000127740 001__ 127740
000127740 005__ 20231006132949.0
000127740 0247_ $$2doi$$a10.3390/electronics10060677
000127740 0248_ $$2sideral$$a123827
000127740 037__ $$aART-2021-123827
000127740 041__ $$aeng
000127740 100__ $$0(orcid)0000-0002-5789-2156$$aBallestín Fuertes, Javier
000127740 245__ $$aRole of wide bandgap materials in power electronics for smart grids applications
000127740 260__ $$c2021
000127740 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127740 5203_ $$aAt present, the energy transition is leading to the replacement of large thermal power plants by distributed renewable generation and the introduction of different assets. Consequently, a massive deployment of power electronics is expected. A particular case will be the devices destined for urban environments and smart grids. Indeed, such applications have some features that make wide bandgap (WBG) materials particularly relevant. This paper analyzes the most important features expected by future smart applications from which the characteristics that their power semiconductors must perform can be deduced. Following, not only the characteristics and theoretical limits of wide bandgap materials already available on the market (SiC and GaN) have been analyzed, but also those currently being researched as promising future alternatives (Ga2O3, AlN, etc.). Finally, wide bandgap materials are compared under the needs determined by the smart applications, determining the best suited to them. We conclude that, although SiC and GaN are currently the only WBG materials available on the semiconductor portfolio, they may be displaced by others such as Ga2O3 in the near future
000127740 536__ $$9info:eu-repo/grantAgreement/ES/MCIU-CDTI/CER-20191002 RED CERVERA
000127740 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127740 590__ $$a2.69$$b2021
000127740 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b100 / 163 = 0.613$$c2021$$dQ3$$eT2
000127740 591__ $$aPHYSICS, APPLIED$$b82 / 161 = 0.509$$c2021$$dQ3$$eT2
000127740 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b139 / 274 = 0.507$$c2021$$dQ3$$eT2
000127740 592__ $$a0.59$$b2021
000127740 593__ $$aComputer Networks and Communications$$c2021$$dQ2
000127740 593__ $$aSignal Processing$$c2021$$dQ2
000127740 593__ $$aHardware and Architecture$$c2021$$dQ2
000127740 593__ $$aControl and Systems Engineering$$c2021$$dQ2
000127740 594__ $$a3.7$$b2021
000127740 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127740 700__ $$aMuñoz-Cruzado Alba, Jesus
000127740 700__ $$0(orcid)0000-0001-7407-0608$$aSanz Osorio, José Francisco$$uUniversidad de Zaragoza
000127740 700__ $$0(orcid)0000-0002-5040-7699$$aLaporta-Puyal, Erika
000127740 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000127740 773__ $$g10, 6 (2021), 677 [26 pp.]$$pElectronics (Basel)$$tElectronics$$x2079-9292
000127740 8564_ $$s837702$$uhttps://zaguan.unizar.es/record/127740/files/texto_completo.pdf$$yVersión publicada
000127740 8564_ $$s2755416$$uhttps://zaguan.unizar.es/record/127740/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127740 909CO $$ooai:zaguan.unizar.es:127740$$particulos$$pdriver
000127740 951__ $$a2023-10-06-12:35:47
000127740 980__ $$aARTICLE