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Abstract

In the last years, we have witnessed an impressive progress in the accuracy and robustness

of Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM). This boost

in the performance has enabled the first commercial implementations related to augmented

reality (AR), virtual reality (VR) and robotics. In this thesis, we developed new probabilistic

methods to further improve the accuracy, robustness and efficiency of VO and SLAM. The

contributions of our work are issued in three main publications and complemented with

the release of SID-SLAM, the software containing all our contributions, and the challenging

Mininal Texture dataset.

Our first contribution is an information-theoretic approach to point selection for

direct and/or feature-based RGB-D VO/SLAM. The aim is to select only the most infor-

mative measurements, in order to reduce the optimization problem with a minimal impact

in the accuracy. Our experimental results show that our novel criteria allows us to reduce

the number of tracked points down to only 24 of them, achieving state-of-the-art accuracy

while reducing 10× the computational demand.

Better uncertainty models for visual measurements will impact the accuracy of multi-view

structure and motion and will lead to realistic uncertainty estimates of the VO/SLAM states.

We derived a novel model for multi-view residual covariances based on perspective

deformation, which has become a crucial element in our information-driven approach.

Visual odometry and SLAM systems are typically divided in the literature into two cat-

egories, feature-based and direct methods, depending on the type of residuals that are

minimized. We combined our two previous contributions in the formulation and imple-

mentation of SID-SLAM, the first full semi-direct RGB-D SLAM system that uses tightly

and indistinctly features and direct methods within a complete information-driven pipeline.

Moreover, we recorded Minimal Texture an RGB-D dataset with conceptually simple but

challenging content, with accurate ground truth to facilitate state-of-the-art research on

semi-direct SLAM.
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Resumen

En los últimos años, hemos presenciado un progreso enorme de la precisión y la robustez de la

“Odometŕıa Visual” (VO) y del “Mapeo y la Localización Simultánea” (SLAM). Esta mejora

de su funcionamiento ha permitido las primeras implementaciones comerciales relacionadas

con la realidad aumentada (AR), la realidad virtual (VR) y la robótica. En esta tesis,

desarrollamos nuevos métodos probabiĺısticos para mejorar la precisión, robustez y eficiencia

de estas técnicas. Las contribuciones de nuestro trabajo están publicadas en tres art́ıculos

y se complementan con el lanzamiento de “SID-SLAM”, el software que contiene todas

nuestras contribuciones, y del “Minimal Texture dataset”.

Nuestra primera contribución es un algoritmo para la selección de puntos basado

en Teoŕıa de la Información para sistemas RGB-D VO/SLAM basados en métodos

directos y/o en caracteŕısticas visuales (features). El objetivo es seleccionar las medidas

más informativas, para reducir el tamaño del problema de optimización con un impacto

mı́nimo en la precisión. Nuestros resultados muestran que nuestro nuevo criterio permite

reducir el número de puntos hasta tan sólo 24 de ellos, alcanzando la precisión del estado

del arte y reduciendo en hasta 10 veces la demanda computacional.

El desarrollo de mejores modelos de incertidumbre para las medidas visuales mejoraŕıa la

precisión de la estructura y movimiento multi-vista y llevaŕıa a estimaciones más realistas

de la incertidumbre del estado en VO/SLAM. En esta tesis derivamos un modelo de co-

varianza para residuos multi-vista, que se convierte en un elemento crucial de nuestras

contribuciones basadas en Teoŕıa de la Información.

La odometŕıa visual y los sistemas de SLAM se dividen t́ıpicamente en la literatura en dos

categoŕıas, los basados en features y los métodos directos, dependiendo del tipo de residuos

que son minimizados. En la última parte de la tesis combinamos nuestras dos contribu-

ciones anteriores en la formulación e implementación de SID-SLAM, el primer sistema

completo de SLAM semi-directo RGB-D que utiliza de forma integrada e indistinta features

y métodos directos, en un sistema completo dirigido con información. Adicionalmente,

grabamos ‘‘Minimal Texture”, un dataset RGB-D con un contenido visual conceptual-

mente simple pero arduo, con un ground truth preciso para facilitar la investigación del

estado del arte en SLAM semi-directo.
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Chapter 1

Introduction

1.1 Towards an Information-Driven Navigation

Imagine a drone or a rover, equipped with cameras, that have to navigate autonomously on

a planetary exploration mission. Or a pair of smart glasses, again with built-in cameras,

able to enrich people’s environment with augmented reality (AR) content. Both applications,

even being radically different, rely on methods that can estimate in real time the structure

of the environment and the motion of the camera from the video stream. We are specifically

talking about well-known fields of “Visual Odometry (VO)” and “Simultaneous Localization

and Mapping (SLAM)”.

Both vision-based state estimation techniques, VO and SLAM, have experienced a gigantic

boost in the number of available methods and open-source codes in recent years, most likely in

relation to a substantial improvement of their accuracy and robustness. However, in spite of

their respective successes, VO and SLAM are still facing significant challenges. In particular,

the application cases mentioned at the beginning of this section, a drone in exploratory tasks

and a pair of AR glasses, share one of the main challenges of the state of the art: both demand

high standards for accuracy and robustness, while the low-end platforms on which they run

impose severe constraints in terms of computational and memory footprints.
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2 Chapter 1. Introduction

Since Shannon established the fundamentals of Information Theory applied to signal process-

ing [Sha48], Information Theory has been extended to a wide variety of disciplines as it allows

quantifying and formalizing the analysis of any process related to information. In the field

of robotics, it provides metrics to analyze the transmission, processing, extraction and use of

information. It has been a relevant topic in the VO/SLAM community, with a considerably

large literature, which has produced major advances aiming, among others, (i) to reduce the

computational load by finding the most informative/redundant pieces of information, (ii) quan-

tify the goodness of the robot localization or environment representation, (iii) and provide a

formal way to make decisions for active navigation. However, to the best of our knowledge,

most SLAM baselines apply information metrics partially to independent processes and there

is no complete SLAM system that takes full advantage of the potential of Information Theory.

This thesis contributes with novel algorithms and models to enable a full SLAM pipeline that

tightly relies on information metrics and accurate uncertainty models. Such SLAM pipeline

is thus able to handle all available information in the image in an efficient manner and conse-

quently boosts its accuracy and robustness and reduces its memory footprint. In other words,

this thesis is an attempt to push VO and SLAM towards Information-Driven Navigation.

1.2 Related Work

Over the last 15 years, from the earliest real-time demonstrations of SLAM with a monocular

camera [DRMS07], the SLAM community has made astonishing progress, witnessing real-world

and scientific applications, and enabling the first commercial implementations related to aug-

mented reality (AR), virtual reality (VR) and robotics [APSL08, CCC+16, Dav18].

We approach visual SLAM with information-based algorithms [FCT20], which are based on

better models for residual covariances [FMCT22], and aim at efficient use of image information

with a semi-direct approach (SID-SLAM and Minimal Texture dataset). Table 1.1 summarizes

previous work that relates to ours and highlights their main connections to this thesis. The

work related to each contribution is detailed in the corresponding chapter.



1.2. Related Work 3

Scientific Publication Baseline Me. CL Sensor Pipel. Contribution

SID SLAM: Semi-Direct Information-Driven RGB-D SLAM
SID SLAM

Dataset
SDi S RGB-(D) SLAM

Tight and independent semi-direct inf.-based point selection.
Minimal Texture dataset for semi-direct research.

A model for multi-view residual covariances
based on perspective deformation [FMCT22]

Inf. cont. SDi RGB-(D) VO/SLAM Model feature-based or photometric multi-view residual covariances.

The madmax data set for visual-inertial rover navigation on Mars [MSFV+21] Dataset VI/D/S MADMAX dataset for Mars exploration.

ORB SLAM3: An Accurate Open-Source Library for Visual
Visual-Inertial, and Multimap SLAM [CER+21]

ORBSLAM3 Ft S VI SLAM

Dot: dynamic object tracking for visual slam [BFC+21] DOT Di S RGB-(D) VO Instance segment. & multi-view geom. → dynamic object masks.

Square Root Bundle Adjustment for Large-Scale Reconstruction [DSCU] Ft BA solver with single-precision floating-point numbers.

Square Root Marginalization for Sliding-Window Bundle Adjustment [DSS+21] Ft

Information-driven direct rgb-d odometry [FCT20] Inf. cont. Di S RGB-(D) VO Informative point selection for direct methods.

On the Redundancy Detection in Keyframe-based SLAM [SC19] Inf. cont. Remove redundant keyframes with inf.-theoretics & heuristics.

Good feature matching: Toward accurate, robust vo/vslam with low latency [ZV20] Inf. cont.

Bad slam: Bundle adjusted direct rgb-d slam [SSP19]
BAD SLAM

Dataset
Di D RGB-D SLAM

Intrinsics and depth distortion optimization.
ETH3D dataset & RGBD-TUM synt.

Well-calibrated benchmark with synchronized global shutter.

Calibration Wizard: A guidance system for camera calibration
based on modelling geometric and corner uncertainty [PS19]

Inf. cont. Ft Persp. deformation affects multi-view visual residual covariances.

Good feature selection for least squares pose optimization in VO/VSLAM [ZV18] Inf. cont. Ft Approx. NP-hard Max-logDet problem for feature selection.

Challenges in monocular visual odometry: Photometric calibration,
motion bias, and rolling shutter effect [YWGC18]

Inf. cont. SDi
Feature-based: motion bias and pixel discretization.

Direct: unmodeled geom. distortions and photom. calibration.

DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes [BFCN18] DynaSLAM Ft S RGB-D
∣∣S SLAM ORB-SLAM2 + dynamic object detection + background inpainting.

FutureMapping: The computational structure of spatial AI systems [Dav18] Survey Spatial AI requirements ↔ Technology real world constraints

Loosely-coupled semi-direct monocular slam [LC18] LCSD-SLAM SDi S RGB SLAM Loose coupling of DSO and ORB-SLAM.

Direct sparse odometry with rolling shutter [SDU+18] Di S RGB VO

Online Photometric Calibration of Auto Exposure Video
for Realtime Visual Odometry and SLAM [BWC18]

Inf. cont. Di

LDSO: Direct sparse odometry with loop closure [GWDC18] LDSO SDi S RGB VO Direct VO + BoW loop closure + pose graph opt.

Stereo DSO: Large-Scale Direct Sparse
Visual Odometry with Stereo Cameras [WSC17]

Stereo DSO Di S RGB-S VO

Dense Visual SLAM with Probabilistic Surfel Map [YYR17] PSM SLAM D RGB-D SLAM Surfel representation + measurement uncertainty modeling.

RGBDTAM: A cost-effective and accurate RGB-D
tracking and mapping system [CC17]

RGBDTAM SDi SD RGB-D SLAM Direct VO + BoW loop closure + alternating BA.

Monocular visual odometry: Sparse joint optimisation or dense alternation? [PDL17] Inf. cont. Sparse joint optimization ∼ Dense alternating optimization.

Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras [MAT17a]

ORB SLAM2 Ft S RGB-D
∣∣S SLAM

Over-insertion & reduntant removal of keyframes.
Tracking, mapping & relocalization over the same features.

Direct sparse odometry [EKC17] DSO Di S RGB VO
Integrates a full photometric calibration.

Joint optimization of all model parameters.
Photometric residuals weighted with a gradient-dependent term.

Real-time globally consistent 3d reconstruction
using on-the-fly surface reintegration [DNZ+17]

Bundlefusion SDi D RGB-D SLAM

A photometrically calibrated benchmark for monocular visual odometry [EUC16] Dataset RGB Monocular Visual Odometry Dataset

SVO: Semidirect visual odometry for monocular and multicamera systems [FZG+16] SVO SDi S RGB VO

Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age [CCC+16]

Survey
Surveying the surveys, tutorials, open challenges {Long term,

Active SLAM, ...} and new {tools, formulations, sensors and learning}.

ElasticFusion: Real-time dense SLAM and light source estimation [WSMG+16] ElasticFusion D D RGB-D SLAM

ElasticFusion: Dense SLAM without a pose graph [WLSM+15] ElasticFusion D D RGB-D SLAM
Frame-to-model photom. image alignment for camera tracking.

Windowed fused surfel-based model of the environment.

ORB-SLAM: a versatile and accurate monocular SLAM system [MAMT15] ORB SLAM Ft S RGB SLAM
Joint optimization of the estimated 3D map and camera trajectory.

Residuals weighted as a function of the feature scale.

Real-time large-scale dense RGB-D SLAM with volumetric fusion [WKJ+15] Di D RGB-D SLAM

An evaluation of robust cost functions for RGB direct mapping [CC15] Di Best performance of error functions that saturate.

Robust reconstruction of indoor scenes [CZK15] Dataset Synt. Augmented ICL-NUIM Dataset

A benchmark for rgb-d visual odometry, 3d reconstruction and slam [HWMD14] Dataset Synt.
ICL-NUIM RGB-D Benchmark dataset
Sequences with and without sensor noise.

SVO: Fast semi-direct monocular visual odometry [FPS14] SVO SDi S RGB VO
Tracking & triangulation: photom. alignment

Joint optimization of struct. and motion: feature-based
Different geometric dimension of minimization residuals

LSD-SLAM: Large-scale direct monocular SLAM [ESC14] LSD SLAM Di SD RGB SLAM

Semi-dense visual odometry for a monocular camera [ESC13] Di SD RGB VO
Image regions with significant intensity gradient (semi-dense).

Uncertainty-Aware stereo depth map estimation.

Dense visual SLAM for RGB-D cameras [KSC13a] DVOSLAM Di D RGB-D SLAM1 Photometric approach extended with ICP term.
Entropy-based method for Keyframe insertion

Robust odometry estimation for RGB-D cameras [KSC13b] DVO Di D RGB-(D) VO
Photometric residuals approximated by a t-distribution.

Robustified with the inclusion of a motion prior.
Photometric error formulation embedded into a probabilistic framework.

3-D mapping with an RGB-D camera [EHS+13] 3-D SLAM Ft S RGB-(D) SLAM

Robust real-time visual odometry for dense RGB-D mapping [WJK+13] Di D RGB-D VO ICP extended with photometric term.

Real-time 3D reconstruction at scale using voxel hashing [NZIS13] Voxel hashing

Local accuracy and global consistency for efficient visual SLAM [Str12] SLAM residuals and Jacobians with Lie Algebras.

An evaluation of the RGB-D SLAM system [EHE+12] RGB-D SLAM Ft S RGB-(D) SLAM

A benchmark for the evaluation of rgb-d slam systems [SEE+12a] Dataset RGB-D
RGB-D SLAM Dataset and Benchmark

Sequences with slow motion, structure, texture and loop closures.

Multi-resolution surfel maps for efficient dense 3D modeling and tracking [SB12] MRSMap

Kintinuous: Spatially extended kinectfusion [WKF+12] Kintinuous ICP D D Map & Track Extended KinectFusion to large scenes.

KinectFusion: Real-time dense surface mapping and tracking [NIH+11] KinectFusion ICP D D Map & Track Frame-to-model ICP alignment for camera tracking.

DTAM: Dense tracking and mapping in real-time [NLD11] DTAM Di D RGB Map & Track Frame-to-model photom. image alignment for camera tracking.

Real-time visual odometry from dense RGB-D images [SSC11] Di D RGB-(D) VO Frame-to-frame photom. image alignment for camera tracking.

Real-time monocular SLAM: Why filter? [SMD10] Ft S ∂(SLAMaccuracy)
∂(#features) > ∂(SLAMaccuracy)

∂(#frames)

Active matching for visual tracking [CD09] Ft S RGB Sequential Bayesian algorithm for efficient feature search.

The SLAM problem: a survey [APSL08] Survey Speed up SLAM for large scale scenarios.

Inverse depth parametrization for monocular SLAM [CDM08]

Parallel tracking and mapping for small ar workspaces [KM07] PTAM Ft S RGB SLAM Split tracking and mapping into two separate tasks.

MonoSLAM: Real-time single camera SLAM [DRMS07] MonoSLAM Ft S RGB SLAM

Active search for real-time vision [Dav05] Ft S RGB Theoretical analysis for sequential informative feature search.

Locally Planar Patch Features for Real-Time Structure from Motion [MDR04] Ft S RGB Points as locally planar 3D patches.

About direct methods [IA99]

Table 1.1: A brief review of Information-Driven Navigation related work. Labels: Baseline {Information contribution}, Method
{Direct, Feature-based, Semi-Direct, ICP}, Computational Load {Sparse, Dense, Semi-Dense}, Sensor {RGB-Monocular, Depth, Stereo,
Visual Inertial, RGB-(D) loosely coupled}, Pipeline {Visual Odometry, SLAM, Mapping & Tracking}.
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RGB-D VO/SLAM.Due to the origin of photometric methods as dense algorithms, especially

in their early days, visual odometry and SLAM techniques based on direct methods have been

developed along with algorithms targeting RGB-D sensors.

Steinbrücker et al. [SSC11] implemented a frame-to-frame dense camera tracking based on

the minimization of a photoconsistency energy term between stereo pairs of RGB-D images.

Kerl et al. [KSC13b] formulated the first probabilistic derivation of a model for dense direct

motion estimation. This formulation allowed to include a motion prior from any motion model

and suitable sensor, that reduced noise and aided motion estimation convergence with feature-

poor images, or in the presence of motion blur or dynamic objects. They also found that the

distribution over the photometric residuals is better approximated by a t-distribution than by

a Gaussian one.

Newcombe et al. [NLD11] demonstrated that the accuracy of dense alignment can be increased

by matching the current image against a scene model, and explored this technique in a subse-

quent line of work [NIH+11, WKF+12, WJK+13, WLSM+15, WSMG+16].

RGB-D sensors allow the minimization of a geometric error between 3D points, instead of (or

in addition to) the minimization of the RGB image error. Newcombe et al. [NIH+11] used

this type of algorithm known as iterative closest point (ICP) to estimate the camera motion.

They observed that in the regime of small displacements image-based errors give better results.

However, ICP is more robust to large camera motion and also helps to strengthen photometric

approaches in untextured scenes.

Performing an error minimization combining photometric and geometric residuals for camera

motion estimation allows to fully and tightly exploit both intensity and depth information from

the sensor. Whelan et al. [WJK+13] extended their previous ICP-based approach [WJK+13]

with a photometric term to track the camera’s 6DOF motion precisely by frame-rate full image

alignment against a entire dense model.

Analogously, Kerl et al. [KSC13a] implemented DVO-SLAM by extending their previous pho-

tometric approach [KSC13b] with an ICP term. Full utilization of the dual RGB-D sensor data

has been implemented in more recent baselines, such as the work by Concha et al. [CC17] or

Schöps et al. [SSP19].
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From dense to information-driven sparse SLAM. Thanks to the compact amount of

image information retained by keypoints, feature-based SLAM can handle a rigorous joint

optimization of the estimated 3D map and camera trajectory [MAMT15]. Dense or semidense

reconstructions provide more complete scene reconstructions. However, the large amounts of

data make them computationally very expensive and have led them to perform suboptimally

alternating between the estimation of motion and structure [SSP19].

