases. Pure CH4 was employed as the baseline
for combustion with the highest LHV (MIX1). In contrast, the pure BFG
exhibited the lowest LHV (MIX3). Finally, a fuel blend composed of
30% vol. CH4 and 70% vol. BFG was studied as an intermediate LHV
scenario (MIX2). The latter is relevant in the steel industry for the
valorization of BFG in reheating furnaces (Caillat, 2017; Cuervo-Piñera
et al., 2017). For each fuel blend, the combustion conditions were
modified by changing the airflow rate and operating with different ERs
at a fixed power of 5.5 kWth. Further details regarding the experimental
procedure can be found in Compais et al. (2022a).

2.2. Methods

Here, predictive models focused on the innovative detection of

minor ER variations, providing greater detail in estimating the ER than
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Fig. 1. Scheme of the combustion laboratory. DAQ: data acquisition.
Table 1
Composition of fuel blends (Compais et al., 2022a).

Fuel blend MIX1 MIX2 MIX3

[CH4] (%vol.) 100 28 –
[H2] (%vol.) – 3 4
[CO] (%vol.) – 16 22
[CO2] (%vol.) – 16 22
[N2] (%vol.) – 37 52
LHV (MJ/kg) 50.0 10.8 2.8

Table 2
Summary of the experimental tests.

Test MIX1 MIX2 MIX3

ER1 1.41 1.13 0.91
ER2 1.43 1.27 0.94
ER3 1.51 1.37 1.09
ER4 1.64 1.41 1.11
ER5 1.76 1.57 1.24
ER6 1.88 1.67 –
ER7 2.01 1.78 –
ER8 – 1.91 –

in previous studies. Combustion measurements from the experiment
conducted by Compais et al. (2022a) were used as input to develop
the predictive models. The ER was computed as the ratio between the
actual and stoichiometric air–fuel ratios. The mean ER step sizes were
0.10. The ER range was defined for each fuel blend based on its specific
flame stability. For example, an ER of 2.01 was achieved for MIX1 but
not for MIX2 or MIX3, owing to the extinction of the flame. Table 2
presents the ERs tested for each fuel blend. ERs range from 1.41 to
2.01 (MIX1), 1.13 to 1.91 (MIX2), and 0.91 to 1.24 (MIX3).

The camera acquired the flame images for 6 min after reaching
steady conditions for each test (ER class). The camera achieved a frame
rate of 12 fps, capturing 4320 images per test. Figs. 2, 3 and 4 show
sample images of the combustion regimes for MIX1, MIX2, and MIX3.
The ER variations in the flames were so small that they were not visible
to the naked human eye. This effect was attributed to using a mean step
size of 0.10 ER. Although slight image variations might seem irrelevant
at a lab scale, they might result in high volumes of natural gas that were
not burned on an industrial scale. In this respect, fine detection of these
slight variations could provide energy savings to the steel industry.

Flame images captured during the tests were processed to extract
their features. Although all the main feature types for flame images
3

Table 3
Statistical IF extracted from flame pixels of each color channel.

Feature magnitude Equation

Mean (𝜇) 1
𝑃

∑𝑃
𝑝=1 𝑥(𝑝)

Standard deviation (𝜎)
√

1
𝑃

∑𝑃
𝑝=1(𝑥(𝑝) − 𝜇)2

Skewness (s)
1
𝑃

∑𝑃
𝑝=1 (𝑥(𝑝)−𝜇)

3

𝜎3

Kurtosis (k)
1
𝑃

∑𝑃
𝑝=1 (𝑥(𝑝)−𝜇)

4

𝜎4

(statistical, geometrical, and textural) were not included in most com-
bustion studies, they were integrated for comparison in this study. Four
statistical features (mean, standard deviation, skewness, and kurtosis),
13 textural features (selected from Haralick et al., 1973), and five
geometrical features (area, centroid horizontal coordinate, centroid
vertical coordinate, width, and height) were computed. Processing was
applied to each color channel to obtain 22 IF per color channel, for 66
IF per color image. Tables 3, 4, and 5 list the selected IFs with their
formulations. The equations of the statistical features were referred to
as monochrome images of P pixels, where x(p) was the value of pixel
p. In textural features, p(i,j) referred to elements in row i and column j
of a normalized GLCM. The GLCM had N rows and N columns, where
N was defined as the number of gray values in the monochrome image.
Geometrical features were computed for binary images of P pixels (with
R rows and C columns), with b(c,r) as the binary value (zero or one) of
pixel p located in column c and row r. Moreover, 𝐶𝑠 and 𝑅𝑠 were the
horizontal and vertical coordinates of the pixels with binary values of
one, respectively.

