000127754 001__ 127754
000127754 005__ 20240731103314.0
000127754 0247_ $$2doi$$a10.1039/D3DT01911J
000127754 0248_ $$2sideral$$a134968
000127754 037__ $$aART-2023-134968
000127754 041__ $$aeng
000127754 100__ $$0(orcid)0000-0001-7341-0033$$aGonzález-Lainez, Miguel
000127754 245__ $$aß-(Z)-Selective alkyne hydrosilylation by a N,O-functionalized NHC-based rhodium(i) catalyst
000127754 260__ $$c2023
000127754 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127754 5203_ $$aNeutral and cationic cyclooctadiene rhodium(I) complexes with a lutidine-derived polydentate ligand having NHC and methoxy side-donor functions, [RhBr(cod)(κC-tBuImCH2PyCH2OMe)] and [Rh(cod)(κ2C,N-tBuImCH2PyCH2OMe)]PF6, have been prepared. Carbonylation of the cationic compound yields the dicarbonyl complex [Rh(CO)2(κ2C,N-tBuImCH2PyCH2OMe)]PF6 whereas carbonylation of the neutral compound affords a mixture of di- and monocarbonyl neutral complexes [RhBr(CO)2(κC-tBuImCH2PyCH2OMe)] and [RhBr(CO)(κ2C,N-tBuImCH2PyCH2OMe)]. These complexes efficiently catalyze the hydrosilylation of 1-hexyne with HSiMe2Ph with a marked selectivity towards the β-(Z)-vinylsilane product. Catalyst [RhBr(CO)(κ2C,N-tBuImCH2PyCH2OMe)] showed a superior catalytic performance, in terms of both activity and selectivity, and has been applied to the hydrosilylation of a range of 1-alkynes and phenylacetylene derivatives with diverse hydrosilanes, including HSiMe2Ph, HSiMePh2, HSiPh3 and HSiEt3, showing excellent β-(Z) selectivity for the hydrosilylation of linear aliphatic 1-alkynes. Hydrosilylation of internal alkynes, such as diphenylacetylene and 1-phenyl-1-propyne, selectively affords the syn-addition vinylsilane products. The β-(Z) selectivity of these catalysts contrasts with that of related rhodium(I) catalysts based on 2-picolyl-functionalised NHC ligands, which were reported to be β-(E) selective. An energy barrier ΔG‡ of 19.8 ± 2.0 kcal mol−1 (298 K) has been determined from kinetic studies on the hydrosilylation of 1-hexyne with HSiMe2Ph. DFT studies suggest that the methoxy-methyl group is unlikely to be involved in the activation of hydrosilane, and then hydrosilane activation is likely to proceed via a classical Si–H oxidative addition.
000127754 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E42-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103965GB-I00/AEI/10.13039/501100011033
000127754 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127754 590__ $$a3.5$$b2023
000127754 592__ $$a0.697$$b2023
000127754 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b13 / 44 = 0.295$$c2023$$dQ2$$eT1
000127754 593__ $$aInorganic Chemistry$$c2023$$dQ1
000127754 594__ $$a6.6$$b2023
000127754 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127754 700__ $$0(orcid)0000-0002-0545-9107$$aJiménez, M. Victoria
000127754 700__ $$0(orcid)0000-0002-1735-6439$$aPassarelli, Vincenzo
000127754 700__ $$0(orcid)0000-0002-3327-0918$$aPérez-Torrente, Jesús J.$$uUniversidad de Zaragoza
000127754 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000127754 773__ $$g52, 33 (2023), 11503-11517$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000127754 8564_ $$s1243004$$uhttps://zaguan.unizar.es/record/127754/files/texto_completo.pdf$$yVersión publicada
000127754 8564_ $$s2545461$$uhttps://zaguan.unizar.es/record/127754/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127754 909CO $$ooai:zaguan.unizar.es:127754$$particulos$$pdriver
000127754 951__ $$a2024-07-31-09:40:36
000127754 980__ $$aARTICLE