000127749 001__ 127749
000127749 005__ 20240319081014.0
000127749 0247_ $$2doi$$a10.1016/j.enconman.2022.116002
000127749 0248_ $$2sideral$$a129983
000127749 037__ $$aART-2022-129983
000127749 041__ $$aeng
000127749 100__ $$aDiego-García, R.
000127749 245__ $$aIntegration of oxycombustion and microbial electrosynthesis for sustainable energy storage
000127749 260__ $$c2022
000127749 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127749 5203_ $$aPower-to-gas technology makes use of surplus electricity by its conversion and storage in the form of a gas. Currently power-to-gas schemes based on biological processes are of great interest. Microbial electrosynthesis (MES) cells are biological systems that produce biogas via microbial action and a supply of electrical energy. The OxyMES scheme proposed is a power-to-gas system that seeks to neutralize the CO2 emissions of a standard industrial process through the hybridization of oxy-fuel combustion and bioelectrochemical processes that produce CH4 (in cathode) and O2 (in anode). This oxygen is used for oxycombustion in an industrial C-fuel boiler. The energy balance analysis yielded a power-to-gas efficiency in the MES cell close to 51%, and the overall performance of the OxyMES integrated system was close to 60% for a cell with a Faradaic efficiency of 80%, CO2-to-CH4 conversion rate of 95%, and ¿Vcell = 1.63 V. With the proper sizing of the CO2, O2, and biogas process tank system, it is possible to achieve 100% autonomy, free from external feedstock supplies. © 2022 Elsevier Ltd
000127749 536__ $$9info:eu-repo/grantAgreement/EC/FP7/268191/EU/Reliable and Efficient Combustion of Oxygen/Coal/Recycled Flue Gas Mixtures/RELCOM$$9info:eu-repo/grantAgreement/ES/MCIN-AEI-FEDER/PID2020-115948RB-I00
000127749 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127749 590__ $$a10.4$$b2022
000127749 591__ $$aENERGY & FUELS$$b17 / 119 = 0.143$$c2022$$dQ1$$eT1
000127749 591__ $$aTHERMODYNAMICS$$b2 / 63 = 0.032$$c2022$$dQ1$$eT1
000127749 591__ $$aMECHANICS$$b3 / 137 = 0.022$$c2022$$dQ1$$eT1
000127749 592__ $$a2.514$$b2022
000127749 593__ $$aEnergy Engineering and Power Technology$$c2022$$dQ1
000127749 593__ $$aRenewable Energy, Sustainability and the Environment$$c2022$$dQ1
000127749 593__ $$aNuclear Energy and Engineering$$c2022$$dQ1
000127749 593__ $$aFuel Technology$$c2022$$dQ1
000127749 594__ $$a19.1$$b2022
000127749 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000127749 700__ $$aMorán, A.
000127749 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo Giménez, L. M.$$uUniversidad de Zaragoza
000127749 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000127749 773__ $$g269 (2022), 116002$$pEnergy convers. manag.$$tENERGY CONVERSION AND MANAGEMENT$$x0196-8904
000127749 8564_ $$s2562007$$uhttps://zaguan.unizar.es/record/127749/files/texto_completo.pdf$$yPostprint
000127749 8564_ $$s1324103$$uhttps://zaguan.unizar.es/record/127749/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000127749 909CO $$ooai:zaguan.unizar.es:127749$$particulos$$pdriver
000127749 951__ $$a2024-03-18-15:29:17
000127749 980__ $$aARTICLE