Platinsky et al. [PDL17] showed that sparse joint optimization performs similarly to semi-dense

or dense alternating optimization. The reason is that the extra amount of data used by dense

or semi-dense methods makes up for the loss in accuracy coming from the efficient but subopti-

mal alternating optimization. Therefore, the scientific challenge became how to maximize the

amount of information processed while minimizing the memory and computational footprint.

Reducing the computational demand of dense techniques can be handled with more efficient

approaches to algorithms. Demmel et al. [DSS+21, DSCU] proposed a formulation for solving

large-scale bundle-adjustment problems with single-precision floating-point numbers. They

achieved an accuracy equivalent to that of the commonly used Schur complement trick, but

could handle larger amounts of memory in dense problems.

Removing redundant information from the bundle adjustment optimization is another approach

to reduce the computational demand of dense algorithms. Strasdat et al. [SMD10] showed

how, in order to increase the accuracy of monocular SLAM, it is more profitable to increase

the number of features than the number of frames. Engel et al. [ESC13, ESC14] reduced

the amount of data of dense photometric visual odometry by using only those pixels that lay

in image regions with significant intensity gradient (semi-dense). Moreover, they showed in

[EKC17] how the joint optimization of all model parameters can be performed in a direct

sparse odometry pipeline running in real time on a CPU.

Certainly one of the most elegant and advantageous lines of work to reduce the computational

footprint of SLAM is their combination with Information Theory metrics. Feature descriptors

have seen a extense development since their first implementations. The high degree of consis-

tency reached by feature matching tecniques has allowed an extensive research in information-

based point selection. Davison [Dav05] introduced a simulated theoretical analysis for sequential

feature search guided by expected Shannon information gain. Based on this analysis, Chli et

al. [CD09] contributed Active Matching, a sequential Bayesian algorithm for efficient feature
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search, that was able to run with real data dealing with discrete multiple hypotheses which

arise due to matching ambiguity. Zhao et al. [ZV18] [ZV20] found that maximazing the log-

arithm of the determinant of the Information Matrix (Max-logDet) in a pose optimization

problem performed the best to guide the feature selection. To that end, they introduced an ef-

ficient algorithm for approximately solving the NP-hard Max-logDet problem that significantly

improved the accuracy of pose tracking, while introducing little overhead.

We address dense SLAM sparsification with information-driven algorithms [FCT20] based on

better models for residual covariances [FMCT22], that look for the most informative image

landmarks (either photometric or feature-based) and keyframes in the scene.

Well-founded covariance estimates. Most feature-based VO/SLAM systems consider pho-

tometric patches/features as planar surfaces in the image space and set a constant value for

their visual covariance. Molton et al. [MDR04] considered points as locally planar 3D patches

in a Structure-from-Motion setup. Peng et al. [PS19] proposed an approach for intrisinc camera

calibration where they took into account, in a heuristic manner, the influence that transfor-

mations apply to image patches when they are viewed from another viewpoint. Engel et al.

[EKC17] considered gradient weighting of photometric residuals, and Mur et al. [MAMT15]

weighted reprojection residuals as a function of feature scale.

Yang et al. [YWGC18] presented an evaluation method for challenges in monocular visual

odometry. They evaluated to what extent photometric calibration, motion bias and rolling shut-

ter influenced feature-based and photometric approaches. They concluded that feature-based

methods are more sensitive to pixel discretization artifacts and they suffer a larger performance

bias when running forwards and backwards. For direct methods, Yang et al. found that are

more affected by unmodeled geometric distortions and by the lack of a photometric calibration.

These challenges have been addressed in different works: Engel et al. [EUC16] contributed a

photometrically calibrated dataset, Bergmann et al. [BWC18] proposed an online photometric

calibration for VO and SLAM, and Schubert et al. [SDU+18] extended DSO [EKC17] to work

under rolling shutter effects.

Our paper [FMCT22] introduced a general model for the covariance of the visual residuals

formulated as a combination of geometric and photometric noise sources. Our key novel con-

tribution is the derivation of a term modelling how local 2D patches suffer from perspective

deformation when imaging 3D surfaces around a point.
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If one takes a step forward, in order to reduce SLAM computational footprint to its mininum,

uncertainties that arise from noise sources such “dynamic objects” or “illumination changes”

need to be tackled. We required novel algorithms and tools that estimate not only uncertainties

from geometric sources (such as an RGB-D sensor) but also those associated to more complex

scene behaviours. Based on the work of Bescós et al. [BFCN18] we developed Dynamic Object

Tracking (DOT) [BFC+21], a front-end that combines instance segmentation and multi-view

geometry to generate masks for dynamic objects in order to allow SLAM systems based on

rigid scene models to avoid such image areas in their optimizations.

Semi-direct methods. Combining features and direct methods is widespread in the literature,

however it is commonly performed on only specific and isolated parts of the systems in a loosely

coupled manner. The goal is to exploit the complementarity of photometric and feature-based

methods (see the discussion in Table 1.2 and section 4.2), and the challenge is to achieve this

without compromising efficiency, accuracy or robustness.

Specifically, some baselines perform the combination by assigning the most appropriate task

to each method. Forster et al. [FPS14, FZG+16] used photometric alignment for tracking

and pixel triangulation, and feature-based joint optimization of structure and motion. In their

work they exploited the difference in the geometric dimension of both minimization residuals.

Similarly, Lee et al. [LC18] combines photometric bundle adjustment of the local structure and

motion [EKC17] and geometric bundle adjustment for larger optimization windows [MAMT15].

The work from Gao et al. [GWDC18] adds to a direct VO thread a bag-of-words loop closure

and the optimization of a co-visibility graph of keyframe poses. Schöps et al. [SSP19] and

Concha et al. [CC17] use a similar approach, but in these cases the map optimization is done

by an alternating direct Bundle Adjustment.

RGB-D Datasets & Benchmarks. The evaluation and comparison between scientific ap-

proaches in SLAM are commonly performed in public datasets and benchmarks.

Sturm et al. [SEE+12a] contributed the RGB-D SLAM Dataset and Benchmark. The RGB-D

data was recorded with accurate ground truth camera poses in an office environment and an

industrial hall. It was motivated to serve as a benchmark for the evaluation of RGB-D SLAM

systems, providing: slow motion for debugging, scenes with varying degrees of structure and

texture, and trajectories with and without loop closures.
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Features Direct methods

Basic data

• Salient keypoints with invariant descriptors. • Image’s pixel-level intensities.

Image information

• Exploits a small subset of the information. ✗

• Robust to relatively large illumination and
viewpoint changes. ✔

• Suffer from motion bias and pixel discretiza-
tion. ✗

• Need of pre-processing steps. ✗

• Make use of all intensity gradients. ✔

• More sensitive to unmodeled geometric dis-
tortions. ✗

• Need photometric calibration ✗

• No need of pre-processing steps. ✔

Data association

• Performed independently for each feature at
frame rate. ✗

• Detectors are optimized for speed rather than
precision. ✗

• Need robust estimation tecniques. ✗

• Direct does not need a prior step of data as-
sociation since data is implicitly associated
in the geometry model. ✔

• Track weak corners/edges in little/high-
frequency textures. ✔

Minimization error

• 2D Reprojection error.

• Corner alignment happens in the two image
directions.

• A large convergence baseline that allows for
stronger movements. ✔

• 1D Photometric Error

• The aligment of an edge is restricted to the
normal direction of the edge.

• Small convergence baseline. ✗

BA

• Full joint optimization with BA algorithms
are widely used with sparse features. ✔

• The extra amount of data used by dense
methods makes up for the loss in accuracy
coming from the efficient but suboptimal al-
ternating optimization. ✔

Computational Cost

• Low speed due to feature extraction and
matching at every frame. ✗

• Reduction to sparse keypoints speeds up
computation time enormously in joint opti-
mization of the estimated 3D map and cam-
era trajectory (BA). ✔

• Dense or semidense reconstruction of the en-
vironment are computationally expensive. ✗

• Approximations such as pose graph optimiza-
tion or deformable geometry. ✗

Optimality

• Small memory footprint. Just save features
and descriptors. ✔

• Needs big memory allocation. Saves all full
images. ✗

Consistency

• High degree of consistency thanks to low
matching uncertainties, allowing them to be
more easily implemented in real-world appli-
cations and combined with other sensors. ✔

• Lack of well-founded covariance estimates
from photometric VO. ✗

• Difficult fusion with complementary sensors.
✗

Drift

• Relocalization capabilities. ✔

• Long feature tracks with minimal feature
drift. ✔

• Loop closure. ✔

Table 1.2: Features vs direct methods. Check section 4.2 for the full discussion.
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ICL-NUIM by Handa et al. [HWMD14] is a collection of synthetically generated handheld

RGB-D camera sequences, with and without indroducing sensor noise in both RGB and depth

data. The two indoor environment models (living room and office) were extended by Choi et

al. [CZK15] among other extensions, with a more realistic noise model that resulted in noisier

depth images.

Schops et al. [SSP19] contributed the ETH3D dataset and benchmark. A challenging set

of sequences with highly accurate calibrated hardware (e.g. synchronized global shutter RGB

and depth cameras) and accurate ground truth demonstrated the excellent performance of their

dense photometric SLAM approach. In addition, they created a synthetic version of 7 sequences

from the TUM RGB-D dataset by performing dense 3D reconstructions and rendering them

with their ground truth. These sequences are available under four variations by adding rolling

shutter and asynchronous frames, both individually and combined.

Meyer et al. [MSFV+21] recorded The madmax data set for research on visual-inertial rover

navigation on Mars, with a complete sensor unit that provides time-stamped recordings from

monochrome stereo cameras, a color camera, omnidirectional cameras in stereo configura-

tion, and from an inertial measurement unit. Evaluation of the state-of-the-art ORB-SLAM2

[MAT17a] and VINS-MONO [QLS18] systems has shown that there is room for improvement

in visual SLAM in low-texture planetary exploration, so this dataset represents a unique tool

for future research into visual techniques such as semi-direct SLAM.

Precisely, we recorded Minimal Texture dataset to facilitate state-of-the-art research on semi-

direct SLAM, particularly: (i) a better understanding of visual uncertainties of both features

and photometric approaches, (ii) the efficient use of all the information on the image which

maximizes SLAM robustness and reduces its computational footprint.
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1.3 Contributions

• An information-theoretic approach to point selection for direct RGB-D odom-

etry [FCT20]: The aim is to select only the most informative measurements, in order

to reduce the optimization problem with a minimal impact in the accuracy. Our results

show that our novel information-based selection criteria allows us to reduce the number

of points down to only 24 of them, achieving an accuracy similar to the state of the art

while reducing 10× the computational demand.

• A model for Multi-View Residual Covariances based on Perspective De-

formation [FMCT22]: The core of our approach is the formulation of the residual

covariances as a combination of geometric and photometric noise sources. And our key

novel contribution is the derivation of a term modelling how local 2D patches suffer from

perspective deformation when imaging 3D surfaces around a point. These add up to an

efficient and general formulation which improves the accuracy of both feature-based and

direct methods, and can also be used to estimate more accurate measures of the state

entropy.

• SID-SLAM. The release of a full SLAM framework for RGB-D cameras. Our main

contribution is a semi-direct approach that, for the first time, combines tightly and indis-

tinctly photometric and feature-based image measurements. Our evaluation on several

public datasets shows that we further improve state-of-the-art performance regarding

accuracy, robustness and computational footprint in CPU real time.

• Minimal Texture. We recorded this new dataset to facilitate state-of-the-art research

on semi-direct SLAM, particularly: (i) a better understanding of visual uncertainties of

both features and photometric approaches, (ii) the efficient use of all the information on

the image which maximizes SLAM robustness and reduces its computational footprint.

• Dynamic Object Tracking [BFC+21]: a front-end that combines instance segmentation

and multi-view geometry to generate masks for dynamic objects in order to allow SLAM

systems based on rigid scene models to avoid such image areas in their optimizations.
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Chapter 2

Information-Driven Direct RGB-D

Odometry

2.1 Abstract

This chapter presents an information-theoretic approach to point selection for direct RGB-D

odometry. The aim is to select only the most informative measurements, in order to reduce

the optimization problem with a minimal impact in the accuracy. It is usual practice in visual

odometry/SLAM to track several hundreds of points, achieving real-time performance in high-

end desktop PCs. Reducing their computational footprint will facilitate the implementation

of odometry and SLAM in low-end platforms such as small robots and AR/VR glasses. Our

experimental results show that our novel information-based selection criteria allows us to reduce

the number of tracked points an order of magnitude (down to only 24 of them), achieving an

accuracy similar to the state of the art (sometimes outperforming it) while reducing 10× the

computational demand.

12
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2.2 Introduction

In the last years, we have witnessed an impressive progress in the accuracy and robustness of

visual odometry and Simultaneous Localization and Mapping (SLAM) [MAMT15, PFC+15,

MAT17a, EKC17, QLS18]. This boost in the performance has enabled the transfer of visual

odometry and SLAM to several commercial products related to augmented reality (AR), virtual

reality (VR) and robotics.

In spite of their respective successes, visual odometry and SLAM are still facing significant

challenges. The high computational demand of the state of the art is among the most critical

ones for a widespread use in real applications. The embodiment of localization and mapping

algorithms into small robotic/AR/VR platforms will impose constraints on their computational

and memory footprints [Dav18]. Most algorithms currently require a hardware that exceeds

the capabilities of many existing and foreseeable platforms.

In this work we aim to drastically reduce the computational load of direct RGB-D odometry

with a negligible loss in accuracy. For that, we propose a novel and efficient information-based

criterion to keep only the most informative point in the local Bundle Adjustment and pose

tracking optimizations. We implemented a RGB-D odometry (that we denote ID-RGBDO) and

evaluated our approach in the TUM dataset, demonstrating that we can achieve substantial

reductions in the number of tracked features without noticeably degrading the accuracy. We

outperform the naive selection approaches used in the literature, that mainly select points on

a grid to maximize coverage.

Observe the two estimated trajectories in Figure 2.1, one tracking the 24 most informative

points and the second one 500 points –a reasonable number in the state of the art. Notice

that they have almost the same accuracy, but the one using 24 points requires roughly 10×

less computation. Our proposed information criteria are able to select the small set of highly

informative points that makes this possible.
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Figure 2.1: Top: Trajectories and maps estimated by our RGB-D odometry (ID-RGBDO) in
two cases: tracking 500 image points (blue), and tracking only the 24 most informative points
(magenta) with considerable computational savings. The difference between the two is almost
unnoticeable. Bottom: Sample frames and tracks for the 500 points case (blue dots) and the
24 most informative ones (magenta squares).

2.3 Related work

Graph reduction is a relevant topic in the SLAM community, with a considerably large literature

[HKL13, CKB+14, HHW+18]. We focus here on the main approaches using information theory

and in particular those developed for visual SLAM.

Information was first used in EKF-based monocular SLAM in [Dav05] in order to guide sequen-

tial search. Based on it, [CD08, CD09, HCSD10] introduced a multi-hypothesis formulation

able to address ambiguous cases robustly. An information analysis of filtering and Bundle Ad-

justment was used in [SMD12] to prove the advantages of the latter. Up to our knowledge, ours

is the first work that addresses information in a direct odometry framework.

Information-based approaches have been also used in laser-based SLAM. [IPAC09] proposes
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a method to add only non-redundant and informative links to a pose graph, and [KS12] uses

mutual information to remove low informative laser scans from the graph. The approach in

[CICD15] is able to reduce not only poses, but also landmarks, based on information theoretic

criteria. [VDWB11, WXLH13] use the Kullback-Leibler divergence to sparsify a SLAM graph.

2.4 Notation and fundamentals

Our direct information-driven odometry minimizes the photometric reprojection error in a

sliding window of frames. Our formulation, based on direct Bundle Adjustment and Tracking,

is related to recent approaches to direct visual odometry and SLAM, namely [EKC17, CC17,

KSC13b, KSC13a]. However, we implemented ID-RGBDO in order to have a higher degree

of control in the evaluation. Notice, in any case, that our contribution can be applied to any

RGB-D odometry system and should give similar improvements.

This section will cover the necessary background and notation, and the specifics of our RGB-D

odometry and contributions will be detailed in Section 2.5 (camera pose tracking) and Section

2.6 (sliding-window Bundle Adjustment).

2.4.1 Photometric model

Point representation. For a point p, its image coordinates are denoted as p =

[
pu pv

]⊤
∈

R2 and its inverse depth in the camera frame as d ∈ R. For its photometric appearance, we use

a set of intensity values spread in a patch centered in p [EKC17].

Keyframe representation. A keyframe j is defined by its RGB-D channels, its 6DOF camera

pose as a transformation matrix T ∈ SE(3), two brightness parameters {aj, bj} and a set of

reference points to track. The Lie-algebras pose-increments x̂se(3) ∈ se(3) , with ·̂se(3) being the

mapping operator from the vector to the matrix representation of the tangent space [Str12],

are expressed as a vector x ∈ R6. During the optimization, we update the transformations at

step (k) using left matrix multiplication and the exponential map operator exp(·), i.e.,

T(k+1) = exp(x̂se(3)) ·T(k). (2.1)
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Residual function. The photometric residual ri of an image point pi in a frame i is the

intensity difference with the corresponding point in a reference keyframe j, combined with an

affine brightness transformation and a robust norm [EKC17]

ri =
∣∣∣∣∣∣e−aj(Ij(pj)− bj)− e−ai(Ii(pi)− bi)∣∣∣∣∣∣

γ
. (2.2)

Although some works use the t-distribution [KSC13a, KSC13b], we observed a higher accuracy

using the Huber norm (as in [EKC17]) and saturating large values (as in [CC15]).

The image points pi and pj are related by

pi = Π(RΠ−1(pj, dj) + t), (2.3)

where Π(P) projects in the image plane the point P in the camera frame; and Π−1(p, d) back-

projects the image point with coordinates p at inverse depth d. R ∈ SO(3) and t ∈ R3 are the

relative rotation and translation between keyframe j and frame i.

Optimization. We do Gauss-Newton optimization, that can be written as

(JTΣ−1
r J)y = −JTΣ−1

r r, (2.4)

where the rows of the matrix J =

[
Jx Jd Ja,b

]
∈ Rn×m contains the derivatives of the

residual function (equation (2.2)) with respect to the Lie-algebra increments Jx, the point

inverse depths Jd and the photometric parameters Ja,b. The diagonal matrix Σr ∈ Rn×n

contains the covariances σ2
r of the photometric residuals. The residual vector r ∈ Rn stacks

the n individual residuals to minimize. y ∈ Rm stands for the state correction containing the

increments for poses, inverse depths and photometric parameters.