Before the IF was extracted, the flame images were preprocessed.
First, to remove sensor electrical noise, the dark camera signal was
subtracted from the flame images (González-Cencerrado et al., 2012,
2013; Huang et al., 2015). The flame pixels were then segmented using
thresholding (Mathew et al., 2016; Katzer et al., 2017). The threshold
was automatically selected by applying Otsu’s method to maximize the
variance between the two-pixel classes (Otsu, 1979). The statistical
and textural features were extracted. Using Otsu’s thresholding, a re-
duced number of image pixels that were distant from the main flame
body were erroneously classified as flame pixels. Although they barely
affected the statistical and textural characteristics, these pixels signifi-
cantly influenced the calculation method for the geometrical features.
Therefore, the morphological transformation of erosion (Sreedhar and
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Fig. 2. Sample images of flames for MIX1 and ERs of (a) 1.41, (b) 1.43, (c) 1.51, (d) 1.64, (e) 1.76, (f) 1.88, and (g) 2.01.
Fig. 3. Sample images of flames for MIX2 and ERs of (a) 1.13, (b) 1.27, (c) 1.37, (d) 1.41, (e) 1.57, (f) 1.67, (g) 1.78, and (h) 1.91.
anlal, 2012) was used to discard them. Erosion was applied using a
× 3-pixel kernel. Finally, geometrical features were extracted.

Based on the same methodology, different predictive models were
eveloped to detect slight ER variations in three fuel blends (MIX1,
IX2, and MIX3). Each image was labeled with its corresponding fuel

lend and ER. Flame color images, fuel blends, and ER labels were used
s the datasets. Each fuel blend was tested for a discrete group of ERs
nd predictive models were developed to classify each ER label. These
redictive models estimated the ERs related to the images based on the
xtracted IF. The behavior of several ML algorithms was analyzed for
he ER classification of fuel blends. Predictive models were developed
4

using ML algorithms with different characteristics, namely LR, SVM,
and ANN. An MLP with a unique hidden layer of 100 neurons was used
for the latter. The ML methodology in this study for each fuel blend is
shown in Fig. 5.

The overall ML process for the dataset of a fuel blend is summarized
as follows, and specific steps of the method are described in more
detail. The dataset of each fuel blend was randomly shuffled and
split into training and test sets with 70% and 30% of the samples,
respectively. These sets were stratified to include a similar proportion
of the ER classes. Each IF’s mean and standard deviation in the training
set were computed to standardize the dataset. Based on those values,
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Fig. 4. Sample images of flames for MIX3 and ERs of (a) 0.91, (b) 0.94, (c) 1.09, (d) 1.11, and (e) 1.24.
Table 4
Textural IF extracted from flame pixels of each color channel.

Feature magnitude Equation

Angular second moment (𝑓1, energy) ∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑝(𝑖, 𝑗)

2

Contrast (𝑓2)
∑𝑁

𝑖=1
∑𝑁

𝑗=1 (𝑖 − 𝑗)2 𝑝(𝑖, 𝑗)

Correlation (𝑓3)
∑𝑁

𝑖=1
∑𝑁

𝑗=1
(𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

Sum of squares (𝑓4, variance) ∑𝑁
𝑖=1

∑𝑁
𝑗=1

(

𝑖 − 𝜇𝑥
)2 𝑝𝑖𝑗

Inverse difference moment (𝑓5)
∑𝑁

𝑖=1
∑𝑁

𝑗=1
𝑝𝑖𝑗

1+|𝑖−𝑗|

Sum average (𝑓6)
∑2𝑁

𝑘=2 𝑘𝑝𝑥+𝑦(𝑘)

Sum variance (𝑓7)
∑2𝑁

𝑘=2
(

𝑘 − 𝜇𝑥+𝑦
)2 𝑝𝑥+𝑦(𝑘)

Sum entropy (𝑓8) −
∑2𝑁

𝑘=2 𝑝𝑥+𝑦 (𝑘) log 𝑝𝑥+𝑦(𝑘)

Entropy (𝑓9) −
∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)

Difference variance (𝑓10)
∑𝑁−1

𝑘=0
(

𝑘 − 𝜇𝑥−𝑦
)2 𝑝𝑥−𝑦 (𝑘)

Difference entropy (𝑓11) −
∑𝑁−1

𝑘=0 𝑝𝑥−𝑦 (𝑘) log 𝑝𝑥−𝑦(𝑘)

Information measure of correlation I (𝑓12, IMC1) 𝐻𝑋𝑌−𝐻𝑋𝑌 1
𝑚𝑎𝑥(𝐻𝑋,𝐻𝑌 )

Information measure of correlation II (𝑓13, IMC2)
√

1 − exp [−2(𝐻𝑋𝑌 2 −𝐻𝑋𝑌 )]

Table 5
Geometrical IF extracted from flame pixels of each color channel.

