000127769 001__ 127769
000127769 005__ 20241125101144.0
000127769 0247_ $$2doi$$a10.1016/j.ijhydene.2023.06.284
000127769 0248_ $$2sideral$$a134875
000127769 037__ $$aART-2023-134875
000127769 041__ $$aeng
000127769 100__ $$0(orcid)0000-0002-3134-8566$$aAnsón-Casaos, A.
000127769 245__ $$aModelling TiO2 photoanodes for PEC water splitting: Decoupling the influence of intrinsic material properties and film thickness
000127769 260__ $$c2023
000127769 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127769 5203_ $$aSemiconductor metal oxides are intensively studied in electrodes for photoelectrochemical (PEC) water splitting. On a series of nanoparticulate TiO2 photoanodes, we analyze specific fabrication variables by means of data fitting. First, the experimental outcome is gathered using PEC characterization techniques, mostly cyclic voltammetry and transient photocurrent measurements. Subsequently, we apply models to gain insights into the involved charge trapping and transfer phenomena. We find that capacitance coefficients and the switch-on transient kinetics depend on the TiO2 layer thickness, respectively indicating surface mechanisms and stationary regimes that are mediated by light accessibility. On the contrary, exponential factors of capacitance are independent of thickness, but reflect changes in the density of electron states with different sintering atmospheres. Also, the transfer resistance in the electrolyte side is indirectly influenced by sintering. Through meticulous quantitative analysis of trends, we stablish simple mathematical relationships that connect thickness-dependent parameters. This knowledge delves into fundamental mechanisms governing the TiO2 photoelectrode behaviour, and aims to facilitate further improvements in the efficiency of materials and electrodes for green hydrogen production.
000127769 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/DGA/T03-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104272RB-C51/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104307GB-I00-AEI-10.13039-501100011033
000127769 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127769 590__ $$a8.1$$b2023
000127769 592__ $$a1.513$$b2023
000127769 591__ $$aCHEMISTRY, PHYSICAL$$b39 / 178 = 0.219$$c2023$$dQ1$$eT1
000127769 591__ $$aENERGY & FUELS$$b33 / 171 = 0.193$$c2023$$dQ1$$eT1
000127769 591__ $$aELECTROCHEMISTRY$$b6 / 45 = 0.133$$c2023$$dQ1$$eT1
000127769 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000127769 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000127769 593__ $$aFuel Technology$$c2023$$dQ1
000127769 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000127769 594__ $$a13.5$$b2023
000127769 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127769 700__ $$0(orcid)0000-0002-0048-3036$$aCiria, J.C.$$uUniversidad de Zaragoza
000127769 700__ $$aMartínez Barón, C.
000127769 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa, B.$$uUniversidad de Zaragoza
000127769 700__ $$0(orcid)0000-0002-8654-7386$$aBenito, A.M.
000127769 700__ $$aMaser, W.K.
000127769 7102_ $$15007$$2075$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ciencia Comput.Intelig.Ar
000127769 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000127769 773__ $$g52, A (2023), 1146-1158$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000127769 8564_ $$s2529329$$uhttps://zaguan.unizar.es/record/127769/files/texto_completo.pdf$$yVersión publicada
000127769 8564_ $$s2354367$$uhttps://zaguan.unizar.es/record/127769/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127769 909CO $$ooai:zaguan.unizar.es:127769$$particulos$$pdriver
000127769 951__ $$a2024-11-22-12:03:35
000127769 980__ $$aARTICLE