Residual covariance. Our residual covariance σ2
r includes the impact from geometry and

appearance. We propose to model it by multiplying a photometric term σ2
Φ with a geometric

one h(δA) that comes from projecting a differential area surrounding the 3D point:

σ2
r = h(δA) · σ2

Φ. (2.5)
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Figure 2.2 illustrates how the differential area around a point changes with the viewpoint. This

change δA can be modeled as the determinant of the derivative of the image point pi in frame

i with respect to the coordinates pj of the corresponding point in a reference keyframe j:

δA =

∣∣∣∣∂pi∂pj

∣∣∣∣. (2.6)

With this, we define the geometric weight h(δA) as the following function, that penalizes the

residual covariance for large perspective distortions

h(δA) = ech(δA−1)2 , (2.7)

where ch is a constant to ponder the influence of the model.

The photometric term σ2
Φ is computed from a first order propagation of the inverse depth

covariance σ2
d

σ2
Φ ≈

[(
gu
∂pu
∂d

)2

+

(
gv
∂pv
∂d

)2
]
σ2
d, (2.8)

where the intensity gradients

[
gu gv

]
come from a first-order Taylor expansion of the intensity

in the vicinity of p

I(p + δp) ≈ I(p) +

[
gu gv

]δpu
δpv

 . (2.9)

Using the stereo model for RGB-D cameras based on structured light patterns, and assuming

a focal length f and a baseline b, the inverse depth error covariance σd is [CC17]

σd =
1

fb
σpx, (2.10)

where σpx is the disparity error.
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2.4.2 Information metrics

Information theory provides a mean to quantify and formalize all processes related with infor-

mation. In the context of SLAM the special case of multivariate Gaussians is comprehensively

well founded [Dav05, CD08]. The information-driven formulation proposed in this chapter is

based on the following classical information metrics.

Differential entropy of a k-dimensional Gaussian distribution X ∼ Nk(µX ,ΣX). It can be

seen as the expected information content of a future event, given the set of possible results and

their probability distribution [CD08]

H(X) =
1

2
log((2πe)k|ΣX |). (2.11)

Entropy reduction, which is the relative difference between two Gaussian distributions

∆H(X,Y) = H(X)−H(Y) =
1

2
log
|ΣX |
|ΣY |

, (2.12)

that is, how much more accuracy is obtained by measuring Y instead of X [SMD12].

Conditional covariance. Assuming x ∈ RN and y ∈ RM are combined in a joint Gaussian

Z ∼ N (µZ ,ΣZ),

ΣZ =

Σxx Σxy

Σyx Σyy

 , (2.13)

the conditional covariance Σx\y of x given y, is the Schur complement of Σyy in ΣZ :

Σx\y = Σ∗
x = Σxx −ΣxyΣ

−1
yyΣyx. (2.14)

Mutual information between two random variables. It measures how much knowing one of

the variables reduces the uncertainty about the other [SC19]:

MI(x,y) =
1

2
log
|Σxx|
|Σ∗

x|
. (2.15)
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Figure 2.2: Illustration of the projective distortion of a differential 2D patch δA.

Throughout the chapter the entropy is measured in absolute numbers of bits (i.e., log stands

for base-2 logarithm).

2.5 ID-RGBDO- tracking

We now apply to direct RGB-D pose tracking the ideas above, presented in this section theo-

retically and evaluated experimentally in Section 2.7.1.

2.5.1 Informative point selection

Most direct methods are either dense or semi-dense approaches, aiming to use as many pixels

as possible. In order to achieve real-time performance, they rely on a high-end computational

platform or make use of sub-optimal approximations.

Sparse direct methods, on the contrary, reduce the number of points by extracting those with

a significant photometric gradient (Step 1) and widely spread across the image (Step 2). These

heuristics work reasonably well in a wide array of scenarios, although several aspects are left

unexplored: Are we reaching the lowest possible error given our data? Are we using redundant

information and hence wasting computation? Is there enough visual information for the problem

to be well conditioned at all times? Our proposal is to add an algorithm (Step 3) that selects

points in a manner that, together with the previous two conditions, maximizes the entropy of

the camera pose.
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The camera pose entropy depends on the determinant of its covariance matrix Σx, as shown in

equation (2.11). Each point p contributes with ∆pΛx to the information matrix Λx, that can

be obtained as the sum of the Jacobian autoproduct for the whole set of points P

Λx = Σ−1
x =

∑
p∈P

∆pΛx =
∑
p∈P

jTx,pσ
−2
r jx,p, (2.16)

where jx,p is the row of the Jacobian Jx that corresponds to the photometric residual of point

p.

The addition of point p also yields to a variation of the information matrix determinant ∆p|Λx|,

that has the very satisfying property1 that can be expressed individually per point, depending

on the pth row of the Jacobian jx,p and the current adjoint information matrix Λadj
x :

∆p|Λx| = |Λx + jTx,pσ
−2
r jx,p| − |Λx|

= |Λx||I+Λ−1
x jTx,pσ

−2
r jx,p| − |Λx|

= |Λx|(1 + σ−2
r jx,pΛ

−1
x jTx,p)− |Λx|

= σ−2
r jx,pΛ

adj
x jTx,p.

(2.17)

Based on this, our algorithm works as follows. We start from a pre-filtered set of high-gradient

pixels by using a grid with a region-adaptative gradient threshold (as in [EKC17]). We prioritize

points that belong to Canny edges (as in [CC17]) but also keep some points in areas with weaker

gradient (Step 2). From here we follow Algorithm 1. We choose for each degree of freedom

(each of the six columns of Jx) the image point p with maximum derivative, and build with

them an initial information matrix. We then iteratively select the point that maximizes the

following function (Step 3)

f(p ∈ P , z,Λx) = ∆p|Λx|+
1

cz(zp − z)2 + 1
. (2.18)

The first addend in the function takes into account the increment of information described

above. The second one contributes to spread the points in the image, in order to compensate

1For simplicity we applied a consequence of the Sylvester’s determinant theorem |(Im + cr)| = 1 + rc.
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Algorithm 1 Informative point selection.

1: function Select Inf. Points (m,P ,Jx)
2: ▷ m = number of points to be selected
3: ▷ P = set of available points
4: Q ← ∅ ▷ Q = set of selected points
5: Λx ← 0 ▷ Init. Information matrix
6: for k ← 1 to DOF do ▷ DOF = 6
7: i ← arg max (jx,p[k]))
8: Λx ← Λx +∆pΛx(P [i])
9: Q ← Q∪ P [i] ▷ Add selected point
10: P ← P − P [i]
11: end for

▷ Informative selection
12: z ← image border
13: while (P ̸= ∅ & dim (Q) < m) do
14: i ← arg max (f(P , z,Λx)) ▷ Most inf. point
15: Λx ← Λx +∆pΛx(P [i])
16: Q ← Q∪ P [i]
17: P ← P − P [i]
18: z ← z −∆z
19: end while
20: return Q
21: end function

for effects that are not modeled in the projection function. This last expression increases its

value when the radial coordinate zp of a point p approaches z. z is initialized at the image

border and its value is reduced by ∆z for each selected point until reaching the principal point.

cz models the importance of this second term with respect to the information increment of each

point.

2.5.2 Pose estimation

With our selected set of points, we aim to find the motion ∆x between the closest keyframe

and the current frame, that minimises the photometric residual vector r (see equation (2.2)).

This optimization is initialized with a constant velocity model and a multi-scale pyramid image

to aid convergence.

The addition of a kinematic model has been extensively used in odometry and SLAM. [KSC13b]

showed that adding a motion prior in direct odometry helps in cases such as lack of texture,

motion blur or dynamic content. The motion estimation with such a prior can be written as



22 Chapter 2. Information-Driven Direct RGB-D Odometry

(JTxΣ
−1
r Jx +Σ−1

m )∆x = −JTxΣ−1
r r+Σ−1

m (xt−1 − x
(k)
t ), (2.19)

where xt−1 and x
(k)
t are the camera speeds for the previous frame and the last iteration of the

current frame respectively. The diagonal covariance matrix Σm ∈ R6×6 models the strenght of

the motion prior. As explained in [KSC13b], assigning high values to this covariance matrix

decreases the influence of the motion prior with respect to the image residuals and vice versa.

Tuning the values of the matrix is left to the knowledge of the agent motion or the availability

of another type of sensor (such as an IMU).

As in [EKC17], we consider outliers and discard those points whose photometric error exceeds

three times the standard deviation of the distribution. This reduces the effect that occlusions

and false matches have on the accuracy and robustness of the odometry.

2.6 ID-RGBDO- windowed optimization

2.6.1 Keyframe creation

There are several different strategies to select keyframes from an image sequence, with the

aim of estimating a local map. Conservative strategies privilege the use of already existing

keyframes before constituting a new one. Only if there is no previous candidate with enough

overlap, the system assumes that a new area is being explored and creates a new keyframe

[CC17]. An alternative approach is to first initialize a large number of keyframes and later,

in the local mapping step, cull down and marginalize the redundant ones [EKC17, MAMT15].

We use this latest method, as it makes the tracking more robust to rapid motions and allows

to maintain a sliding window optimization with close keyframes.

Keyframe creation is mainly associated with visual change, related to rotation and/or trans-

lation or due to lighting changes. This task is commonly addressed by setting thresholds to

the following criteria: 1) a maximum rotation and translation distance, 2) a minimum number

of inlier points, 3) after a fixed number of tracked frames or, 4) due to a strong change in

brightness parameters.
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Similar to [KSC13a], we propose the keyframe creation to be associated with the entropy

reduction ∆H of the camera pose. Differently from [KSC13a], we obtain the entropy reduction

independently for each degree of freedom x ∈ x using the Schur complement on the covariance

matrix. We set the entropy H∗(x0) of the first frame immediately after the keyframe as the

reference. This means that, in essence, our system creates a new keyframe when a certain

entropy decrement is observed in at least one of the degrees of freedom of the camera.

H∗
∆(x, x0) = 1− H∗(x)

H∗(x0)
. (2.20)

It may seem paradoxical, within this information framework, to establish a threshold for the

process of keyframe creation. However, in contrast to other systems that define multiple and

ambiguous thresholds, it is worth noting the entropy decrement allows us to use a single value

that is related to tracking information. Disaggregating the information for each particular de-

gree of freedom adds robustness and accuracy, as the aggregated information might compensate

low information values in some degrees of freedom with higher ones in some others.

2.6.2 Keyframe marginalization

Keyframe marginalization is essential to keep the optimization size-bounded, enabling real-time

operation [EKC17, MAT17a]. The marginalization criteria depend on whether we optimize a

local map or a sliding window of keyframes. For the first case, the aim should be detecting and

removing redundant keyframes, allowing lifelong operation in the same environment without

unlimited growth of the number of keyframes unless the visual content of the scene changes

[MAT17a]. The second technique, adopted by odometries, maintains a sliding window around

the last keyframe, sufficiently spaced for an accurate optimization of the point depths.

Our marginalization belongs to the second group. However, instead of using a heuristically

designed function to keep the keyframes spatially distributed, we use the mutual information

measurement in order to delete the redundant ones.

Partial marginalization using the Schur complement. Instead of simply dropping out

keyframes and points from the optimization, and in order to preserve most of the information,
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we substitute the non-linear terms with a linearized expression of the photometric error (as in

[EKC17, UESC16, VSUC18]).

The state vector update in equation (2.4) is first written in the following form

Hαα Hαβ

Hβα Hββ


yα
yβ

 =

bα
bβ

 , (2.21)

where α and β are the blocks of variables we would like to keep and marginalize respectively.

Applying the Schur complement we obtain

H∗
α = Hαα −HαβH

−1
ββHβα (2.22)

b∗
α = bα −HαβH

−1
ββbβ, (2.23)

which represents again a linear system for the state vector update, but in this case with variables

β marginalized out. We can hence write a quadratic function on y that can be added to the

photometric error during all subsequent optimization and marginalization operations, replacing

the corresponding non-linear terms:

r(δyα)
∣∣
yα

=
1

2
δyTαH

∗
αδyα − δyTαb∗

α. (2.24)

Note that partial marginalization fixes the linearization point of the variables involved, and

then this would require the tangent space to remain the same over all subsequent optimization

and marginalization steps. To reduce this problem we perform a relinearization of r(δyα)
∣∣
yα
,

as in [UESC16], every time the state is updated, i.e.,

r(δyα)
∣∣
yα+∆yα

= r(∆yα)
∣∣
yα

+
1

2
δyTαH

∗
αδyα − δyTα(b∗

α −H∗
α∆yα).

(2.25)
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Similar to [EKC17], when dropping a keyframe we first marginalize all points referred to it

and then the keyframe itself.

Redundancy detection using Mutual Information. As in [SC19], the redundancy ψ(Kj)

of a keyframe with respect to the others can be expressed by

ψ(Kj) =
∑
i∈K

MI(i, j,Σ(i,j)\K−{i,j}), (2.26)

where the Mutual Information between every pair of keyframes (i, j) is computed from their

conditional covariance matrix Σ(i,j)\K−{i,j} with respect to the rest. This metric is used to

remove, when necessary, the less informative keyframe within the window.

2.7 Experimental Results

For our evaluation we use the public TUMRGB-D benchmark [SEE+12a]. This dataset contains

several indoor sequences, captured with an RGB-D camera and annotated with ground truth

camera poses. Specifically, we use all static sequences except those beyond the range of the

sensor (see Table 2.1 for the sequence list).

This section is divided into four sets of experiments. The first set evaluates the informative point

selection procedure introduced in section 2.5.1. The next set analyses the keyframe creation

criterion that we propose in section 2.6.1. The third set shows an analysis of computational

performance. Finally, we compare our system against several state-of-the-art RGB-D odometry

and SLAM systems.

The error metrics chosen for the following figures and tables are the translational keyframe-to-

frame error (K2FE), used for evaluating our informative point selection, and the root-mean-

square errors of traslational drift in m/s (RPE) and Absolute Trajectory Error (ATEs) for

comparing against state-of-the-art baselines.
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RPE (m/s) ATE (m)
[KSC13a] [MAT17a]† [ZLK18] Ours [MAT17a]† [ZLK18] Ours

1 fr1 desk‡ 0.024 0.051 0.031 0.029 0.065 0.044 0.051
2 fr1 floor‡ 0.232 0.038 0.010 0.011 0.061 0.021 0.020
3 fr1 plant‡ 0.025 0.044 0.036 0.024 0.067 0.059 0.039
4 fr1 rpy‡ 0.032 0.037 0.034 0.026 0.066 0.047 0.045
5 fr1 xyz‡ 0.018 0.014 0.019 0.019 0.009 0.043 0.043
6 fr2 desk - 0.030 0.008 0.011 0.213 0.037 0.030
7 fr2 dishes - 0.035 0.012 0.015 0.104 0.033 0.041
8 fr2 rpy - 0.004 0.004 0.003 0.004 0.007 0.007
9 fr2 xyz - 0.005 0.004 0.003 0.008 0.008 0.007
10 fr3 cabinet - 0.071 0.036 0.058 0.312 0.057 0.063
11 fr3 large cabinet - 0.100 0.167 0.049 0.154 0.317 0.096
12 fr3 long office household - 0.019 0.010 0.010 0.276 0.085 0.038
13 fr3 nostr. text. far 0.073 0.121 0.035 0.037 0.147 0.026 0.049
14 fr3 nostr. text. near 0.028 0.050 0.043 0.015 0.111 0.090 0.062
15 fr3 str. notext. far 0.039 0.013 0.027 0.016 0.008 0.031 0.018
16 fr3 str. notext. near 0.021 0.060 - - 0.091 - -
17 fr3 str. text. far 0.039 0.018 0.013 0.012 0.030 0.013 0.010
18 fr3 str. text. near 0.041 0.017 0.010 0.011 0.045 0.025 0.013

Table 2.1: RMSE of translational drift RPE (m/s) and ATE (m) for state-of-the-art baselines
and ID-RGBDO (Ours). Remarkably, ID-RGBDO (Ours) tracks only 24 points per keyframe. †

stands for ORB-SLAM2-based odometry, where loop closure was deactivated from the original
implementation of [MAT17a]. ‡ stands for special initialization for tracking convergence.

2.7.1 Informative point selection

We evaluate the performance of our system both quantitatively and qualitatively in terms of

trajectory estimation and computational performance.

Figure 2.3 shows the translational keyframe-to-frame error (K2FE) using a number of points

between 24 and 256 for all sequences we evaluated (more than 20, 000 frames). The four con-

figurations shown refer to different alternatives for point selection: completely random (rand),

distributed in a grid and above an intensity gradient threshold (grid), based on our criterion

to maximize the entropy of the pose (see equation (2.18)) (inf) and with a mixed approach

between the last two (inf+grid). The figure shows that our information-based criterion, both

combined with the grid approach and not, leads to the highest accuracy. The difference between

the four alternatives is smaller as the number of points increases, but the information-based

selection always results in a higher accuracy. The negligible difference in accuracy between

inf and inf+grid is relevant for real-time performance, as grid-based point pre-selection is

significantly faster than choosing them only based on information criteria. This is why in our
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Figure 2.3: Point Informative Selection. Accumulated translational keyframe-to-frame
error (K2FE) in all sequences. Different lines correspond to point selection modes.

Figure 2.4: Accuracy vs Entropy. Left: Accumulated K2FE. Color degradation from black
to blue indicates a higher entropy reduction. Right: Accumulated K2FE vs absolute entropy
values.

RGB-D odometry we adopt this mixed approach.

The relation between entropy reduction and accuracy is shown in Figure 2.4. In short, the cost

(the number of points needed) of improving pose accuracy increases with the absolute value of

the entropy. A limitation of our current research is that, for different sequences, the specific

shape of the entropy-accuracy curve is slightly different. As shown in Figure 2.5, two sequences

with similar entropy values have different translational errors. These discrepancies may be

due to the need of a better photometric model, as for example scenes with strong presence

of motion blur give poor performance. This is not relevant for our current selection criterion,

that uses relative entropy. However, future work to understand this effect could lead to further

improvements.
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Figure 2.5: Entropy reduction. Left: translational keyframe-to-frame error (K2FE) vs.
entropy reduction. Center: number of points vs. entropy reduction. Right: K2FE vs. number
of points. The three different colors stand for three different sequences.

Figure 2.6: Keyframe Creation. Both RPE and ATE trajectory errors are influenced by the
keyframe creation strategy. The figure shows a value for the relative entropy decrement H∗

∆

where both errors are minimal.

2.7.2 Informative Keyframe Creation

Here we demonstrate the adequacy of our entropy-based criterion for keyframe creation. Figure

2.6 shows the variation of the normalized trajectory errors (RPE and ATE), aggregated over all

sequences, versus the threshold on the relative entropy reduction H∗
∆ to create a new keyframe.