Feature magnitude Equation

Area (a) ∑𝑅
𝑟=1

∑𝐶
𝑐=1 𝑏(𝑐, 𝑟)

Centroid horizontal coordinate (𝑐𝑥)
∑𝑅

𝑟=1
∑𝐶

𝑐=1 𝑐𝑏(𝑐,𝑟)
𝑎

Centroid vertical coordinate (𝑐𝑦)
∑𝑅

𝑟=1
∑𝐶

𝑐=1 𝑟𝑏(𝑐,𝑟)
𝑎

Width (w) max
(

𝐶𝑠
)

− min
(

𝐶𝑠
)

Height (h) max
(

𝑅𝑠
)

− min
(

𝑅𝑠
)

training and test sets were standardized. To tackle the overfitting of
the predictive models, the training set was analyzed by ANOVA F -tests.
The ten IFs with the best variance results were selected and employed
as input for predictive models for both training and test sets. Three
nested CVs (one per ML algorithm) tuned the hyperparameters and
evaluated the performance of each ML algorithm, selecting the best
alternative in the end. The chosen ML algorithm was trained with the
selected hyperparameters and the training set, and its performance was
analyzed, computing its accuracy for the test set. Accuracy was defined
as the ratio of the number of correct predictions to the total number of
predictions. PCA was not used in the ML method because training time
and storage limitations were not critical in this study.

Regarding the ANOVA F -tests, the selected IFs were the ten vari-
ables with the highest variance for the ER classes of each fuel blend in
the training set. F -tests use a Fisher–Snedecor distribution, and in the
5

case of the ANOVA F -tests, the hypothesis was the dependence of an
image feature on the ER class for a specific fuel blend. A confidence
level of 0.05 was selected to evaluate this hypothesis, and the F -
values, critical F -values, and p-values of the 66 IFs were computed and
compared. In the ANOVA F -test of an IF, the hypothesis was supported
if its F -value was higher than the critical F -value for the specific fuel
blend and the p-value was lower than the confidence level.

Nested CVs were applied with stratification to the training set, with
an outer and inner CV of ten and five folds, respectively. The outer
CV split the training set into ten training- and validation-subset pairs.
Fig. 6 summarizes the ML method for a split i of an outer CV.

For a training subset, an inner CV was applied to define the hyper-
parameters of the predictive model. Next, the model was trained with
the training subset, and its performance was evaluated by calculating
its training and validation accuracies, learning curve, and validation
confusion matrix. Training and validation accuracies were measured
for different subset sizes to compute the learning curves. These sizes
were defined as 1%, 25%, 50%, 75%, and 100% of the samples in the
outer CV fold. After the ten splits were evaluated, their metrics were
averaged, and the mean accuracy was used to select the ML algorithm.
The inner CV split each training subset into another five pairs of
training and validation subsets. For each pair, every combination of
hyperparameters was evaluated. The procedure for the split j and the
combination of hyperparameters k is shown in Fig. 7.

For an inner CV split j and a combination of hyperparameters k, the
predictive model was trained with the training subset j, and its accuracy
was computed for the validation subset j. Values for the five splits
were averaged to define the combination of hyperparameters with the
highest accuracy. Three values of the regularization term (0.1, 1, and
10) were tested for the three ML algorithms to address the overfitting
problem. Moreover, for the SVM, three different kernels were tested
(linear, polynomial, and radial basis functions).

The specific code to extract the IF and develop predictive models
was developed using Python as the programming language (version
3.7). Several libraries were used for the code: OpenCV, Scikit-learn,
NumPy, SciPy, Mahotas, and Pandas.

