000127744 001__ 127744
000127744 005__ 20240319081005.0
000127744 0247_ $$2doi$$a10.1016/j.jssc.2022.123356
000127744 0248_ $$2sideral$$a129997
000127744 037__ $$aART-2022-129997
000127744 041__ $$aeng
000127744 100__ $$0(orcid)0000-0003-3567-7030$$aPalacios Latasa, E.$$uUniversidad de Zaragoza
000127744 245__ $$aHeat capacity and magnetocaloric effect in the zircon and scheelite phases of RCrO4, R = Tb, Er, Ho
000127744 260__ $$c2022
000127744 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127744 5203_ $$aWe present here new magnetization and heat capacity data under magnetic field and direct measurements of the magnetocaloric effect (MCE) in the zircon and the new scheelite phases of RCrO4 (R ¿= ¿Tb, Er, Ho) from 5 ¿K to 100 ¿K, for magnetic fields B from 0 to 9 ¿T. Zircons have a high MCE near their Curie point, TC ¿¿ ¿20 ¿K, reaching maximum isothermal entropy increments, |¿ST| ¿= ¿21, 19.4, and 16.2 ¿J ¿kg-1K-1 for HoCrO4, ErCrO4, and TbCrO4, respectively, for an external field of 5 ¿T. TbCrO4 has another anomaly near TD ¿= ¿60 ¿K associated to a Jahn-Teller transition from the tetragonal zircon structure to an orthorhombic phase. Scheelites are antiferromagnetic with TN ¿¿ ¿25 ¿K. In the Tb scheelite the rare earth is strongly coupled to Cr5+ and the MCE exhibits the typical features of an antiferromagnet, i.e. a sort of Curie-Weiss behavior above TN and a sudden drop to small or even inverse values below. In the Er and Ho scheelites the R3+-Cr5+ exchange coupling is very weak and the R3+ ion behaves independently of the Cr5+. As a striking consequence the MCE is quite stronger well below TN. © 2022
000127744 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E100$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2017-86019-R
000127744 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127744 590__ $$a3.3$$b2022
000127744 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b13 / 42 = 0.31$$c2022$$dQ2$$eT1
000127744 591__ $$aCHEMISTRY, PHYSICAL$$b88 / 161 = 0.547$$c2022$$dQ3$$eT2
000127744 592__ $$a0.58$$b2022
000127744 593__ $$aCeramics and Composites$$c2022$$dQ2
000127744 593__ $$aCondensed Matter Physics$$c2022$$dQ2
000127744 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ2
000127744 593__ $$aInorganic Chemistry$$c2022$$dQ2
000127744 593__ $$aMaterials Chemistry$$c2022$$dQ2
000127744 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ2
000127744 594__ $$a5.6$$b2022
000127744 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000127744 700__ $$0(orcid)0000-0002-9687-4903$$aCastro Corella, M.$$uUniversidad de Zaragoza
000127744 700__ $$aRomero de Paz, J.
000127744 700__ $$aGallardo-Amores, J.
000127744 700__ $$aSáez-Puche, R.
000127744 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000127744 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000127744 773__ $$g314 (2022), 123356$$pJ. solid state chem.$$tJOURNAL OF SOLID STATE CHEMISTRY$$x0022-4596
000127744 8564_ $$s2209025$$uhttps://zaguan.unizar.es/record/127744/files/texto_completo.pdf$$yPostprint
000127744 8564_ $$s1050266$$uhttps://zaguan.unizar.es/record/127744/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000127744 909CO $$ooai:zaguan.unizar.es:127744$$particulos$$pdriver
000127744 951__ $$a2024-03-18-14:33:31
000127744 980__ $$aARTICLE