Low values lead to a high number of keyframes, which might increase the drift. Increasing

the threshold on the relative entropy reduction decelerates the keyframe creation, reducing the

overlap and increasing the error and eventually leading to tracking failure. Notice how this

effect is modeled in the curves of Figure 2.6, and that they can be used to choose a reasonable

threshold.

2.7.3 Computational Performance

We run all experiments on a laptop with an Intel Core i7-7500U CPU at 2.70 GHz and 8

GB of RAM. Figure 2.7 shows the linear dependence of the tracking cost (with and without
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Figure 2.7: Tracking cost. Observe its linear growth with the number of points, and hence
the convenience of using a small number of them. Observe also the small overhead introduced
by our informative point selection.

Figure 2.8: Bundle Adjustment cost. Notice the steep growth with the number of points,
that our selection algorithm reduces with a minimal impact in the accuracy.

informative point selection) with the number of image points. Time is reduced between 5× and

10× from the usual practice of tracking hundreds of points to our minimal setup of 24 points.

Notice also that the overhead introduced by our informative point selection algorithm is small

compared to the total tracking cost, in particular for a low number of points.

Figure 2.8 shows the cost of our Direct Bundle Adjustment depending on the number of points

and cameras. For our minimal configuration of 24 points per keyframe, the cost is reduced

approximately 10× with respect to more usual setups that optimize hundreds of points.

2.7.4 Evaluation against SotA baselines

We compare our system against three different baselines. Firstly, against Canny-VO [ZLK18],

a recent RGB-D odometry based on geometric edge alignment. Secondly, against an ORB-

SLAM2-based odometry, for which the original ORB-SLAM2 [MAT17a] was used with its loop

closure deactivated. And, thirdly, against DVO SLAM [KSC13a], a dense direct RGB-D SLAM.

The results for ORB-SLAM2-based odometry were taken from [ZLK18]. Table 2.1 shows the
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trajectory errors for these three baselines and ID-RGBDO. In our ID-RGBDO we use 24 points

per keyframe and 8 keyframes in the sliding-window Bundle Adjustment. In the case of fr1, as

these sequences have high motion blur due to quick rotations, we use initially a higher amount

of points to aid tracking convergence but then within the Bundle Adjustment we stick to the

24 most informative points per keyframe and 8 keyframes configuration.

Notice how, for a large part of the fr2 and fr3 camera sequences, that are rich in texture and/or

structure, our algorithm outperforms the three baselines. Our tracking fails in sequence 16,

as all direct odometries do, while the feature-based ORB-SLAM2 succeeds. We have detected

that this is due to the fact that the problem is not well conditioned with a photometric cost

function and however it is conditioned enough if features are used. This result tells us how

beneficial a mixed direct-features system managed with information measurements could be.

2.8 Conclusions and Future Work

In this work we have proposed a novel criterion to select the most informative points to be

tracked in a RGB-D odometry framework. We have shown experimentally that using a small

number of very informative points and keyframes can have a significant impact in the com-

putational cost of RGB-D odometry, while keeping an accuracy similar to the state of the

art. Specifically, our experimental results show that tracking the 24 most informative points is

enough to match the performance of the state of the art while reducing the computational cost

up to a factor 10×.

Up to our knowledge, this is the first time that information theory is applied to direct odometry

and SLAM methods. We believe that our results will facilitate the use of visual odometry and

SLAM in small robotic platforms and AR/VR glasses, that are limited in computation and

power.

There are several lines of research that build on and could improve the results of this work.

Firstly, the development of a probabilistic photometric model could improve the accuracy of

the information metrics. And secondly, we also think that further analysis on the information

of the windowed keyframe optimization could offer even better results. We plan to investigate

both topics in the near future.



Chapter 3

A Model for Multi-View Residual

Covariances based on Perspective

Deformation

3.1 Abstract

In this work, we derive a model for the covariance of the visual residuals in multi-view SfM,

odometry and SLAM setups. The core of our approach is the formulation of the residual

covariances as a combination of geometric and photometric noise sources. And our key novel

contribution is the derivation of a term modelling how local 2D patches suffer from perspective

deformation when imaging 3D surfaces around a point. Together, these add up to an efficient

and general formulation which not only improves the accuracy of both feature-based and direct

methods, but can also be used to estimate more accurate measures of the state entropy and

hence better founded point visibility thresholds. We validate our model with synthetic and real

data and integrate it into photometric and feature-based Bundle Adjustment, improving their

accuracy with a negligible overhead.

31
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Figure 3.1: Perspective deformation. Image patches are subject to transformations when
they are viewed from changing viewpoints, similar to the checkerboard in the image. This
perspective deformation increments the covariance of the photometric/feature patches used by
odometry and SLAM.

3.2 Introduction

We refer as perspective deformation to the transformations that apply to image patches when

they are viewed from another viewpoint. Assuming constant camera intrinsics, it is the relative

motion between a tridimensional surface and the camera poses what triggers perspective de-

formation in images. Figure 3.1 shows an illustrative example where such deformations can be

appreciated in a checkerboard pattern. In an abuse of language, throughout the chapter we will

use the terms traction and compression to characterize this perspective deformation. However,

it should be remarked that we do not address deformable scenes but rigid environments.

Perspective deformation is a purely geometric effect and, yet, it is acknowledged as a challenge

in many computer vision tasks. For example, SfM/odometry/SLAM pipelines, based on feature

matching or photometric residuals, iterate over several pyramid levels [EKC17] or set heuristic

thresholds reflecting low confidence for wide-baseline matches [MAT17a]. The accuracy of a

camera calibration can be modelled as the trade-off between a sufficiently informative geometric

configuration and the image noise that perspective deformations produce [PS19]. In other tasks

such as semantic segmentation or object/place recognition, perspective deformation is also an

issue if viewpoints vary significantly [SVN20, HCMH16, GSM19].

For the specific case of multi-view reconstruction, when looking at Figure 3.1, it is evident that a

high degree of perspective deformations will also distort appearance-based descriptors, resulting

in noisier image matches. However, visual residuals r are modeled as isotropic Gaussians

r ∼ N (0,Σr) ,Σr = σ2
rI in the vast majority of 3D vision pipelines. The visual residual model



3.3. Related Work 33

has a direct influence in the accuracy of the camera and structure states x via the Gauss-

Newton updates ∆x = −
(
J⊤ΣrJ

)−1
J⊤r (J stands here for the derivatives of the residuals r

with respect to x). In this chapter we propose a new model for the covariances of the visual

residuals σ2
r that accounts for the effect of the perspective deformation and hence improves the

accuracy of multi-view structure and motion estimations.

Furthermore, as [PS19] points out, in many practical applications one should incorporate es-

timates of the uncertainty when available. The covariances Σx over the state x are usually

back-propagated from the residual covariance Σr as Σx = (JTΣ−1
r J)−1 [SMD10]. A better

model for the residual covariances Σr would lead to more realistic uncertainty estimates, which

is crucial in real-world applications.

As a final application case, using information metrics in odometry and SLAM dates back

to works such as [SMD10, CD08, KSC13a] but has seen great progress recently —aiming to

the reduction of the computational demand for their implementation on low-end platforms

[FCT20, KMZS20, ZV18, ZV20]. Again, a better model for Σr would significantly improve

such approaches. As two illustrative examples, Figure 3.2 shows inconsistencies that arise

when the differential entropyH(x) = −1
2
log((2πe)k|Σx|) is obtained approximating the residual

distribution by an isotropic Gaussian.

As a summary, the specific contributions of this chapter are as follows. First, we derive a

model for the perspective deformation of 2D image patches (Section 3.4). To the best of our

knowledge, we are the first ones addressing such deformation in a general manner. Second,

we introduce a model for the visual residuals based on the perspective deformation, valid for

both feature-based and photometric methods (Section 3.5). Third, we validate our model with

extensive experimentation in a realistic synthetic dataset and real data (Section 3.6). To our

knowledge, this is the first time that the relation between perspective deformation and multi-

view residuals is shown and characterized in several setups under a unified derivation. Finally,

we integrate our model in the global optimization of feature-based and direct odometry/SLAM

pipelines, demonstrating a consistent reduction of the trajectory error in the TUM RGB-D

dataset [SEE+12a] (Section 3.7).
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(a) Circular trajectory. For isotropic Gaussian residuals, the differential entropy is incorrectly
modeled as constant even for 180◦ parallax. Our deformation-based covariance models it correctly,
showing a steep decrease with parallax.
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(b) Approaching trajectory. For isotropic Gaussian residuals, the differential entropy increases as
the camera approaches the planar scene, which is not correct. With our deformation-based model
areas close to the reference frame (the blue one) give the best accuracy.

Figure 3.2: Differential entropy inconsistencies. A deficient model of the residuals leads to
inconsistencies in a variety of applications. An illustrative one is the camera pose entropy in
these two situations.

3.3 Related Work

Isotropic visual residuals are widespread in multi-view setups [KM07, EHS+13, WS14, SF16,

MAT17a, EKC17, RACC20] and only a few exceptions difer or are directly related to our work.

The work of [YWGC18] implicitly underlines the importance of visual covariances by evaluating

aspects such as photometric calibration, motion bias and rolling shutter, and their effect on

direct, feature-based, and semi-direct odometries.

Molton et al. [MDR04] models salient features as observations of locally planar regions, com-

pensating for the predicted motion before matching. Such early model is, however, limited to

template matching based on cross-correlation. More recently, for the application of camera

calibration, Peng and Sturm [PS19] incorporate uncertainty for the corners of a calibration

target using autocorrelation matrices.

Engel et al. [EKC17] apply a gradient-dependent weighting, reducing the effect of photometric

errors in pixels with high gradient. This can be probabilistically explained as approximating

the geometric error by adding on the projected point position, small and independent geometric

noise, and directly marginalizing it. Mur-Artal and Tardós [MAT17a] scale the visual residual
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proportionally to the resolution where the ORB features are detected. In both works, apart

from these two aspects, the noise model follows the standard isotropic Gaussian assumption.

Up to our knowledge, ours is the first model deriving a probabilistic form of perspective de-

formation, opening a research line towards a better understanding and a general modeling of

visual residuals.

3.4 Perspective Deformation

3.4.1 Preliminaries

We refer with subscript j to the reference frame where a 3D point p ∈ R3 is first observed,

and with i to any other frame from which the point is visible. The image coordinates of the

projection of p in reference frame j and its depth are denoted as u ∈ Ω and z ∈ R respectively,

where Ω is the image domain.

The function φ(u) projects a point p from its camera coordinates u in the reference frame j

into the frame i,

φ(u) = Π(RΠ−1(u, z) + t), (3.1)

where Π(p) (determined by the intrinsic camera parameters) projects the point p in the camera

frame; and Π−1(u, z) back-projects the image point with coordinates u at depth z. R ∈ SO(3)

and t ∈ R3 are the relative rotation and translation between frame j and frame i.

3.4.2 Surface representation

We consider that each point p lays on a local 3D surface S. Our formulation can include

surfaces with any degree of complexity as far as the depth z of p can be expressed as a function

of its image coordinates z = S(u). Similarly to [MDR04], in our implementation we constrain

those surfaces to be 3D planes S = f(α, β, γ); with α, β and γ being the plane parameters on

the camera reference frame. We then can formulate the depth z for each point p in terms of

its camera coordinates u and its corresponding local plane parameters (α, β, γ):
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z =
γ

1− [α, β, 0] · Π−1(u, 1)
. (3.2)

Commonly, direct VO and SLAM extend point descriptors over a small neighborhood of pixels

[EKC17]. Feature-based pipelines [SF16, MAT17a] with classic feature descriptors [Low04,

RRKB11] also perform operations on patterns around a central pixel. Operating on a pattern

of pixels on the image is equivalent to consider that all these pixels have the same local depth

coordinate (α = 0, β = 0, γ = z). Note that our former assumption is a compromise between

considering more complex surfaces and assuming that the point belongs to a plane orthogonal

to the local z-axis.

3.4.3 Perspective deformation model

We will approximate the projection function of Equation (3.1) by its first-order Taylor ap-

proximation

φ(u+ du) ≈ φ(u) +∇uφdu. (3.3)

The perspective deformation gradient tensor Fψ(u) contains all the information about

the local rotation ψ and deformation of u and corresponds to the Jacobian matrix of the

transformation φ(u),

Fψ(u) = ∇uφ =
∂φ(u)

∂u
=

[
∂u

∂pn

∂pn
∂pc

∂pc
∂pw

]
i

[
∂pw
∂pc

∂pc
∂pn

∂pn
∂u

]
j

, (3.4)

where subscripts n, c and w correspond to the point coordinates normalized, in the camera

frame and in the absolute one respectively. Note that the gradient tensor Fψ(u) models how an

infinitesimal line segment in the “undeformed” reference frame is not only stretched but also

rotated with an angle ψ into a line segment in the “deformed” frame.

The Cauchy–Green deformation tensor gives a measure of the deformation that is inde-

pendent of the rotation around the camera axis, without needing explicitly the rotation matrix.

By applying the polar decomposition theorem, which states that any second-order tensor can be
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decomposed into a product of a pure rotation and symmetric tensor, it is possible to separate

the camera rotation Rψ from a rotation-independent deformation gradient tensor Fu, hence

Fψ(u) = RψFu = F̄uRψ.

The tensor C is called the right Cauchy-Green deformation tensor

C = Fψ(u)
TFψ(u) = FT

uR
T
ψRψFu = FT

uFu. (3.5)

Since it is formed only from the Fu tensor, it describes the deformation of the material “before”

rotation.

The left Cauchy–Green deformation tensor C̄

C̄ = Fψ(u)Fψ(u)
T = F̄uRψR

T
ψF̄

T
u = F̄uF̄

T
u , (3.6)

applies a rigid body rotation first, and then deforms the rotated volume. Both tensors are

independent of the rotation, but they describe the deformation in different frames.

Deformation. Physically, the Cauchy–Green tensor gives us the square of the local geometric

changes ε2(η) due to deformation in some particular directions η:

ε2(η) = ηTC(u)η. (3.7)

If we consider a single direction of interest η ∈ R2 in which we want to obtain the perspective

deformation (e.g., the direction of the gradient for photometric errors), we then obtain a scalar

deformation ε2 ∈ R. On the other hand, if there are two directions of interest η ∈ R2×2

(e.g., the geometric residuals in feature-based methods) the deformation obtained is not only

2-dimensional but also anisotropic ε2 ∈ R2×2.

Traction and Compression are relative terms that depend on which of the configurations we

consider as “undeformed”. Due to the linearized projection model (equations (3.3) and (3.4)),

we can derive that the inverse transformation F−1(u) yields the inverse stretch |F−1(u)| =

|F(u)|−1. In other words, we can map every compression ε2c ∈ [0, 1) into its homologous

traction ε2t ∈ (1,∞) and viceversa just by ε2t ≈ ε−2
c .
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3.5 Visual Residual Covariances

Deformation Covariance. Under traction (ε2 > 1), the covariances of the visual residuals

grow as a function of the deformation according to certain response functions σ2
t : ε

2 ⊂ R 7→ R.

These functions vary with the residual model used for each particular application (e.g., feature-

based or photometric) and we determine them experimentally in this work (see the validation in

Section 3.6 and further experiments in Section 3.7). As mentioned, we will model an equivalent

traction for every scalar compression with the response function σ2
c : ε−2 ⊂ R 7→ R. To sum

up, for the case η ∈ R2 our model results in

σ2
ε(ε

2) =


σ2
c (ε

−2 − 1) ε2 ≤ 1

σ2
t (ε

2 − 1) ε2 > 1.

(3.8)

With this formulation we aim for compression and traction to have similar response functions

that map deformations into visual covariances (σ2
t = σ2

c ). However, effects such as pixel dis-

cretization or processing done by feature-based approaches induce more complex behaviours

for these response functions. We propose and analyze some particular cases in our validation

experiments in Section 3.6.

2d-deformation. If residual covariances are coupled in two image directions σ2
ε ∈ R2×2 (such

as in corner matching), C ∈ R2×2 is a diagonalizable symmetric positive semi-definite matrix.

Then, it can be found a unitary matrix V ∈ R2×2 where the matrix containing the deformation

(3.7) in each direction ε2kk = VCVT ∈ diag(R2) is diagonal. We obtain the non-diagonal

covariance matrix applying the model in Equation (3.8) to the diagonal elements of ε2kk and

undoing the transformation σ2
ε = Vσ2

ε(ε
2
kk)V

T ∈ R2×2.

Projection Covariance. In addition to perspective deformation, there are other possible

noise sources (e.g., rolling shutter effects [CZK15, YWGC18]) that are propagated through the

projection function to the visual residuals and can be added as geometric uncertainties in our

covariance σ2
φ.

As an example, the depth uncertainty from stereo cameras and RGB-D ones using structured

light can be propagated from the disparity variance σ2
ν . Assuming a focal length f , a baseline
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b and a disparity ν, the first-order propagation for the inverse depth covariance is [HWMD14,

Kho11, BM13, CC17]

z =
fb

ν
, σz =

fb

ν2
σν =

z2

fb
σν . (3.9)

Using a first-order propagation of the projection in Equation (3.1), we obtain the contribution

of the depth uncertainty to the residual

σ2(z) =

(
∂u

∂z

)2

σ2
z . (3.10)

Finally, all uncertainty contributions can be grouped together into a single term that models

the full covariance of a visual measure in a given direction

σ2
φ = σ2

ε(η) + ηT (σ2(z) + ...)η. (3.11)

3.5.1 Implementation Details

For the sake of reproducibility, we describe several practical aspects of the implementation of

our model, namely point visibility, photometric errors and feature matching.

Photometric residual. Direct methods define a photometric error between the raw image

intensities I : Ω ⊂ R2 7→ R. Although each method has specific particularities in their residual

definitions, most of them concur in evaluating the photometric error r ∈ R in a slightly spread

pattern of pixels P [EKC17, FPS14]

r =
∑
u∈P

(Ij(u)− Ii(φ(u)))2. (3.12)

The residual covariance σ2
r can be modeled in this case as a purely photometric addend σ2

N and

the geometric covariance from Equation (3.11) propagated with the intensity gradient G

σ2
r = σ2

N +G2σ2
φ(ηg). (3.13)
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As shown in [EUC16, EKC17, YWGC18], a conscientious photometric calibration improves the

accuracy and robustness of direct methods. It would be reasonable to include the model of the

photometric contribution σ2
N at this point in the formulation. However, due to the scope of this

work, we include the propagation of the image noise obtained through bilinear interpolation σ2
I

to the photometric error calculated on a N-sized pattern (3.12)

σ2
N =

128N

81
(σ2

I )
2. (3.14)

If depth information is available, the pixels u ∈ P could be considered to belong to the same

3D surface (similar to Equation (3.2)) and reproject them accordingly. However, monocular

setups estimate depth from multiple views, making the assumption that all pixels on a pattern

share the same depth quite convenient. Note how our formulation can easily incorporate this

assumption with u ∈ S0(α = 0, β = 0, γ = z).