3. Results and discussion

Several comparative analyses were performed to evaluate the detec-
tion of slight ER variations using predictive models. First, the variance
of IF with the ER classes was analyzed using the ANOVA F -tests. This
assessment compared the subsets of the IF automatically selected for
each fuel blend. Apart from the specific IF that formed each subset,
the relevance of each subset’s color channels, and feature types was
checked. Next, the validation accuracy achieved by the predictive mod-

els and the effects of the ML algorithm were tested against other related
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Fig. 5. ML method for each fuel blend.

tudies. Also, confusion matrices were computed to evaluate the effect
f ER class on the prediction models. Finally, the fit of the predictive
odels was analyzed using learning curves and by comparing the

raining, validation, and test accuracies.

.1. Variance of the IF with the ER classes

The first analysis measured the variance of IF with the ER classes
sing the ANOVA F -test. The critical F -value was computed for each
uel blend, with a confidence level of 0.05. Fuel blends had critical
-values of 2.10 (MIX1), 2.01 (MIX2), and 2.37 (MIX3). All IF had
-values that were at least two orders of magnitude higher than the
ritical F -value of the fuel blend. Also, all p-values were lower than the
onfidence level. Thus, the mean values of each IF were affected by the
R class regardless of the fuel heating value. IF were ordered based on
heir F -values, and the subset of the 10 IF with the highest F -values was
elected to develop the predictive models. The chosen IF are indicated
ith checkmarks (Tables 6, 7, and 8).

Three subsets of 10 IF were selected, with one subset for each fuel
lend. Some visual characteristics were repeated between subsets. In
articular, the IF group formed by the three subsets included only 24
ifferent IF from a total computed of 66. The subsets for MIX1 and

IX2 shared four IF: the standard deviation of the green and blue

6

Fig. 6. ML method for the split i of an outer CV.

Fig. 7. ML method for the split j of an inner CV and the combination of
hyperparameters k.

channels, difference entropy of the green channel, and centroid vertical
coordinate of the blue channel, which was a feature shared for all
fuel blends. The number of IF was computed for each color channel
(Fig. 8[a]) and feature types (Fig. 8[b]). The subsets of IF depended on
the fuel blend.

For MIX1, only the IF from the green and blue channels were
selected. However, in the cases of MIX2 and MIX3, the IFs from the
three-color channels were included. Moreover, three feature types were
included in selecting IF for MIX1 and MIX2. Nevertheless, only the
textural and geometrical features were chosen for MIX3.

3.2. Prediction of slight variations in the ER

After analyzing the variance of the IF with the ER, for each fuel
blend, a subset of ten features was selected, which were used for the
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Table 6
IF selected from the red color channel for each fuel blend.

Feature type Feature magnitude MIX1 MIX2 MIX3

Statistical Standard deviation (𝜎) ✓

Textural Contrast (𝑓2) ✓

Geometrical Area (a) ✓

Geometrical Centroid vertical coordinate (𝑐𝑦) ✓
Table 7
IF selected from the green color channel for each fuel blend.

Feature type Feature magnitude MIX1 MIX2 MIX3

Statistical Standard deviation (𝜎) ✓ ✓

Textural Contrast (𝑓2) ✓

Textural Correlation (𝑓3) ✓

Textural Sum of squares (𝑓4, variance) ✓

Textural Inverse difference moment (𝑓5) ✓

Textural Difference entropy (𝑓11) ✓ ✓

Textural Information Measure of Correlation II (𝑓13, IMC2) ✓

Geometrical Area (a) ✓

Geometrical Centroid vertical coordinate (𝑐𝑦) ✓ ✓
Table 8
IF selected from the blue color channel for each fuel blend.

Feature type Feature magnitude MIX1 MIX2 MIX3

Statistical Standard deviation (𝜎) ✓ ✓

Statistical Skewness (s) ✓

Textural Contrast (𝑓2) ✓

Textural Correlation (𝑓3) ✓

Textural Sum of squares (𝑓4, variance) ✓

Textural Inverse difference moment (𝑓5) ✓

Textural Difference entropy (𝑓11) ✓

Textural Information Measure of Correlation I (𝑓12, IMC1) ✓

Textural Information Measure of Correlation II (𝑓13, IMC2) ✓

Geometrical Area (a) ✓

Geometrical Centroid vertical coordinate (𝑐𝑦) ✓ ✓ ✓
Fig. 8. Number of IF selected for fuel blend, based on (a) their color channel and (b) their feature type.
nput and development of predictive models. Three predictive models
ere developed for each fuel blend using different ML algorithms (LR,
VM, and MLP), and were trained and validated using nested CV. The
yperparameters of the ML algorithms were tuned in this nested CV.
he validation accuracies of the predictive models were averaged over
he nested CV, and Fig. 9 shows the results.

