000127776 001__ 127776
000127776 005__ 20241125101144.0
000127776 0247_ $$2doi$$a10.3390/ijms241713141
000127776 0248_ $$2sideral$$a134911
000127776 037__ $$aART-2023-134911
000127776 041__ $$aeng
000127776 100__ $$aCalvo, Víctor
000127776 245__ $$aOil-in-Water Pickering Emulsions Stabilized with Nanostructured Biopolymers: A Venue for Templating Bacterial Cellulose
000127776 260__ $$c2023
000127776 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127776 5203_ $$aPickering emulsions (PEs) differ from conventional emulsions in the use of solid colloidal particles as stabilizing agents instead of traditional amphiphilic molecules. Nanostructured biopolymers (NBs) emerge as a promising alternative for PE stabilization owing to their remarkable biocompatibility, abundant availability, and low cost. To explore this potential, a study is herein presented, in which cellulose nanocrystals (CNCs), both type I and type II allomorphs, and chitin nanocrystals (ChNCs) were used for stabilizing oil-in-water PEs prepared by the use of ultrasound. Sunflower oil was selected as the oil phase as it offers the advantages of being edible, renewable, and inexpensive. By utilizing ζ-potential, static light diffraction, and visual observations, we determined the optimal oil/water ratio for each type of NB to obtain stable emulsions after 14 days. The optimized PEs were used to form bacterial nanocellulose composites through emulsion templating. To our knowledge, this study represents a pioneering work in exploiting oil-in-water PEs for this approach. Additionally, it entails the first utilization of nonmercerized type II CNCs as stabilizers for PEs, while also establishing a direct comparison among the most relevant NBs. The resulting composites exhibited a unique morphology, composed of larger pores compared to standard bacterial nanocellulose aerogels. These findings highlight the notable potential of NBs as stabilizers for PEs and their ability to generate green nanocomposites with tailored properties.
000127776 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T03-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104272RB-C51/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN PID2020-120439RA-I00
000127776 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127776 590__ $$a4.9$$b2023
000127776 592__ $$a1.179$$b2023
000127776 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b66 / 313 = 0.211$$c2023$$dQ1$$eT1
000127776 593__ $$aMedicine (miscellaneous)$$c2023$$dQ1
000127776 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b68 / 231 = 0.294$$c2023$$dQ2$$eT1
000127776 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ1
000127776 593__ $$aComputer Science Applications$$c2023$$dQ1
000127776 593__ $$aInorganic Chemistry$$c2023$$dQ1
000127776 593__ $$aSpectroscopy$$c2023$$dQ1
000127776 593__ $$aOrganic Chemistry$$c2023$$dQ1
000127776 593__ $$aMolecular Biology$$c2023$$dQ2
000127776 593__ $$aCatalysis$$c2023$$dQ2
000127776 594__ $$a8.1$$b2023
000127776 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127776 700__ $$aFuentes, Laura
000127776 700__ $$0(orcid)0000-0001-5053-8309$$aBerdejo, Daniel$$uUniversidad de Zaragoza
000127776 700__ $$aGonzález-Domínguez, José M.
000127776 700__ $$aMaser, Wolfgang K.
000127776 700__ $$aBenito, Ana M.
000127776 7102_ $$12008$$2640$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Nutrición Bromatología
000127776 773__ $$g24, 17 (2023), 13141 [15 pp.]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000127776 8564_ $$s3624392$$uhttps://zaguan.unizar.es/record/127776/files/texto_completo.pdf$$yVersión publicada
000127776 8564_ $$s2778412$$uhttps://zaguan.unizar.es/record/127776/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127776 909CO $$ooai:zaguan.unizar.es:127776$$particulos$$pdriver
000127776 951__ $$a2024-11-22-12:03:36
000127776 980__ $$aARTICLE