Feature-based errors are usually defined as variations of the following expression:

r = ui − φ(u), (3.15)

where ui stands for the feature point in image i and φ(u) for the corresponding point in the

frame j reprojected in the frame i. Hence the residual covariance is expressed as the sum of

the projection covariance and the feature subpixel noise σ2
u:

σ2
r = σ2

u + σ2
φ (3.16)

Right/left Cauchy-Green deformation tensor. The right tensorCmodels the deformation

“before” rotation, that means in the original frame. Since direct methods compute photometric

gradients in these reference frame, it is not necessary to recompute them again. On the other

hand, feature-based approaches set geometric residuals in the reprojection frame, that means

“after” rotation. Then by using the left Cauchy-Green tensor C̄ deformations are conveniently

referred to that coordinate frame.

Point visibility. Heuristic thresholds for point visibility are a trade-off between the potential

benefits of wide baselines and the increasing matching uncertainties. Some approaches keep
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observations in a bunch of close keyframes and remove outliers with robust cost norms [EKC17].

Others define angle and scale thresholds between viewing rays [MAT17a]. Defining a threshold

in terms of deformation is more principled, since it accounts for the relative orientation between

the camera and the local surface. If a point is observed with a parallax angle bigger than 90◦,

the diagonal of the deformation tensor (3.4) triggers a negative value. In addition, weighting

visual residuals in terms of the perspective deformation allows a wider range of inliers without

degrading the optimization.

3.6 Model Validation

First, we test the basis of our model equations (Section 3.4) with a Monte Carlo-based exper-

iment. Next, to identify the applicable cases of the perspective deformation, and explore the

function-revealing parameters of Equation (3.8) that could guide good visual covariance mod-

eling, we validate our approach in a two-branch experiment: photometric and feature-based.

The estimates of the model parameters are then used as the input to the experiments in Section

3.7. Finally, we show the differences of taking into account perspective deformation in a simple

application that computes the amount of available information for the tracking of a camera

from a cloud of points.

3.6.1 Geometric covariance

Figure 3.3 gives an overview of the simulated setup we use to assess the deformation model. We

generate a set of random cameras, points and surfaces to produce a massive number of projection

samples (≈ 106). To simulate the perspective deformation suffered by planar patches, we add a

small Gaussian noise to the reference coordinates of the points u, and measure the covariance

of the projected error distribution. Then, for each projection, we obtain a covariance matrix

C̄sim analogous to the left Cauchy-Green deformation tensor in Equation (3.6). Figure 3.3f

shows the relation between the simulated 2d deformation ε2sim = det(C̄sim), and our estimation

with the derivation in Section 3.4.
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(a) Planar (b) Ellipsoid (c) Elliptic par.

(d) Hyp. par. (e) Rev. Sin. (f) ε2est vs. ε
2
sim.

Figure 3.3: Monte Carlo validation. We show the comparison of our deformation estimation
ε2est with a simulation ε2sim on a set of representative surfaces: planar, ellipsoid, elliptic and
hyperbolic paraboloid, and a revolution sine. Figure 3.3f demonstrates how our model can be
used, not only with planes, but with any parameterizable surface z = S(u) (see Section 3.4.2).
† Cameras and points shown in this figure are just a subset chosen with visualization purposes.
The total amount of point projections is ≈ 106.

3.6.2 Photometric patches

To ensure that only the influence of perspective deformation is being considered (σ2
φ = σ2

ε),

we validate our model for planar photometric patches in the synthetic ICL-NUIM dataset

[HWMD14], which provides RGB-D sequences and the ground truth values for the camera and

scene parameters.

As in [MDR04], we consider patches as locally planar regions on 3D world surface instead as

2D templates in image space or more complex surfaces, since our formulation allows patches to

be placed on any parametric surface (see Section 3.6.1). Although salient points often appear

at discontinuities, it is commonly assumed that it is possible to find a locally dominant plane

for their representation (see Figure 3.1).

We gather a massive number of high gradient pixel projections between all image pairs within

the same sequence, and extract their photometric errors, intensity gradients and predicted

deformations. Figures 3.4a and 3.4b show histograms illustrating the number of data points,

the deformation range and photometric errors in the dataset.

We group photometric errors according to their deformation and normalize them with the
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(a) Deformation data. (b) Normalized photo. errors.

0.5 1 1.5 2

0

0.2

0.4 Data with bil.(ICL-NUIM)

Data (ICL-NUIM)

Fit Model

(c) Photometric covariance model. Results from the validation in the ICL-NUIM dataset
[HWMD14] show that the covariance for photometric patches increases along with the perspective
deformation according to Equation (3.8).

Figure 3.4: Photometric model validation.

intensity gradient. Finally, we compute the covariance of the errors within each cluster obtaining

the value for σ2
x in Equation (3.13)

σ2
x =

σ2
r

G2
=
σ2
N

G2
+ σ2

ε(ε
2). (3.17)

Figure 3.4c shows a representative sample of the results (using a pattern of 9 pixels), clearly con-

firming a relation between perspective deformation and visual covariances and how our model

captures it accurately. We highlight three significant outcomes: 1) expressing compressions as

its homologous tractions (ε2t = ε−2
c , see Section 3.4) unifies the behaviour of both covariance

responses (σ2
t ∼ σ2

c ). 2) Following Ockham’s razor, we define σ2
t (ε

2− 1) and σ2
c (ε

−2− 1) simply

with constant values. 3) From the minimum covariance value in the absence of perspective

deformation (σ2
ε = 1) we can derive with Equation (3.14) the photometric noise in the images

σ2
I . Note how as expected the use of bilinear interpolation for intensities reduces the image

noise to around 4
9
.

Patch patterns. Table 3.1 evaluates our model for photometric residuals in different patch

patterns, as proposed in [EKC17]. The most relevant outcomes are: 1) Bigger patches act
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S{R2 > 0.9975}
radius σI σ2

t σ2
c ε2

0.5 4.02 0.30 0.49 0.50-1.75
1 2.69 0.31 0.43 0.48-1.70√
2 2.66 0.32 0.40 0.46-1.66
2 2.25 0.33 0.35 0.43-1.61

2
√
2 1.99 0.35 0.31 0.39-1.52

4 1.74 0.36 0.28 0.33-1.41

4
√
2 1.64 0.38 0.22 0.25-1.25

Table 3.1: Photometric model fitting. For each patch size, we obtain the parameters of
Equation (3.8) that maximize the coefficient of determination R2 within a certain range of
deformation ε2. Per-column best is displayed in green, worst in red and balanced in blue.
Small patches behave better for traction, large patches for compression.

as photometric filters, reducing the image noise σI . 2) Bigger patches experience a faster

degradation of the performance under traction, but perform better than smaller patches under

compression. And vice versa, smaller patches deteriorate faster under compression and handle

traction better. This effect is easily recognizable observing the changes of the response function

parameters (σ2
t , σ

2
c ) or the range of deformation ε2 in Table 3.1 .

The last columns of Table 3.1 show results assuming the surface is perpendicular to the optical

axis (S0) or the backprojected ray (S⊥). We observe that now traction effects are mostly

dominated by the surface assumption, i.e., as the camera moves towards the points, depth

inconsistencies arise. Yet, bigger patches still work better under compression.

camera σI σ2
t σ2

c ε2 ∈ R2
σ2
t

σ2
c

fr1 47.2 1.80 1.34 0.6-1.4 0.95 1.3
fr2 22.0 0.88 0.89 0.6-1.8 0.97 1.0
fr3 34.4 0.79 0.90 0.7-1.4 0.98 0.9

realSense 30.8 0.63 0.62 0.6-1.9 0.97 1.0

Table 3.2: Model validation for photometric 9-pixel patches with real data. The table
shows the parameters of Equation (3.8) estimated for the cameras of the RGBD-TUM dataset
(fr) and a realsense D435i depth camera. Note how the 9-pixel patch behaves similarly under
traction and compression deformation.

Real Data. We repeat the experiment in Figure 3.4c with real data from three different

cameras of the public RGB-D TUM dataset [SEE+12a]. Figure 3.5 shows how again, our model

accurately captures the visual covariance produced by perspective deformation of photometric

planar patches. An important outcome from the real data with different cameras and sequences

is the validation of the assumption of considering patches as locally planar regions rather than

more complex surfaces. However, it also leads to saturation of the model under strong changes
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(a) Fr1.
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Figure 3.5: Model validation with real data. We perform the model fitting of Equation
(3.8), described in sections 3.6.2 and 3.6.3, with data from three cameras of the sequences of the
RGB-D TUM dataset [SEE+12a] and with data recorded with a realsense D435i depth camera.
It can be seen how our covariance model for photometric patches and ORB features fits the
noise distribution of the four cameras.
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in perspective deformation. Finally, to have a cleaner experiment with data from a depth sensor

but trying to minimize any source of noise, we validated the model with data from an intel

realsense D435i depth camera facing a checkerboard pattern. Figure 3.5k shows how our model

fits more reliably in this validation performed under more suitable conditions. Table 3.2 collects

the coefficients of the model validation that we will use in the experiments of Section 3.7.

3.6.3 Feature-based methods

We keep the experimental setup of the previous section, but we now evaluate the geometric

reprojection residual in feature-based methods. Similarly to Figure 3.4c, we report in Figure

3.6a the dependency of the reprojection error with perspective deformation for different point

features. The results show again a clear relation between the perspective deformation and the

visual residual, and how our model fits reasonably the simulation data.

Table 3.3 shows the results for our model fitting. In the column titled σ2
t /σ

2
c , it is relevant to note

that visual covariances tend to grow faster for traction than compression. This is consistent with

our photometric validation (see Table 3.1), where covariances in large patches grew faster under

traction. Moreover, these results agree with [YWGC18], that shows experimentally the effect of

motion bias in ORB-SLAM2 [MAT17a] and DSO [EKC17]. They show a noticeable degradation

for ORB-SLAM2 when the camera is moving forward, meaning that points mainly approach and

consequently patches suffer from traction. On the other hand, DSO using photometric patches

of radius 2 (in our Table 3.1, with balanced traction and compression coefficients) does not

show such bias. Our findings here are a step forward towards a more complete understanding

of motion bias in VO/SLAM.

As one limitation of these results, features extracted with different filtering parameters and

image resolutions introduce a scaling factor between the residual covariances and perspective

deformation. So far, we extracted features at the original image resolution. The ORB imple-

mentation [RRKB11] operates at discrete scale levels s since it performs the same operations at

different image resolutions. Figure 3.6b shows the dependency of the residual covariance with

the perspective deformation for each of these resolutions. For our model to be used at different

scales, we approximate this effect by scaling our perspective deformation covariance, where s

and sr stands for the resolution factor of the reference and projected image respectively.
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Figure 3.6: In 3.6a all descriptors increase their covariance with the deformation. 3.6b shows
the deformation covariance of ORB depending of the scale of the feature. From bottom to top
the resolution becomes coarser.

Finally, we repeat the validation with real data the same manner as in Section 3.6.2. Figure

3.5 and Table 3.3 show the results of the validation.

camera σp σ2
t σ2

c ε2 ∈ R2
σ2
t

σ2
c

fr1 0.59 0.66 0.48 0.6-1.7 0.97 1.38
fr2 0.42 0.35 0.15 0.5-2.1 0.96 2.33
fr3 0.43 0.37 0.22 0.6-1.6 0.97 1.68

realSense 0.56 1.88 1.42 0.8-1.2 0.87 1.32

Table 3.3: Model validation for ORB features with real data. The table shows the
parameters of Equation (3.8) estimated for the cameras of the RGBD-TUM dataset (fr) and a
realsense D435i depth camera. Note how the visual covariance of ORB grows more in traction
than in compression.

3.7 Experiments

The validation analysis in Section 3.6 showed the relation between residual covariances and

perspective deformation. In this section we demonstrate its applicability in state-of-the-art

pipelines. Specifically, we evaluate the accuracy improvement in the photometric Bundle Ad-

justment (BA) of [FCT20] and in the feature-based BA of ORB-SLAM [MAT17a].

For our evaluation we use the public TUM RGB-D benchmark [SEE+12a], that contains several

indoor sequences captured with a RGB-D camera annotated with ground truth camera poses.

Specifically, we use all static sequences except those beyond the range of the sensor. All the

experiments were run on a standard laptop with an Intel Core i7-7500U CPU at 2.70 GHz and

8 GB of RAM for which the overhead caused by our model was less than 2% of the total cost.
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Figure 3.7: Tracking entropy H(bits). Big parallax (cos(α) << 1). Approximation ( zi
z0
< 1).

Distancing ( zi
z0
> 1). Model complete (Def + lambda), just deformation covariance (def), just

depth covariance (lambda), constant covariance (-).

3.7.1 Information Metrics

As we anticipated, deriving the differential entropy of the camera pose H(x) =

−1
2
log((2πe)k|Σx|) from isotropic Gaussian residuals may lead to inconsistencies (see Figure

3.2). Figure 3.7 show the effect of different additions to the covariance (Equation (3.11)) in

the pose estimation. We create a map from the very first RGB-D frame of sequence fr2 xyz

[SEE+12a] and compute the available information to track each subsequent frame with respect

to this initial map.

Figure 3.7 conveys at one glance the variation of the geometric covariance due to the propagation

of depth uncertainty (Equation (3.10)) and due to perspective deformation (Equation (3.8)).

Note that, for motions producing big parallax (cos(α) << 1) the depth covariance is dominant.

On the other hand, approximations ( zi
z0
< 1) or distancing motion ( zi

z0
> 1) produce strong

perspective deformations. Our covariance model bridges the gap between visual errors and

meaningful entropy values of the state.

3.7.2 Photometric odometry

Photometric BA. ID-RGBDO [FCT20] is a RGB-D direct odometry that uses information

metrics for informative point selection and keyframe creation. ID-RGBDO performs BA over

cameras and points in a sliding window. We implement at the end of each run a photometric

global BA over all keyframes and points used along the sequence. We run the BA iteratively

over this seed modifying poses and points with small Gaussian noise to observe the error
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Sequence [FCT20] ours Sequence [FCT20] ours

fr1. xyz 1.55 1.62 fr3. tex. str. far 1.56 1.45
fr1. rpy 7.30 6.20 fr3. tex. str. near 1.89 1.78
fr2. xyz 0.90 0.81 fr3. tex. nstr. near 3.89 3.52
fr2. rpy 0.72 0.63 fr3. tex. str. far. v. 1.22 1.98
fr2. desk 2.15 1.88 fr3. tex. str. near. v. 4.50 2.36
fr2. dishes 7.07 5.02 fr3. tex. nstr. near v. 6.56 2.92
fr3. long office 3.11 2.65 fr3. long office v. 2.95 2.26

Table 3.4: ATE (cm) for photometric BA in different sequences of TUM RGB-D. For each pair,
the left one is the baseline with isotropic noise and the right one with our deformation model.
Ours outperforms the baseline in 12/14 sequences, with an average ATE reduction of 12.6%
and a maximum reduction of 55.5% in fr3. tex. nstr. near v..

distribution. We evaluate two models for the residual covariance: an isotropic Gaussian one

and ours, based on deformations. Table 3.4 collects the results in a selection of sequences of the

TUM RGB-D dataset [SEE+12a]. Specifically, we use all static sequences where the accuracy

of the resulting trajectory is enough to guarantee that photometric BA converges, taking into

account the smaller baseline for direct methods to converge. Note that our deformation model

consistently leads to smaller trajectory errors.

3.7.3 Feature-based SLAM

Feature-based BA. ORB-SLAM2 [MAT17a] is a feature-based SLAM system for monocular,

stereo and RGB-D cameras. It includes some capabilities like map reuse, loop closing and

relocalization. We run ORB-SLAM2 (where loop closure was deactivated from the original

implementation in [MAT17a]) in different sequences and we apply a global BA at the end of

each sequence over all the map points and all the keyframes poses. We modify this map by

adding small Gaussian noise, in order to show variability in different runs. We then evaluate

in different sequences two configurations for the global BA: with and without our deformation

model. Table 3.5 shows the absolute trajectory error (ATE) of both configurations. Compared

to the ATE of photometric BA (Table 3.4), notice two things. First, the tighter distribution

of errors, confirming the better convergence of feature-based methods. And second, a smaller

improvement, due to a higher degree of maturity of these methods and the complexity of

modeling accurately the effect of the feature processing.
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Sequence [MAT17a] ours Sequence [MAT17a] ours

fr1. xyz 1.34 1.13 fr3. tex. str. far 1.08 0.90
fr1. rpy 3.17 3.09 fr3. tex. str. near 2.12 1.96
fr2. xyz 0.54 0.54 fr3. tex. nstr. near 1.37 1.21
fr2. rpy 0.37 0.35 fr3. tex. str. far. v. 1.12 1.04
fr2. desk 4.15 3.99 fr3. tex. str. near. v. 1.35 1.10
fr2. dishes 4.67 4.47 fr3. tex. nstr. near v. 1.56 1.51
fr3. long office 2.39 2.33 fr3. long office v. 2.34 2.06

Table 3.5: ATE (cm) for feature-based BA in different sequences of TUM RGB-D. For each
pair, the left one is the baseline with isotropic noise and the right one with our deformation
model. Ours outperforms the baseline in 13/14 sequences, with an average ATE reduction of
9.7% and a maximum reduction of 22.7% in fr3. tex. str. near. v..

3.8 Conclusions and Future Work

In this chapter we have derived for the first time a general model for the perspective deformation

of 2-dimensional image patches and, based on that, we have particularized the relation of this

deformation with feature-based and photometric residuals. We have validated the goodness

of fit of the model in both synthetic and real data, and we have shown experimentally that

including perspective deformation into residual covariances improves the accuracy of direct

and feature-based odometry and SLAM at a negligible computational cost and with minimal

integration effort. Up to our knowledge, this is the first time that perspective deformation

is explicitly modeled and applied to odometry and SLAM. We also show how to obtain more

meaningful information metrics by modelling the covariances of the perspective deformation.

Our evaluation focuses on global BA; since it is not coupled with other real-time parts of the

pipelines (e.g., keyframe creation) and hence removes other factors from the evaluation.



Chapter 4

SID-SLAM: Semi-Direct

Information-Driven RGB-D SLAM

4.1 Abstract

This chapter presents SID-SLAM, a complete SLAM framework for RGB-D cameras. Our main

contribution is a semi-direct approach that, for the first time, combines tightly and indistinctly

photometric and feature-based image measurements. Additionally, SID-SLAM uses information

metrics to reduce the state size with a minimal impact in the accuracy. Our evaluation on

several public datasets shows that we achieve state-of-the-art performance regarding accuracy,

robustness and computational footprint in CPU real time. In order to facilitate research on

semi-direct SLAM, we also contribute the Minimal Texture dataset, composed by RGB-D

sequences that are challenging for current baselines and in which our pipeline excels.

