000127837 001__ 127837
000127837 005__ 20250926150152.0
000127837 0247_ $$2doi$$a10.3390/machines11080797
000127837 0248_ $$2sideral$$a134936
000127837 037__ $$aART-2023-134936
000127837 041__ $$aeng
000127837 100__ $$0(orcid)0000-0003-0473-9104$$aHaro-Larrode, Marta$$uUniversidad de Zaragoza
000127837 245__ $$aVariable Reactance Criteria to Mitigate Voltage Deviations in Power Transformers in Light- and Over-Load Conditions
000127837 260__ $$c2023
000127837 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127837 5203_ $$aIn this paper, variable reactance (VR) criteria are proposed to mitigate voltage deviations in power transformers under light-load inductive and capacitive conditions, as well as for over-load conditions. Under capacitive load conditions, power transformers are affected by the Ferranti effect as much as AC lines are and can suffer damage if a large over-voltage is present at the secondary winding. A classical solution for this is the installation of expensive and bulky inductive reactors at different locations of the AC lines to absorb the reactive power. Instead, this paper addresses VR techniques focused on power transformer reactance modification to compensate for the over-voltage. With these techniques, the Ferranti effect on power lines can also be reduced. Another benefit is the cancellation of over-voltages whose cause is different from the Ferranti effect, namely under inductive load conditions. In addition, they can also enhance the parallel operation of power transformers by allowing more flexibility for overload sharing among transformers. The VR techniques are derived from the Kapp phasor-diagram theory and have been validated experimentally at a small scale in the laboratory. When implemented in a big network, they can also improve the load-flow voltage and AC line-loading profiles and even increase the power factor of certain generators.
000127837 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127837 590__ $$a2.1$$b2023
000127837 592__ $$a0.474$$b2023
000127837 591__ $$aENGINEERING, MECHANICAL$$b83 / 183 = 0.454$$c2023$$dQ2$$eT2
000127837 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b193 / 353 = 0.547$$c2023$$dQ3$$eT2
000127837 593__ $$aComputer Science (miscellaneous)$$c2023$$dQ2
000127837 593__ $$aControl and Optimization$$c2023$$dQ2
000127837 593__ $$aMechanical Engineering$$c2023$$dQ2
000127837 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ2
000127837 593__ $$aIndustrial and Manufacturing Engineering$$c2023$$dQ2
000127837 593__ $$aControl and Systems Engineering$$c2023$$dQ2
000127837 594__ $$a3.0$$b2023
000127837 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127837 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000127837 773__ $$g11, 8 (2023), 797 [32 pp.]$$pMachines (Basel)$$tMachines$$x2075-1702
000127837 8564_ $$s18605127$$uhttps://zaguan.unizar.es/record/127837/files/texto_completo.pdf$$yVersión publicada
000127837 8564_ $$s2685281$$uhttps://zaguan.unizar.es/record/127837/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127837 909CO $$ooai:zaguan.unizar.es:127837$$particulos$$pdriver
000127837 951__ $$a2025-09-26-14:59:36
000127837 980__ $$aARTICLE