The predictive models showed similar results for MIX1 and MIX2
xpression. ER was estimated using classes with a mean step size of
.10 (MIX1) and 0.11 (MIX2), achieving validation accuracies between
.95 and 0.97. In contrast, the ER steps for MIX3 had a lower mean
tep size (0.08), and validation accuracies of approximately 0.78 were
chieved. In summary, the validation accuracies ranged between 0.78
nd 0.97, which are typical values for classification models related
o ER conditions. For example, Bai et al. (2017) measured accuracies
etween 0.75 and 0.93 to predict air ratios. However, Han et al.
2021) achieved accuracies of between 0.96 and 1.00 and 0.65 and
.99 (Han et al., 2020) for the classification of combustion states. Also,
bdurakipov et al. (2018) reported accuracies of 0.89 and 0.98.
7

Fig. 9. Validation accuracy of the predictive models developed with different
algorithms.

The results were compared in more detail with those of works
on similar classification tasks based on combustion conditions with
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different ER. Han et al. (2020) and Abdurakipov et al. (2018) used
mean step sizes of 0.20 and 0.35, respectively, whereas the present
work predicted ER conditions using a mean step size of 0.10, which
is at least two times lower. The use of larger mean step sizes facilitates
the image classification task because image flames present significant
differences that could be perceived by the human eye, as shown when
analyzing figures in their works. However, the classification task in this
work is more difficult because of the smaller mean step size, which
provided image differences hardly perceived by the human eye. To
address this challenge, we proposed a novel methodology for previous
combustion studies. In summary, using smaller ER steps and a nested
CV, the current study predicted ER conditions with a considerably high
level of detail, with accuracies like previous studies.

3.3. Effect of the ML algorithm

Results (Fig. 9) show that using a different ML algorithm barely
affected the validation accuracy of the predictive models regardless
of the fuel blend. LR, SVM, and MLP models achieved validation
accuracies with a maximum deviation of 3%. SVM provided the highest
accuracies for the three fuel blends (0.967, 0.973, and 0.795). Previous
studies measured variations in accuracy below 2% between SVM and
ANN (Bai et al., 2017) and LR and SVM (Abdurakipov et al., 2018).
In the work of Han et al. (2020), the highest accuracy was achieved
by SVM compared with ANN. Nevertheless, high deviations (< 19%)
between LR, SVM, and ANN have been reported in some cases (Bai
et al., 2017; Abdurakipov et al., 2018; Han et al., 2020). Moreover,
ANN achieved better results than SVM in the studies by Bai et al. (2017)
and Abdurakipov et al. (2018). Therefore, the behavior of the ML
algorithms may be dependent on the case conditions, and the current
research achieved similar results to those of previous studies.

3.4. Effect of the ER class

As Fig. 9 shows, the validation accuracy decreased significantly for
MIX3. To analyze this behavior in detail, the confusion matrixes of the
predictive models were analyzed. Results are shown (Fig. 10) for the
SVM model, which provided the highest validation accuracy.

For MIX1 and MIX2, confusion matrixes showed similar results.
Regardless of the ER class, the predictive models correctly estimated the
ER value for most samples (95% at minimum). Incorrect classifications
occurred only for a few samples with consecutive ER classes, such as
1.43 and 1.51 in the case of MIX1 (Fig. 10[a]). However, the behavior
of the predictive model was different for MIX3, where the ER estimation
exhibited lower accuracies when distinguishing between class pairs
of 0.91–0.94 and 1.09–1.11 (Fig. 10[c]). These conditions had the
smallest ER variations (0.03 and 0.02), together with 1.41–1.43 for
MIX1. However, the latter case was more accurate despite its low ER
variation. Due to the lower combustion stability caused by its lower
heating value, the classification could be more complex for MIX3 than
for MIX1. Also, it is observed that when the ER increased between 0.91
and 1.24, the validation accuracy for MIX3 was higher. These variations
could be related to combustion stability changes, as reported by Zheng
et al. (2021).

3.5. Fit of the predictive models

To evaluate the predictive models in more detail, learning curves
were computed. Fig. 11 shows the learning curves for the predic-
tive models developed using the SVM, which provided the highest
accuracies.