4.2 Introduction

Visual odometry and SLAM systems are typically divided in the literature into two cate-

gories, feature-based and direct methods, depending on the type of residuals that are minimized

[CCC+16]. But, why should we choose between the two? Our contribution in this chap-
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Figure 4.1: (a) Features (orange squares) and high-gradient pixels (blue circles) tracked by
SID-SLAM and estimated map in a ETH3D sequence [SSP19]. Jointly minimizing photometric
and feature-based residuals improves SLAM robustness and accuracy, specially in scenarios
such us our minimal texture dataset (b).

ter is a strategy to use indistinctly feature-based or photometric residuals, depending only on

their information content, and minimizing them jointly to estimate the SLAM state. See Fig.

4.1 for an illustration of our results. We implemented SID-SLAM full RGB-D SLAM pipeline

to evaluate our proposal. Our results demonstrate that an information-based tight fusion of

photometric and feature-based residuals achieves state-of-the-art performance in accuracy, ro-

bustness and computational footprint. Our fusion of residuals is particularly useful for minimal

texture cases. In order to illustrate that, we contribute a novel dataset which is conceptually

simple, but extremely challenging for current RGB-D SLAM baselines.

The key of our proposal is the complementary nature of feature-based and photometric methods.

We will elaborate further on this in the rest of this section. Features (e.g., corners, blobs) can be

robustly tracked up to a certain degree of illumination and viewpoint changes. However, they

appear sparsely in images and hence do not exploit all available information. In contrast, direct

methods [IA99] use potentially all available data, since they use the raw pixel intensities. But

their high variance to illumination and perspective changes, most of the times not accounted

by the residual models, makes them fragile in practical applications. Rolling shutter effects,

sensor asynchronism and calibration errors [YWGC18]) are also more problematic for direct

methods than feature-based ones.

Features require data association, for which correspondences are searched independently first,

and robust estimation deals with spurious matches later. Since feature detection and matching
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runs at real time, most detectors are optimized for speed rather than precision. Direct methods

do not need prior data association, since this is implicitly given by the geometry. This allows to

track pixels on weak corners and edges, in environments with little or high-frequency textures

(e.g., sand [MSFV+21] or asphalt). However, as a drawback, their convergence is limited to

the basin of attraction of image gradients. An important difference to be highlighted is the

geometric dimension of both minimization errors. The error is 2-dimensional in the case of

features, whereas the alignment of an edge is restricted to its normal direction [FZG+16].

Also related to it, the main challenge for a successful fusion is a proper model of the residual

covariances, that we address in our work.

4.3 Related Work

The taxonomy of modern VO/SLAM into feature-based, direct and semi-direct (or hybrid) has

been extensively addressed in previous works [YWGC18, LC18, SSP19]. Here we focus only on

semi-direct strategies. Semi-direct methods exploit the complementarity of both feature-based

and direct methods, and the challenge is doing it without compromising the efficiency, accuracy

and robustness.

Combining corners and higher-level features. Combining geometric features has been

extensively explored. As a few examples, [FPS14, FZG+16] use reprojection errors of corners

and edgelets, [VLF04, PVA+17, ZLK18, GOMZN+19, CCGFO21, ZWK21] combine in different

manners points and lines, and [Kae15, MKSC16, ASC20, ZKK21] use points and planes in the

state.

Loose coupling between photometric and feature-based residuals. There are several

works in the literature that use features and direct methods in SLAM, but always at different

parts of the pipeline and in a loosely coupled manner. [FPS14, FZG+16] used photometric align-

ment for tracking and pixel triangulation, and feature-based joint optimization of structure and

motion. Similarly, [LC18] combines photometric bundle adjustment of the local structure and

motion [EKC17] and geometric bundle adjustment for larger optimization windows [MAT17a].

Early direct SLAM algorithms [SB12, KSC13a, ESC14] used nearest neighbour search over

keyframes for the loop closure. [CC17, GWDC18] added to a direct VO thread a bag-of-words

loop closure [GLT12] and the optimization of a co-visibility graph of keyframe poses. This is
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similar in [SSP19], but in this case the map optimization is done by an alternating direct Bundle

Adjustment. Although all these works benefit from both point types, their loose coupling limits

their performance compared to using the same landmarks in tracking, mapping, and relocaliza-

tion tasks [MAMT15, CER+21]. Up to the authors’ knowledge, only the early [GBN08] uses

together photometric and image reprojection errors for the case of pairwise camera motion.

Colored ICP. Minimizing 3-dimensional distances together with photometric errors has been

used in many RGB-D odometry/SLAM works, e.g., [WJK+13, KSC13a, PZK17]. Differently

from us, they use both errors always and do not select the most informative one. Their relative

weight is tuned experimentally in most cases, which might cause problems in domain changes.

4.4 Semi-Direct Model Formulation

This section will cover the necessary background, notation and contributions of our semi-direct

formulation, and the specifics of our SID-SLAM and Minimal Texture dataset will be detailed

in Section 4.5.

Points. We represent 3D map points p ∈ P{ϕ ∪ f} ∈ R3 according to their image representa-

tion, that is, ϕ ∈ R3 if they are represented by image patches, or f ∈ R3 if they are represented

by feature descriptors. The image coordinates and inverse depth of p ∈ R3 in reference frame

j are denoted as uj ∈ Ω and d ∈ R, where Ω is the image domain. For photometric patches

we store a set of intensity values spread in a pattern Nϕ centered in uj [EKC17].

Keyframes. A keyframe j is defined by its RGB-D channels, its 6-DoF camera pose as a

transformation matrix T ∈ SE(3), two brightness parameters {aj, bj} and a set of reference

points to track. The Lie-algebras pose-increments x̂se(3) ∈ se(3) , with ·̂se(3) being the mapping

operator from the vector to the matrix representation of the tangent space [Str12], are expressed

as a vector x ∈ R6. During the optimization, we update the transformations at step (k) using

left matrix multiplication and the exponential map operator exp(·), i.e.,

T(k+1) = exp(x̂se(3)) ·T(k). (4.1)
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The image points ui and uj are related by

ui = Π(RΠ−1(uj, dj) + t), (4.2)

where Π(p) and Π−1(u, d) are the projection and back-projection functions and R ∈ SO(3)

and t ∈ R3 are the relative rotation and translation between frames.

Residuals. The squared photometric residual r2i |ϕ ∈ R of a patch ϕ ∈ P is the sum of the

squared intensity differences between all pixels uj in the pattern Nϕ projected in frame i, with

the corresponding pixel intensities in its reference keyframe j, combined with a logarithmically

parametrized scalar factor e−a and a photometric bias b [EKC17],

r2ϕ|i =
∑

uj∈Nϕ

(
e−aj(Ij(uj)− bj)− e−ai(Ii(ui)− bi)

)2
. (4.3)

The reprojection residual ri|f ∈ R2 of a feature f ∈ P in frame i is the geometric difference

between the landmark projection ui and its associated observation, ûi

rf |i = ûi − ui. (4.4)

Residual Covariances. We use the model in [FMCT22] to properly model the multi-view

covariances σ2
ϕ ∈ R and σ2

f ∈ R2 of the residuals in equations (4.3) and (4.4). The photometric

covariance

σ2
ϕ = σ2

I +G2σ2
φ(ηg, ε

2, d) (4.5)

is a function of the image noise σ2
I ∈ R and a geometric term σ2

φ, propagated with the photomet-

ric gradient G, which depends on the gradient direction ηg ∈ R2, the perspective deformation

ε2 ∈ R and the inverse depth d ∈ R (see [FMCT22] for details). Similarly the covariance of a

reprojection residual

σ2
f = σ2

u + σ2
φ(ε

2, d) (4.6)

depends on the associated noise of the feature descriptor σ2
u ∈ R2 and the propagated geometric

noise σ2
φ ∈ R2.
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4.4.1 Informative Point Selection

Figure 4.2: Information-based point selection in RGB-D TUM [SEE+12a], ETH
[SSP19] and our Minimal Texture dataset. Top row: high-gradient points. Middle row:
features. Bottom row: information-based selection.

We extend the approach in [FCT20] to select, in an iterative manner, the most informative

points in an image. We analyze the contribution of each point p to the accuracy of the camera

pose x in terms of entropy reduction [SMD10]:

E(x) =
1

2
log2((2πe)

6|Σx|), ∆pE(x) =
1

2
log2(1 +

∆p|Λx|
|Λx|

), (4.7)

where the information matrix

Λx = Σ−1
x =

∑
ϕ∈Q

jTϕσ
−2
ϕ jϕ +

∑
f∈Q

jTf σ
−2
f jf (4.8)

is the inverse covariance matrix Σ−1
x , obtained as the sum of the Jacobian auto-product for the

whole set of selected points Q. (jϕ ∈ R1×6) is the Jacobian of the photometric residual (4.3)

with respect to x. Analogously, (jf ∈ R2×6) is the Jacobian of the features’ residual (4.4). The

variation to the information matrix determinant yielded by the addition of a photometric patch

results in [FCT20]

∆ϕ|Λx| = σ−2
ϕ jϕ|Λx|Λ−1

x jTϕ , (4.9)

that can be expressed individually per point, depending on jϕ and the current inverse covariance

matrix. From a first-order Taylor expansion of the determinant of the covariance matrix, we

also estimate the contribution to the differential entropy for every feature
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Figure 4.3: Point Selection Strategy. 4.3a and 4.3b show the variation, in consecutive steps
of the algorithm, of the entropy of the camera pose E(x) and the minimum image distance dΩ
between iteratively selected points for an interval of values of w ∈ [0, 10]. Note how increasing
the influence of the image distance addend degrades the entropy contribution and vice-versa.
Neglecting to spread points in the image (4.3c) concentrates the points in the most informative
areas. Conversely, oversizing it (4.3e) neglects the informative content of each point. A trade-
off between the two magnitudes balanced the selection strategy (4.3d).

∆f |Λx| ≈ |Λx|Λ−1
x · (jTf σ−2

f jf ). (4.10)

We select iteratively points that maximize the trade off between their contribution to the camera

pose entropy and their spreading in the image

s(ϕ|f)
∣∣∣
k
=

∆pE(x)

∆pE(x)|k=1

+ w · dΩ
max dΩ|k

, (4.11)

where dΩ is the distance for every point with respect to the closest already added point. Since

entropy is a scene dependent metric, the first addend normalizes the contribution with the

value obtained in the first iteration k. The second normalizes the image distances of the points

with the their maximum value on each iteration. We evaluated this selection method on a wide

array of scenes (see Figure 4.2). Figure 4.3 shows the influence of the relative weight w in the

point selection.
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4.4.2 Information-based tracking

We track every frame reprojecting the points from a local map. We compute the normalized

tracking information available per visible point from a reference keyframe with

E(x) = log2

∣∣∣∣∣
(

#ϕr +#fr
#ϕw +#fw

)
Λx

∣∣∣∣∣ = 6 log2

(
#ϕr +#fr
#ϕw +#fw

)
+ log2(

∣∣Λx

∣∣), (4.12)

where #ϕr and #fr are the amount of visible points from the reference keyframe and #ϕw and

#fw the total amount of visible points from the local map. Figure 4.4 shows how E(x) is used

as a single threshold for keyframe insertion.

4.4.3 Bundle Adjustment with Semi-Direct Formulation

Semi-Direct joint residual. The full combined cost over all frames and points is given by

∑
j∈K

∑
ϕ∈Pj

∑
i∈obs(ϕ)

∣∣∣∣∣∣α2(σ−2
i r2i )ϕ

∣∣∣∣∣∣
γ
+
∑
j∈K

∑
f∈Pj

∑
i∈obs(f)

∣∣∣∣∣∣β2(riσ
−2
i ri)f

∣∣∣∣∣∣
γ
, (4.13)

where j iterates over all keyframes K, ϕ and f over all points P in keyframe j, and i over all

frames obs(ϕ) and obs(f) in which the point ϕ or f are visible. We apply a Cauchy robust

cost function to decrease the influence of outliers scaled with a gamma probability value γ0.95

[KSC13a][GOMGJ17].

Online covariance correction for residuals. Even if we use sophisticated uncertainty

models (see equations (4.5) and (4.6)), non-modeled factors (such as motion blur or illumination

changes) might unbalance the relative weight between photometric and reprojection residuals

and impact the pipeline accuracy. We estimate at run time a correction factor for both residuals

iteratively with the covariances α2 , β2 estimated online from the residual distribution

α2 = γϕ(σ
−2
i r2i |j∈K,ϕ∈P,i∈obs(ϕ)), β2 = γf (riσ

−2
i ri|j∈K,f∈P,i∈obs(f)), (4.14)

where γϕ and γf are the functions that map the covariance of gamma distributions from the

median value of the residuals [KSC13a][GOMGJ17].
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Figure 4.4: Information Threshold for Keyframe Insertion. Left: Exploratory trajec-
tory. We manually modified four times the threshold to show how allowing bigger information
drops reduces the keyframe creation speed. Darker cameras correspond to bigger information
losses. Right: Non-exploratory trajectory. This sequence is longer than the previous one but,
since the camera is not exploring new areas, our information criterion keeps a low number of
keyframes. Note how the information reduces drastically as the camera moves away from the
map.



60 Chapter 4. SID-SLAM: Semi-Direct Information-Driven RGB-D SLAM

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7 8 9

50

100

150

200

250

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7 8 9

5

6

7

8

9

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7 8 9

8

10

12

14

Figure 4.5: Left: Bigger drops of tracking information ∆E(x) reduce the number of keyframe
insertions. Center: Decreasing the number of keyframes deteriorates the relative pose error of
the tracking. Right: The absolute trajectory error has a sweet spot with a 4-bit information
drop. Bigger information drops reduce the tracking quality, and lower yield to trajectory drift.

Motion-only Optimization. As [EKC17], we jointly optimize the camera pose in SE(3) and

brightness parameters with a coarse to fine pyramid resolution scheme.

Alternating Full BA. We use alternating optimization between cameras and points instead

of jointly optimizing local and global full Bundle Adjustment. This facilitates the real-time

performance of photometric Bundle Adjustment by speeding up Gauss-Newton optimization

on strongly connected problems [PDL17, SSP19].

4.5 SID-SLAM

4.5.1 Windowed optimization

We track each new frame with respect to a reference keyframe and a local window of covisible

keyframes around it. As detailed in Section 4.4.2, we insert a new keyframe when the tracking

information drops more than a certain ∆E(x) in bits.

We maintain a graph of covisible keyframes and, with every new keyframe, we trigger a Bundle

Adjustment optimization of the cameras and points in a fixed-size window of the covisibility

graph. For additional constraints, we project points of neighbouring keyframes in the optimiza-

tion window.

Figure 4.5 shows the relationship between information loss and trajectory errors. The informa-

tion loss threshold has a clear influence in the keyframes created. Increasing the frequency of
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keyframe creation frequency improves the tracking quality (observe the RPE trend). However,

an excessive number of keyframes reduces their geometric influence and the time available for

local Bundle Adjustment. This increases the trajectory drift, and leads to a sweet tuning spot

for minimizing the absolute trajectory error (observe the ATE graph).

4.5.2 Loop Closure, Pose Graph Optimization and Global BA

To correct the pose drift, we implemented a loop closure strategy that leverages both features

and photometric intensities.

Loop detection is performed relying on the full set of AKAZE features extracted for each

keyframe. Differently from classical bag-of-words approaches, that requires a carefully assem-

bled vocabulary of features, we build upon HBST [SG18] where a binary tree of feature descrip-

tors is built online and allows for efficient retrieval of similar images from a growing database.

Following the insertion of keyframe i, the database is queried for keyframe j such that the num-

ber of occurrences of the same visual words is the highest. If the number of matches relative to

the total number of features extracted is sufficient, we evaluate the number of co-occurrences

with keyframes j − 1 and j + 1 looking for temporal consistency. As a first validation step of

the candidate match, we match the full set of AKAZE features belonging to keyframes i and j

to gather as many correspondences as possible. Then, a classical P3P-RANSAC step returns

an initial transformation between the two keyframes.

Loop validation. Semi-Direct alignment is finally conducted as a last barrier against false

positives and as a refinement of the estimated transformation, which is then utilized to bootstrap

a global Bundle Adjustment step.

Loop closure. Performing alternating semi-direct BA instead of a full optimization might

be still very costly, and therefore we perform it in three steps. (i) First a pose graph opti-

mization. A pose graph optimization step, upon a loop detection, might push old keyframes

out of the limited convergence region of the photometric part of the optimization. (ii) We

have stored the geometric reprojection image position for all residuals, either photometric or

feature-based, in all previous local windowed optimization. We incorporate to these measures

the reprojections obtained in the loop validation step and perform landmark-like pose BA.

(iii) Finally we perform alternating full BA adjustment to refine the global solution.
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4.6 Experiments

Aleatoric effects and real-time constraints make performance comparisons between state-of-

the-art SLAM pipelines challenging. In RGB-D SLAM, it is common practice to compare the

Absolute Trajectory RMSE with SE(3) alignment (SE(3) ATE RMSE, [SEE+12a]). Among the

good practices, (i) [SSP19] suggests evaluating in complete benchmarks instead of subselect

(potentially cherry-pick) sequences, [MAT17a, CC17] comparemedian results (ii) over several

runs to account the non-deterministic effects of mutithreading, (iii) [DNZ+17] shows memory

consumption (GB) for the captured sequences, and (iv) [FZG+16] shows the processing

time (v) running the experiments in the same machine.

In this work we run our own evaluation of SID-SLAM, the feature-based baselines ORB-SLAM2

[MAT17a] and ORB-SLAM3 [CER+21], and the photometric baseline BAD-SLAM [SSP19] in

three public RGB-D datasets (i). Tables 4.1, 4.2 and 4.3 gather the median value of the absolute

trajectory error over ten runs per sequence (ii). We gather all values found in literature and

also the running details. We compare memory footprint and resources consumption using a

laptop with an Intel Core i7-10875H, 32 GB of RAM and an NVIDIA GeForce RTX 2070 8GB

(iii),(iv),(v). We report the percentage of trajectory (vi) that baselines are able to compute.

We only compare accuracy for runs that cover rigorously 100% (vii) of the sequence, ensuring

that accuracy is compared also in challenging parts of the sequences. We collect the values of

our evaluation together with those found in the literature and reflect relevant evaluation con-

ditions (viii) about each evaluation. We also report the number of keyframes (ix) created

per sequence which is intimately linked to accuracy and memory footprint. Finally we evaluate

in our Minimal Texture dataset.

4.6.1 Results in public RGB-D datasets

Accuracy analysis. Figure 4.6 shows the percentage of trajectory estimated successfully by

the three baselines and our SID-SLAM. Tables 4.1 and 4.2 report their accuracy in fully com-

pleted runs, avoiding misleading comparisons between runs that have been partially estimated.

