000127818 001__ 127818
000127818 005__ 20250923084410.0
000127818 0247_ $$2doi$$a10.1016/j.ijhydene.2023.06.019
000127818 0248_ $$2sideral$$a134874
000127818 037__ $$aART-2024-134874
000127818 041__ $$aeng
000127818 100__ $$aMartínez Alonso, A.
000127818 245__ $$aMulti-state optimal power dispatch model for power-to-power systems in off-grid hybrid energy systems: A case study in Spain
000127818 260__ $$c2024
000127818 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127818 5203_ $$aThe electricity production from Renewable Energy (RE) in isolated locations requires long-term energy storage systems. To that end, Hybrid Energy Storage Systems (HESS), through a combination of hydrogen and batteries, can benefit from the different advantages of both technologies. This paper presents a hybrid Power-to-Power (PtP) Optimal Power Dispatch (OPD) model for isolated systems with no electric grid access. Currently, the electricity supply in such cases is usually based on a mix of RE as the primary energy source sustained by a diesel genset acting as a backup generator. In this context, the model delivers the hourly energy flows between renewable production sources, energy storage devices and the electrical load, which minimises costs and Green House Gases (GHG) emissions. For validation purposes, the model was tested through its application to a case study in an isolated area in the Canary Islands, Spain. The results show that the algorithm calculates the hourly OPD successfully for a given plant sizing, considering the defined operational states of the different assets. These operational constraints showed a decrease in the PtP round-trip efficiency of 5.4% and a reduction of the hydrogen production of 9.7%. Finally, the techno-economic analysis of the results proves that the combination of hydrogen and batteries with RE production is a feasible alternative to phasing out fossil fuels for the selected case study – reducing the diesel generator usage down to 1.2% of the yearly energy supply.
000127818 536__ $$9info:eu-repo/grantAgreement/EC/H2020/779541/EU/Remote area Energy supply with Multiple Options for integrated hydrogen-based TEchnologies/REMOTE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 779541-REMOTE
000127818 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127818 590__ $$a8.3$$b2024
000127818 592__ $$a1.685$$b2024
000127818 591__ $$aCHEMISTRY, PHYSICAL$$b40 / 185 = 0.216$$c2024$$dQ1$$eT1
000127818 591__ $$aENERGY & FUELS$$b39 / 182 = 0.214$$c2024$$dQ1$$eT1
000127818 591__ $$aELECTROCHEMISTRY$$b6 / 44 = 0.136$$c2024$$dQ1$$eT1
000127818 593__ $$aEnergy Engineering and Power Technology$$c2024$$dQ1
000127818 593__ $$aRenewable Energy, Sustainability and the Environment$$c2024$$dQ1
000127818 593__ $$aFuel Technology$$c2024$$dQ1
000127818 593__ $$aCondensed Matter Physics$$c2024$$dQ1
000127818 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127818 700__ $$aMatute, G.
000127818 700__ $$0(orcid)0000-0003-3174-9703$$aYusta, J.M.$$uUniversidad de Zaragoza
000127818 700__ $$aCoosemans, T.
000127818 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000127818 773__ $$g52, A (2024), 1045-1061$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000127818 8564_ $$s3335826$$uhttps://zaguan.unizar.es/record/127818/files/texto_completo.pdf$$yVersión publicada
000127818 8564_ $$s2377454$$uhttps://zaguan.unizar.es/record/127818/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127818 909CO $$ooai:zaguan.unizar.es:127818$$particulos$$pdriver
000127818 951__ $$a2025-09-22-14:29:41
000127818 980__ $$aARTICLE