000127824 001__ 127824
000127824 005__ 20241125101158.0
000127824 0247_ $$2doi$$a10.3390/nano13172450
000127824 0248_ $$2sideral$$a134951
000127824 037__ $$aART-2023-134951
000127824 041__ $$aeng
000127824 100__ $$aMatías-Reyes, Ana E.
000127824 245__ $$aDirect Polyphenol Attachment on the Surfaces of Magnetite Nanoparticles, Using Vitis vinifera, Vaccinium corymbosum, or Punica granatum
000127824 260__ $$c2023
000127824 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127824 5203_ $$aThis study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via –OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples’ inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.
000127824 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127824 590__ $$a4.4$$b2023
000127824 592__ $$a0.798$$b2023
000127824 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b146 / 439 = 0.333$$c2023$$dQ2$$eT2
000127824 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000127824 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b62 / 141 = 0.44$$c2023$$dQ2$$eT2
000127824 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2
000127824 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b70 / 231 = 0.303$$c2023$$dQ2$$eT1
000127824 591__ $$aPHYSICS, APPLIED$$b47 / 179 = 0.263$$c2023$$dQ2$$eT1
000127824 594__ $$a8.5$$b2023
000127824 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127824 700__ $$aAlvarado-Noguez, Margarita L.
000127824 700__ $$aPérez-González, Mario
000127824 700__ $$aCarbajal-Tinoco, Mauricio D.
000127824 700__ $$aEstrada-Muñiz, Elizabeth
000127824 700__ $$aFuentes-García, Jesús A.$$uUniversidad de Zaragoza
000127824 700__ $$aVega-Loyo, Libia
000127824 700__ $$aTomás, Sergio A.
000127824 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, Gerardo F.$$uUniversidad de Zaragoza
000127824 700__ $$aSantoyo-Salazar, Jaime
000127824 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000127824 773__ $$g13, 17 (2023), 2450 [23 pp.]$$pNanomaterials (Basel)$$tNanomaterials$$x2079-4991
000127824 8564_ $$s6827817$$uhttps://zaguan.unizar.es/record/127824/files/texto_completo.pdf$$yVersión publicada
000127824 8564_ $$s2781055$$uhttps://zaguan.unizar.es/record/127824/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127824 909CO $$ooai:zaguan.unizar.es:127824$$particulos$$pdriver
000127824 951__ $$a2024-11-22-12:10:17
000127824 980__ $$aARTICLE