Values in bold represent the smallest tracking error per sequence, values in parentheses corre-

spond to runs with at least 50% of the estimated track, and dashes represent large tracking

errors early in the sequence.
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RGB-D TUM dataset. Overall, dense approaches are more robust than sparse ones in

extreme textureless sequences, as in fr3 notex. near or fr3 large cabinet. However, in scenes

with small degrees of texture but with visible corners and edges, our semi-direct approach makes

efficient use of all visual information and outperforms both dense and feature-based methods

(as in fr3 notex. far). Similarly, in the fr3 tex. far sequences, where the scene content evolves

from a high-frequency textured scene to a gradient-shaped cable, our approach outperforms

all the baselines. Even in richly textured sequences, as fr2 desk, SID-SLAM outperforms the

baselines. This is of high merit, as pure feature-based approaches avoid photometric noises and

fusion nuisances and they should shine there. In summary, SID-SLAM improves robustness

over feature-based methods by completing 24/31 sequences and achieves the best accuracy over

all other baselines at 12/31 sequences.

ET3D benchmark and Synthetic RGB-D TUM. BAD-SLAM [SSP19] consistently ob-

tains the best accuracy in the ETH3D benchmark [SSP19]. This good performance is the

result of two factors. Firstly, high-quality sensors calibrated with low errors downplay typical

feature filtering that is so convenient with lower quality cameras. And secondly, BAD-SLAM’s

additional minimization of a depth alignment residual. This helps in cases of poor visual infor-

mation, which is benefitial in this high-quality dataset, but adds a dependency on the depth

measurements that might introduce errors in lower-quality data. Our approach achieves simi-

lar performance on these sequences which are comparatively shorter (especially plant with less

than 200 frames) and where the accuracy range is of the order of tenths of a millimetre.

ICL-NUIM. Our SID-SLAM complete all the sequences and obtains the best accuracy in 6/16

sequences in the living room and office environments. We believe the synthetic nature of the

data, with non-informative planar depths in many cases, damaged BAD-SLAM performance.

Keyframe insertion and memory footprint. Figure 4.7 shows performance differences

between the sparse feature-based, sparse semi-direct and dense photometric approaches. The

bottom row of the heat map shows the number of inserted keyframes normalized to the number

of frames per sequence. As can be observed in the table, our entropy-based criterion inserts

the smallest ratio of keyframes, far from the BAD-SLAM ratio of more than 11 keyframes per

frame. Note how ORB-SLAM2 and ORB-SLAM3 increase drastically the number of keyframes

in some sequences to avoid tracking failure (as in plant).

Figure 4.7 reports the amount of memory allocated per keyframe for each baseline and our
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(a) RGBD-TUM [SEE+12a] and Synth.[SSP19].
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(b) ETH3D [SSP19].
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(c) ICL-NUIM [HWMD14].

Figure 4.6: Percentage of estimated trajectory complete.
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nd.i. Freiburg 1 Freiburg 2 Freiburg 3 Freiburg 3 Validation13

[NIH+11] KinectFusion ✗1 9.1 5.7 2.6 6.4
[EHE+12] RGB-D SLAM ✗2 7.9 2.3 4.3 9.1 8.4 2.6 7.6 1.4 9.511 1.9 2.611 3.210 1.710

[SB12] MRSMap ✗ 6.9 4.3 4.9 2.6 6.9 2.7 3.9 1.3 5.2 2.4 2.0 4.210

[EHS+13] RGB-D SLAM - 2.6 8.7 5.7
[KSC13a] DVO SLAM ✗ 8.3 2.1 4.6 2.8 5.312 2.0 3.4 1.1 1.7 1.810 3.5 1.810

[NZIS13] Voxel Hashing ✗3 2.3 5.7 2.2 2.3 8.7
[WKJ+15] Kintinuous ✗4 3.7 7.1 4.7 7.5 2.8 1.7 3.4 2.9 3.0 3.1
[WSMG+16] Elast. Fusion ✗5 10.8 2.0 4.8 2.2 6.8 2.5 8.3 1.1 7.1 - 1.5 1.1 - 9.9 1.7 7.4 1.6 3.0 2.1 1.3 1.5 4.9
[MAT17a] ORB-SLAM2 ✔6 1.6 2.2 4.77 0.9 0.48 1.0 1.9
[CC17] RGBD-TAM ✔6 10.1 2.7 4.2 2.5 15.5 2.1 8.1 1.0 2.7 3.6 0.2 0.7 5.7 7.0 2.7 2.6 1.07 1.3 4.4 1.0 1.0 -

[DNZ+17] Bundle Fusion ✗ 1.6 1.1 2.2 1.2
[YYR17] PSM SLAM ✗ 5.5 1.6 5.1 3.1
[SSP19] BAD-SLAM ✗ 1.79 1.19 1.7 # Best

[MAT17a] ORB-SLAM2 ✔ - (1.6) (2.2) 1.4 4.3 2.0 (3.9) 1.0 0.9 (4.3) 0.3 0.4 (6.3) (4.9) 1.0 (5.9) 2.4 (0.9) (2.5) 1.1 1.1 (1.4) - 5.8 0.9 3.1 1.6 (1.2) (2.0) 1.2 1.1 9/31
[CER+21] ORB-SLAM3 ✔ - 1.8 2.7 2.0 7.6 2.2 (6.2) 1.0 1.8 8.8 0.5 0.4 (2.4) 15.1 1.1 4.6 2.1 (0.9) (2.3) 1.0 1.0 (1.2) - 5.4 1.0 3.5 1.5 (0.9) (1.6) 1.2 1.1 8/31
[SSP19] BAD-SLAM ✔ - 2.1 2.7 1.1 8.4 1.7 - 1.0 6.3 - 0.7 1.1 1.2 3.6 3.3 8.0 2.7 10.0 1.0 2.4 1.4 - 1.1 3.1 2.2 - 3.7 1.8 6.3 2.8 1.5 10/31

SID-SLAM ✔ - 2.2 3.5 1.4 9.3 3.1 - 1.0 0.9 3.6 0.4 0.4 (6.3) 9.6 2.0 3.2 1.9 1.8 - 1.0 1.0 - - 6.4 1.6 2.6 1.3 1.6 - 1.7 1.3 12/31

Table 4.1: ATE (cm) in the TUM RGB-D benchmark [SEE+12a] for different baselines got from
their original publications and from our own evaluation. We supply details about how
the non-deterministic nature of the system is account (nd.i). Notes on numbered entries:
(1) Evaluated in [KSC13a]. (2) Evaluated in [SB12]. (3) Evaluated in [DNZ+17]. (4) Best
estimate over ten runs. (5) Using per-sequence best parameters. (6) Values are the median
results over 5 runs of each sequence. (7) Typo in [CC17]. (8) Depth maps were compensated
for a 4% bias. (9) This experiments were performed over the RGB and depth distorted images
which might explain part of the degraded performance. (10) These values appear in [WKJ+15]
but not in the original publication [KSC13a]. (11) These values differ in [WKJ+15]. (12) Typo
in [MAT17a]. (13) These sequences were part of the dataset hidden validation but the ground
truth is now available. (14) Depths and RGB images are misaligned in the cabinet sequence
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[WSMG+16] Elast. Fusion ✔1 1.18 1.51 - 2.83 1.11 9.41 - - 1.0 1.06 3.47 0.80 0.82 1.77 1.17 1.07 - 1.25 -
[KSC13a] DVO-SLAM ✔1 0.44 - - 0.51 0.86 3.60 2.05 0.52 0.34 0.24 9.76 0.84 0.28 0.97 0.29 0.49 0.82 1.82 0.69
[DNZ+17] Bundle Fusion ✔1 2.24 9.51 - 2.89 1.62 - - 1.34 0.91 0.34 0.35 - 0.41 - - - 1.73 - 1.02
[MAT17a] ORB-SLAM2 ✔1 0.74 0.80 1.63 0.40 0.86 1.19 1.52 0.37 0.11 0.52 5.71 0.16 0.28 2.01 0.17 0.41 0.56 0.83 0.99
[SSP19] BAD-SLAM ✔1 0.68 0.51 6.19 0.30 0.29 - 0.55 0.39 0.10 0.30 0.33 0.19 0.14 0.18 0.14 0.17 0.24 0.22 0.28
[CER+21] ORB-SLAM3 ✗1,2 2.12 1.10 2.85 2.19 7.55 4.12 3.28 1.18 7.51 3.36 8.35 0.33 0.65 2.19 0.55 0.35 0.98 1.40 2.43

[MAT17a] ORB-SLAM2 ✔ 0.77 0.98 2.42 0.48 - 1.29 (2.8) 0.47 0.17 0.35 1.54 0.22 0.24 1.49 (0.24) 0.40 0.52 0.79 0.92
[CER+21] ORB-SLAM3 ✔ 0.73 1.08 2.34 0.45 - 1.21 1.59 0.40 0.23 0.35 1.49 0.27 0.38 1.59 - 0.43 0.53 0.74 1.09
[SSP19] BAD-SLAM ✔ 0.61 0.63 - 0.32 0.69 0.44 0.44 0.41 0.13 0.26 0.33 0.21 0.17 0.21 0.20 0.20 0.26 0.26 0.29

SID-SLAM ✔ 0.73 0.80 3.51 0.50 - 1.02 1.76 0.45 0.16 0.30 0.87 0.29 0.17 0.43 0.24 0.39 (0.41)
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nd.i. Synthetic Freiburg (Clean) avg.4 med.4

[MAT17a] ORB-SLAM2 ✔ 0.50 0.31 0.31 0.11 0.14 1.31 2.16 0.69 0.475 0.31 0.30 5
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nd.i. ICL NUIM

[MAT17a] ORB-SLAM2 ✔ 0.8 0.8 15.2 12.4 1.7 2.7 1.0 1.1 3.0 4.4 7.3 5.3 1.4 2.3 8.7 6.0
[CER+21] ORB-SLAM3 ✔ 7.6 8.5 19.4 17.1 1.7 5.1 2.3 1.7 3.6 10.3 - - 1.4 2.2 7.3 2.3
[SSP19] BAD-SLAM ✔ 0.2 - 0.2 1.1 7.8 - - - - - 0.5 - - - 0.8 -

SID-SLAM ✔ 0.8 0.7 22.3 6.7 2.1 2.4 1.2 1.0 2.8 3.7 9.8 6.8 1.6 1.9 9.5 4.5

Table 4.2: ATE (cm) in the ETH3D benchmark [SSP19], the synthetics RGB-D TUM dataset
[SSP19] and ICL-NUIM [HWMD14]. We supply details about how the nondeterministic nature
of the system is account (nd.i). Notes on numbered entries: (1) Results from the online
leaderboard. (2) This evaluation of ORB-SLAM3 gets distorted results. (3) We get a consistent
scale bias of 0.5%. We believe this is due to a misaligment between photometric patches and
features on the image that propagates to the range of millimetres. (4) Average and median
values of the seven sequences. (5) Values from [SSP19]. (6) This value is a typo in [SSP19].
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median values #key./#frames MiB/#key.

ORB-SLAM2 8.0 2.13
ORB-SLAM3 10.9 1.85
BAD-SLAM 11.3 4.51
SID-SLAM 7.2 2.45

Figure 4.7: Memory footprint. Bottom rows: percentage of inserted keyframes in rela-
tion to the number of frames per sequence. Top rows: Total allocated memory in MiB per
sequence. Right Table: median values of the keyframe percentage and the allocated memory
per keyframe (Mib).

(a) Strong persp. (b) Extreme. Geometry (c) Loop. (d) Sand. (e) Easy.

Figure 4.8: Representative frames from the Minimal Texture dataset.

SID-SLAM. BAD-SLAM is the most demanding in terms of memory and computation (note

that it runs on GPU), as in addition to buffering gray and depth images it handles larger data

loads. SID-SLAM uses slightly more memory per keyframe than the feature-based baselines

(we need to buffer grey images but not their depth), but this is compensated by the lower

keyframe ratio.

4.6.2 Results in Minimal Texture Dataset

Motivation. We recorded this new dataset to facilitate state-of-the-art research on semi-

direct SLAM, particularly: (i) a better understanding of visual uncertainties of both features

and photometric approaches [FMCT22], (ii) the efficient use of all the information on the image

which maximizes SLAM robustness and reduces its computational footprint [FCT20] [APSL08].

Our dataset consists of 16 sequences with conceptually simple but challenging content. We

group the sequences as Extreme Geometry , Loop, Sand, and Easy. The Easy set contains the

control sequences to give an indicative measure of accuracy. Extreme Geometry sequences form

the core of the dataset, focusing on minimal geometric content and strong perspective changes.

The Loop set alternates between conceptual geometry content and the laboratory environment.



4.6. Experiments 67

L
in
es

C
ir
cl
e

D
o
d
ec
ag
on

H
ex
ag
on

S
q
u
ar
e

T
ri
an

gl
e
1

T
ri
an

gl
e
2

T
ri
an

gl
e
3

C
ir
cl
e
D
o
d
ec
ag
on

C
ir
cl
e
H
ex
ag
on

C
ir
cl
e
S
q
u
ar
e

S
an

d
R
o
ck
s
1

S
an

d
R
o
ck
s
2

S
an

d
R
o
ck
s
3

A
rd
ea

L
R
U

Ext.Geometry Loop Sand Easy

nd.i. 14/11/21

[MAT17a] ORB-SLAM2 ✔ 1.5 (1.2) (10.0) - - - - - (13.0) (10.6) (6.2) 6.6 - 3.5 1.8 5.5
[CER+21] ORB-SLAM3 ✔ 1.5 1.1 (8.9) 1.92 - - - - (13.7) - 7.2 6.6 - 3.8 1.9 5.8
[SSP19] BAD-SLAM2 ✔ - - - - - - - - - - - 8.0 8.5 3.8 10.0 -

SID-SLAM (ϕ)1 ✔ - 0.8 2.7 3.0 (2.5) 1.9 3.1 2.4 6.6 7.1 4.7 5.8 7.6 3.9 2.1 6.3
SID-SLAM (f)1 ✔ 2.1 - - - - - - - - - - - - 5.1 4.5 7.2

SID-SLAM ✔ 1.1 0.9 2.3 1.4 (2.3) 1.9 3.2 2.1 6.2 10.0 4.4 5.2 7.8 3.5 2.0 5.8

Table 4.3: ATE (cm) in Minimal Texture for different baselines and SID-SLAM. Notes
on numbered entries: (1) These values are part of an ablation study and are therefore not
suitable to compete with those of state-of-the-art baselines. (2) This is a modified version of
ORB-SLAM in which we make it work with a minimum number of features.

Finally, the Sand group is meant to test semi-direct SLAM algorithms in textureless scenarios

such as with planetary exploration purposes [MSFV+21]. The dataset was recorded with a

Realsense D435i, capturing intensity and depth images of resolution 1920× 1080 at rate of 30

Hz. We used a ceiling-mounted Vicon system to record millimeter-level ground truth for the

camera pose.

Ablation study. We ablated SID-SLAM in two configurations: using only patches ϕ, and

using only features f . The features-only configuration failed in all Extreme geometry sequences

(Triangles, Square, Hexagon or Dodecagon) due to the low number of keypoints which, as can

be seen in Triangle and Square images in Table 4.3, is occasionally reduced to none. Even SID-

SLAM fails in Square as some configurations are quasi-degenerate. Finally, the patches-only

configuration failed in Lines because, once again in the image, the photometric gradients were

vertically aligned and it was only features placed at the extremes avoiding drift optimization on

the horizontal axis. Note that the best accuracy in this sequence is obtained by complete SID-

SLAM which grabs the necessary scattered features and refines the solution with photometric

vertical gradients.

Evaluation. Table 4.3 shows that state-of-the-art baselines, both feature-based and photo-

metric, fail at Extreme geometry sequences. This is caused by their inability to extract and

process visual information. The reduction of thresholds for feature extraction and matching in

ORBSLAM2/3 in sequences with just one Square (and thus only four corner-like features) leads

to system failure. BAD-SLAM failed in all the geometry sequences. SID-SLAM outperforms

all methods significantly both in robustness and accuracy.
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4.7 Conclusions

In this work we present SID-SLAM, a complete RGB-D SLAM pipeline that, for the first time,

fuses feature-based and direct methods in a tightly-coupled manner. As key contributions of

our pipeline, we developed covariance models and information-based procedures for appropriate

selection of the most informative points independently of its type and their fusion in a single

cost function. We also use information criteria for keyframe selection. A thorough validation

in three public datasets demonstrate that our SID-SLAM achieves state-of-the-art accuracy-

robustness-efficiency performance. We further show the strengths of combining feature-based

and direct methods in our novel Minimal Texture dataset, which also illustrates significant

limitations in the literature.



Chapter 5

DOT: Dynamic Object Tracking for

Visual SLAM

5.1 Abstract

In this chapter we present DOT (Dynamic Object Tracking), a front-end that added to existing

SLAM systems can significantly improve their robustness and accuracy in highly dynamic

environments. DOT combines instance segmentation and multi-view geometry to generate

masks for dynamic objects in order to allow SLAM systems based on rigid scene models to

avoid such image areas in their optimizations.

To determine which objects are actually moving, DOT segments first instances of potentially

dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing

the photometric reprojection error. This short-term tracking improves the accuracy of the

segmentation with respect to other approaches. In the end, only actually dynamic masks are

generated. We have evaluated DOT with ORB-SLAM 2 [MAT17b] in three public datasets.

Our results show that our approach improves significantly the accuracy and robustness of ORB-

SLAM 2, especially in highly dynamic scenes.

69
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Figure 5.1: Top row: The frames correspond to ORB-SLAM2 [MAT17b] estimating the tra-
jectory of the camera from the stream of images in The KITTI Benchmark [GLU12]. Middle
row: Modified ORB-SLAM2 that works with the segmentation masks generated by DOT,
which distinguish between moving and static objects. Bottom row: Modified ORB-SLAM2
using the segmentation masks provided by Detectron2 [WKM+19], that encode all potential
dynamic objects. Note how from the most static scene (left column) to the most dynamic one
(right column), DOT is capable to avoid moving objects while keeping the static ones. DOT
achieves a trade-off between those two opposing scenarios by estimating the actual motion state
of the objects in order to get higher tracking robustness and accuracy.

5.2 Introduction

Simultaneous Localization and Mapping, commonly known by its acronym SLAM, is one of the

fundamental capabilities for the autonomous navigation of robotic platforms [CCC+16]. Its goal

is the joint estimation of the robot motion and a map of its surroundings, from the information

of its embedded sensors. Visual SLAM, for which the sensors are mainly, or exclusively, cameras,

is one of the most challenging yet relevant configurations.