For each fuel blend, the validation accuracy increased with increas-
ing subset size, approaching the same value as the training accuracy.
This behavior is considered a good fit for the predictive models, which
did not suffer from underfitting or overfitting. Furthermore, as the
predictive models were stable at a subset size of 25%, similar results
8

Fig. 10. Confusion matrixes of the predictive models developed with the SVM
algorithm for (a) MIX1, (b) MIX2, and (c) MIX3.

could be achieved by acquiring only 1080 images per class, reducing
the test duration from 360 s (Compais et al., 2022a) to 90 s, or the
frame rate from 12 (Compais et al., 2022a) to 3 fps.

To provide a final test for the ER classification, predictive models
with the best results were trained with the entire training set and
evaluated with the test set, which had not been used to develop the
predictive models. Only the SVM models were evaluated in this step,
as they achieved the highest accuracy. The hyperparameters of the
SVM models were defined based on the best results obtained in the
hyperparameter tuning: a regularization term of 10 for the three fuel
blends, radial basis function kernel for MIX1 and MIX3, and linear
kernel for MIX 2. Their accuracies were computed to evaluate the SVM
models using the test set. Fig. 12 shows the accuracies for the SVM
model, including the previous training and validation accuracies and
the new test accuracies.

The accuracies achieved using the test set were like those of the
training and validation sets. Therefore, the SVM models exhibited
acceptable behavior for previously unseen flame images.

4. Conclusions

This paper presented a novel methodology for detecting slight vari-
ations in combustion conditions. The fuel blends used here are pure
CH4, 30% vol. CH4∕70% vol. BFG, and pure BFG. The combustion
was analyzed using a laboratory-premixed burner at a fixed thermal
power of 5.5 kW. The developed methodology was based on extracting
statistical, geometrical, and textural features from flame images, their
automatic selection with ANOVA F -tests, the automatic selection of
hyperparameters, and the robust performance evaluation for predictive
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Fig. 11. Learning curves of the SVM model for (a) MIX1, (b) MIX2, and (c) MIX3.
Fig. 12. Training, validation, and test accuracies of the SVM model for MIX1, MIX2,
and MIX3.

models using nested CV. This methodology aimed to reduce overfitting,
which was critical for the current application. Predictive models were
developed for the ER classification of each fuel blend using three
ML algorithms (LR, SVM, and ANN [MLP]). The performance of the
predictive models was evaluated using a training–test split and nested
CV within the training set by computing their accuracy, confusion
matrices, and learning curves.

The model developed in this work allowed the prediction of the ER
using a mean step size of 0.10, which in the case of the selected fuel
mixtures, implied differences that would be difficult to be perceived
by the human eye. The detection of slight changes in the combustion
conditions allowed for the correction of deviated parameters, helping to
optimize the processes and avoid the appearance of critical instabilities.

It was confirmed that the computed IFs used were affected by the
ER class regardless of the fuel heating value. However, the subset of
IFs with the highest variances depended on the fuel heating value. The
subsets for the first and second mixtures shared three IFs: the standard
9

deviation of the green and blue channels and the difference entropy of
the green channel. The subsets of the three fuel blends shared only one
IF, the centroid vertical coordinate of the blue channel. Moreover, the
subsets of IF for all heating values included textural and geometrical
features from the green and blue channels.

For the different fuel heating values, using different ML algorithms
(LR, SVM, and ANN [MLP]) had no significant effect on accuracy. Nev-
ertheless, the SVM models always provided the best results. Predictive
models showed a relevant decrease in accuracy for the conditions with
the lower fuel heating value (MIX3), reducing its value from 0.95–
0.97 to 0.78. Considering SVM models, significant misclassifications for
MIX3 occurred for consecutive ER classes with the smallest step sizes
(0.02–0.03). However, for the conditions with a higher fuel heating
value (MIX1), the predictive models obtained a higher accuracy when
predicting consecutive ER classes with a step size of 0.03.

The SVM models showed a satisfactory fit to the data without
underfitting or overfitting. The models achieved stability with only 25%
of the flame images. Therefore, the test duration or frame rate could be
reduced. Finally, the accuracy of the SVM models was measured again
using a test set with previously unused flame images. The SVM models
showed similar values to previous accuracies; thus, they performed well
with unseen flame images.

The decreased accuracy reported for the fuel blend with the lower
heating value could be used to propose future studies focused on
monitoring fuel blends with low heating values to increase prediction
accuracy. The current research sets the stage for automated monitoring
of minor variations in the combustion of gaseous fuels.

Finally, the current research results, carried out at a laboratory
level, would enable the development of these systems for their final
implementation in industrial furnaces of the steel sector, where the mix-
tures used in this work present an alternative for fossil fuel substitution
and, thus, for their decarbonization.
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