Despite the significant advances in SLAM in the last two decades, most state-of-the-art systems

still assume a static environment, where the relative position between the scene points does

not change and the only motion is done by the camera. With this assumption, SLAM models

attribute the visual changes exclusively to the relative camera motion. A usual approach

[MAMT15, MAT17b] is modeling dynamic areas as outliers, ignoring them during the pose

tracking and map estimation processes. However, for several frames, until such dynamic areas

are discarded as outliers, their data is used in the SLAM optimization, hence introducing errors

and inconsistencies in the estimation of the map and the camera poses. Moreover, for feature-

based SLAM methods, that track a small number of salient image points, the errors produced

by a relatively small number of matches in dynamic areas are relevant and can lead to the

system failure.
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The world and the real applications in which a robot or an AR system must operate is far

from being static. We can cite as representative examples the autonomous navigation of cars

or drones, AR in crowded scenes or even planetary exploration tasks, where the poor texture

makes SLAM systems precarious in the presence of shadows or other robots. Developing SLAM

systems that are sufficiently robust to operate in highly dynamic environments is then essential

for many applications.

As shown in the Figure 5.1, this work aims to develop an image processing strategy that

improves the robustness of a visual SLAM system in dynamic environments. Our specific con-

tribution is the development of “Dynamic Object Tracking” (DOT), a front-end that combines

instance segmentation with multi-view geometry to track the camera motion, as well as the mo-

tion of the dynamic objects, using direct methods [EKC17]. The result of this pre-processing

is a mask containing the dynamic parts of each image, that a SLAM system can use to avoid

making correspondences in such regions.

Our experimental results in three different public datasets show that our combination of se-

mantic segmentation and geometry-guided tracking outperforms the state of the art in dynamic

scenes. We also find relevant that DOT is implemented as an independent front-end module,

and hence easy-to-plug in existing SLAM systems. As DOT includes short-term mask tracking,

we avoid the segmentation of all frames in the sequence, with significant savings in computa-

tion. Finally, although we tuned and evaluated DOT for the specific domain of car navigation,

our strategy would be valid for other applications.

5.3 Related Work

SLAM in dynamic environments is an open research problem with a large scientific bibliography.

We will divide the different approaches into three main categories.

The first category, and the most general one, models the scene as a set of non-rigid parts, hence

including deformable and dynamic objects [NFS15, IZN+16, LPBM19]. While this research line

is the most general, it is also the most challenging one. In this work we will assume intra-object

rigidity, which is the premise behind the other two categories of dynamic visual SLAM.

The second category aims to improve the accuracy and robustness of visual SLAM by recon-
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structing only the static part of a scene. Dynamic objects are segmented out and ignored for

camera pose tracking and map estimation. Along this line, DynaSLAM [BFCN18], built on

top of ORB-SLAM2 [MAT17b], aims to estimate a map of the static part of the scene and

re-use it in long-term applications. Dynamic objects are removed by combining 1) semantic

segmentation for potentially moving objects, and 2) multi-view geometry for detecting inconsis-

tencies in the rigid model. Mask R-CNN [HGDG17] is used for semantic segmentation, which

detects and classifies the objects in the scene into different categories, some of which have been

pre-set as potentially dynamic (e.g., car or person). DynaSLAM was designed to mask out all

the potentially mobile objects in the scene, which results in a lower accuracy than the original

ORB-SLAM2 in scenes containing potentially mobile objects that are not actually moving (e.g.,

scenes with many parked cars). The aim of this work is, precisely, to overcome this problem as

only those objects that are moving at that precise moment will be labeled as dynamic.

Another work that has a similar approach is StaticFusion [SJP+], a dense RGB-D visual SLAM

system where segmentation is performed by using the 3D reconstruction of the scene background

as a way of propagating the temporal information about the static parts of the scene.

Finally, the third line of work in dynamic visual SLAM, which goes beyond the segmentation

and suppression of dynamic objects, includes works such as MID-Fusion [XLT+18], MaskFusion

[RBA18], DynSLAM [BLPG18] and ClusterVO[HYZ+19]. Their aim is to simultaneously esti-

mate the poses of the camera and multiple dynamic objects. For that purpose, in MID-Fusion

[XLT+18] and MaskFusion [RBA18] sub-maps of each possible moving object are created and

a joint estimation of both the objects and camera poses is carried out.

Most of the systems mentioned [XLT+18, BLPG18, RBA18, HYZ+19, BFCN18] involve deep

learning methods, which in some cases cannot be currently implemented in real-time due to

bottleneck imposed by the limited frequencies of the segmentation network. The contribution

developed in this work eliminates the requirement to segment all the frames, which allows

the system to be independent of the segmentation frequency of the network, thus enabling its

implementation in real time.
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Figure 5.2: Overview of DOT. Path A (red), shows the processing for frames that get a
segmentation mask from the network. Path B (green), shows the processing for frames that
will acquire a segmentation mask geometrically propagated by DOT.

5.4 DOT

5.4.1 Overview

Figure 5.2 shows an overview of our proposal. The input to DOT are either RGB-D or stereo

images at a certain video rate, and its output is a mask encoding the static and dynamic

elements of the scene, which can be directly used by SLAM or odometry systems.

The first block (Instance Segmentation) corresponds to the CNN that segments out pixel-wise all

the potentially dynamic objects. In our experiments, done using autonomous driving datasets,

only cars were segmented as potentially moving. As it will be detailed later, since DOT tracks

the mask from frame to frame, this operation does not need to be done at every frame.

The Image processing block extracts and separates the points belonging to static regions of the

image and the points that are in dynamic objects. The camera pose is tracked using only the

static part of the scene. From this block, and taking into account the camera pose, the motion

of each of the segmented objects is estimated independently (Object tracking).

The next block (Is the object in motion?) determines, using geometric criteria, whether the

objects labeled as potentially dynamic by the network are indeed moving. This information is

used to update the masks encoding the static and dynamic regions of each frame and to feed

the linked odometry/SLAM visual system.

Finally, DOT generates new masks from the estimations of the objects movement (Mask Prop-

agation), so not every frame needs to be segmented by the network (see Figure 5.3). Given the
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significant computational load of instance segmentation, this can be an relevant advantage of

DOT compared to other state-of-the-art methods.

5.4.2 Instance Segmentation

We use the deep network Detectron2 [WKM+19] for the segmentation of all potentially movable

instances that are present in an image. The output of the network has been modified to obtain

in a single image all the segmentation masks. The image areas that are not classified into the

potentially moving categories are given a ‘background’ label and are considered static in the

subsequent blocks.

We use the COCO Instance Segmentation baseline model with Mask R-CNN R50-FPN 3x

[LMB+14][Mat19]. The classes have been restricted to those considered as potentially movable,

excluding humans since people tracking is beyond the scope of this work. In case other categories

were needed, the network could be fine-tuned using these weights as a starting point or trained

from scratch with its own dataset.

In order to consistently track the objects across multiple frames we have included a matching

step between the masks computed by DOT and the ones provided by the net. New detections

which cannot be paired with to any existing object are used to initialize new instances.

5.4.3 Camera and Object Tracking

From the instance segmentation of the previous step, we aim to estimate the motion of the

camera and the dynamic objects. Since the motion of the camera and the motion of the objects

are coupled in the images, we make the estimation in a two-step process. First we find the pose

of the camera as a relative transformation Tc ∈ SE(3) and then we subtract it to estimate the

object motion To ∈ SE(3).

Our optimization is related to the recent approaches of direct visual odometry and SLAM

[EKC17], which aim to find the motion that minimizes a photometric reprojection error.

Optimization. Both for the calculation of camera pose and for the subsequent estimation of

object motion, we do Gauss-Newton optimization
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(JTΣ−1
r J)x = −JTΣ−1

r r, (5.1)

where J ∈ Rn×6 contains the derivatives of the residual function (equations (5.3) and (5.5)) and

Σr ∈ Rn×n is a diagonal matrix containing the covariances of the photometric residuals r ∈ Rn.

The Lie-algebras pose-increments x̂se(3) ∈ se(3), with ·̂se(3) being the mapping operator from

the vector to the matrix representation of the tangent space [Str12], are expressed as a vector

x ∈ R6. We update the transformations using left matrix multiplication and the exponential

map operator exp(·). Both optimizations are initialized with a constant velocity model and a

multi-scale pyramid image to aid convergence.

Camera tracking. The camera motion is estimated using the static scene points P and multi-

view constraints [HZ03], assuming that the camera calibration and points depths are known.

The projection of a static point p ∈ P from its pixel coordinates pj in the reference frame Fj

to its corresponding coordinates pi in the frame Fi is as follows:

pi = Π(TcΠ
−1(pj, zj)), (5.2)

where Π and Π−1 correspond to perspective projection and back-projection models, respectively,

and zj is the depth of the point in the reference frame Fj.

The camera pose is optimized by minimizing the photometric reprojection error

∑
p∈P

∣∣∣∣∣∣Ij(pj)− Ii(Π(exp(x̂se(3))TcΠ
−1(pj, zj)))

∣∣∣∣∣∣
γ
, (5.3)

which is computed as the sum of all intensity differences between points in their reference frame

and their projection into the frame being tracked. We use the Huber norm γ.

Object tracking. Once Tc has been estimated, the pose of each potentially dynamic object

can be estimated analogously by using the image points Q belonging to such object. Modelling

the potentially dynamic object as a solid with pose To, the projection of each point p̃ in the

frame Fj to its coordinates in frame Fi is:
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Figure 5.3: Sample of a segment of the computation flow. The upper row shows DOT
estimating the tracking of the camera and the objects. Note how the segmentation masks from
the network (yellow frames) are not necessary in all frames. The lower row shows the segmantic
masks generated by DOT that encode the motion classification: in motion (color), static (black)
and not observed (gray).

p̃i = Π(TcToΠ
−1(p̃j, zj)). (5.4)

Analogously to equation 5.3, we estimate To by minimizing the following photometric repro-

jection error

∑
p̃∈Q

∣∣∣∣∣∣Ij(p̃j)− Ii(Π(Tc exp(x̂se(3))ToΠ
−1(p̃j, zj)))

∣∣∣∣∣∣
γ
. (5.5)

5.4.4 Tracking quality, outliers and occlusions

Occlusions, changes in lighting conditions and segmentation errors have a significant effect in

the accuracy of the objects and camera poses. As seen in algorithm 2, we developed several

strategies that we apply after the object tracking step to reduce their impact.

Tracking quality. The appearance of dynamic objects changes significantly, producing high

tracking errors. We used the Pearson’s correlation coefficient ϕo ∈ [−1, 1] to model appearance

similarity. This metric reflects the degree of linear correlation between the reference intensities

of the points and their corresponding estimates, hence being invariant to changes in gain and

offset. Note that this metric can also be applied to camera tracking ϕc, although changes in

the appearance of the background are usually less pronounced.

Outlier rejection. A common approach to detect outliers is defining an absolute threshold

to the photometric error (5.3) (5.5). More sophisticated works [EKC17] adapt it according
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Algorithm 2 Dynamic Object Tracking

1: function Object Tracking(P ,Q,O)
2: ▷ P = static points
3: ▷ Q = dynamic points
4: ▷ O = set of objects
5: mask ← ∅ ▷ Dynamic mask to be computed
6:

7: {Tc , ϕc} ← track camera (P) ▷ Camera Tracking
8: if ϕc < thϕ then return ∅
9: end if
10:

11: for object in O do ▷ Object Tracking
12: if is visible (object , Tc) then
13: {To , ϕo} ← track object (Tc , Qo , mask)
14: if ϕo < thϕ then break
15: end if
16: object ← outlier rejection (ϕo)
17: mask ← update mask (object)
18: mask ← is object moving? (object)
19: end if
20: end for
21:

22: return mask
23: end function

to the median residual, the motion blur or the lighting changes. As shown in Figure 5.4, we

propose to set the threshold relative to the linear relation between intensities, so the errors are

independent to photometric changes in the image.

Occlusions. The dynamic objects might occlude each other. Removing the occluded parts as

outliers was not sufficient in our experiments. We implemented a strategy consisting of tracking

the objects from the closest to the farthest, updating their respective masks sequentially. In

this manner, we update in every iteration the points of the more distant objects that have been

occluded by closer ones.

5.4.5 Is the object in motion?

This block receives as input the transformation matrices of the camera, Tc and the objects,

To, and estimates whether the objects are moving or not. Its output, to be used by SLAM or

odometry systems, are the masks that store the areas of the image occupied by dynamic objects
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Figure 5.4: Outlier rejection. Left: histogram of photometric errors for an object. The
shaded area corresponds to the points removed with a constant threshold. Right: Linear
relation between intensities. Note the different points labeled as outliers by absolute (yellow)
and relative (red) thresholds due to the changing photometry.

Figure 5.5: Disparity vs Entropy. Comparison of the dynamic disparities produced by
different objects in motion. Note how observations with high entropy values (brighter red)
produce larger shifts of image pixels.

and whether they are in motion or not. The masks are obtained by projecting the pixels of

each object into the new frame using Tc and To estimated in the previous step.

Observing the object motion directly in To generates, due to the propagated image noise,

difficulties in establishing absolute thresholds that determine whether an object is in motion.

In this work we chose to observe the motion of the objects using 2D image measurements. We

denote our metric as dynamic disparity, being the distance in pixels between the projection of

the point as if it were static pi and its actual projection p̃i. For each object we compute the

median of the dynamic disparities of its points p̃ ∈ Q:

dd = med
{ ∣∣∣∣pi, p̃i∣∣∣∣ ,∀p̃ ∈ Q}. (5.6)

The 3D motion of a point produces different image motions depending on 1) its image coor-

dinates, 2) its depth, and 3) the relative angle between the directions of the object and the

camera motions.

From the non-linear pose optimization (see eq. (5.1)) we can derive the uncertainty in the
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estimation of the motion of the object Σx = (JTΣ−1
r J)−1. Assuming a k-dimensional Gaussian

distribution, its differential entropy is:

H(xo) =
1

2
log((2πe)k|Σxo |). (5.7)

The differential entropy can be seen as the pose uncertainty derived from the photometric

residuals minimization. In other words, observations of three-dimensional motions with high

entropy values will result in larger shifts of image pixels (see Figure 5.5). On the other hand,

observations with low entropy will produce small image disparities.

Based on this, the algorithm for classifying the movement of objects works as follows. We

compare dynamic disparities (5.6) against a variable threshold ∆d = f(H(x)) that grows

smoothly with the entropy. We label as “in motion” all those objects whose dynamic disparity

exceeds this threshold (dd > ∆d). For every value below an entropy threshold Hmin we assume

the object motion cannot be observed. Therefore, labeling an object as static requires that the

motion is observable (H(x) > Hmin) and that the median of the dynamic disparity is less than

the variable threshold (dd < ∆d).

While selecting the optimal functional formulation would require further study, this expression

meets the requirements and has shown good results in this work (see section 5.5.1). Figure 5.3

is an example of the mask propagated by DOT. Objects labeled as “in motion” are represented

in colour, while those labeled as “static” disappear in black. The cars represented in gray are

those which cannot be determined as being static neither dynamic.

5.4.6 Mask propagation

DOT exploits the two segmentation masks available in each frame: one produced by the neural

network and other propagated from the previous frame. Warping one segmentation into the

other allows to robustly relate instances found in different frames into the same 3D object.

State propagation. Relating new semantic instances to pre-existing objects allows us to

predict their motion (which is critical for fast moving objects). In addition, it is possible to

keep the classification of the motion in the case of an object moving to a position where the
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motion is not observable (see Section 5.4.3).

Independent segmentation. Our proposal allows the propagation of semantic segmentation

masks from an initial seed over time and space, eliminating the need for segmenting every

frame. Running the neural network at a lower frequency makes real-time object tracking easier

in low-end platforms. As further benefit, DOT is able to fill in the gaps in which the network

temporarily loses the instantiation of an object between consecutive images.

5.5 Experimental Results

Although the potential applications of DOT cover a wide spectrum ranging from object de-

tection to augmented reality or autonomous driving, in this chapter we provide an intensive

evaluation to demonstrate to what extent “knowing the movement of objects” can improve the

accuracy of a SLAM system.

5.5.1 Evaluation against baselines

Baselines. Our experiments estimate the camera trajectory using a state-of-the-art SLAM

system in three different configurations. Specifically, we use ORB-SLAM2 [MAT17b], with its

RGB-D and stereo implementations. The three configurations designed to evaluate DOT are:

No masks : ORB-SLAM2 is run using the authors’ implementation on unmodified images. A

rigid scene is assumed, so all the points in the images (including those belonging to moving

objects) can be selected by ORB-SLAM2.

DOT masks : ORB-SLAM2 receives as input, in addition to the images, the dynamic object

masks containing potentially dynamic objects currently in motion. We modified ORB-SLAM2

so that it does not extract points from such moving objects.

All masks : ORB-SLAM2 receives all the masks obtained by the instance segmentation network.

In this configuration, all potentially dynamic objects are removed without checking if they are

actually moving or not.
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Figure 5.6: Scene content adaptation. Sample results for the three studied configurations.
Left: No masks. Centre: DOT masks. Right: All masks. The top row shows a static scene
in which the All masks setting discards all points of the static objects that can aid to tracking
accuracy. In contrast, the bottom row shows how the No masks configuration allows to extract
points on moving objects that may cause the system to fail. Both are cases in which the lack of
understanding of the scene deteriorate the performance of SLAM. DOT successfully identifies
the parked cars as static and the moving ones as dynamic. Note how DOT achieves a trade-off
between those two opposing scenarios by estimating the actual motion state of the objects that
results in a better estimation of the trajectory.

ATE [m] ATE/ATEbest
Seq. No

masks
DOT

All
masks

No
masks

DOT
All

masks
01 1.10 1.14 1.38 1.00 1.04 1.26
02 0.16 0.14 0.10 1.60 1.43 1.00
06 0.11 0.07 0.08 1.67 1.00 1.18
18 4.77 1.00 1.50 4.79 1.00 1.51
20 29.42 9.12 13.54 3.23 1.00 1.49

εnorm 192.6% 100.0% 137.8%

Table 5.1: DOT against baselines (No masks and All masks) in V-KITTI. Left: ATE [m].
Right: ATE over best ATE per sequence.

Sequence subsets. We evaluate the above configurations in three sequence subsets from

the KITTI Vision Benchmark Suite [GLU12], containing stereo sequences of urban and road

scenes recorded from a car and used for research in autonomous driving. We use Virtual

KITTI [GWCV16] [CMH20], a synthetic dataset composed of 5 sequences virtually cloned from

KITTI [GLU12], KITTI Odometry, a predefined subset of sequences specially designed for the

development and evaluation of visual odometry systems, and a selection of sequences chosen

from the raw section of KITTI because of their high number of moving objects [HYMH20].

We run the RGB-D version of ORB-SLAM2 in Virtual KITTI, as synthetic depth images are

provided, while for the other subsets we run the stereo version of ORB-SLAM2 over the color

stereo pairs. The ground truth for the real sequences is given by an accurate GPS localization
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ATE [m] ATE/ATEbest
Seq. No

masks
DOT

All
masks

No
masks

DOT
All

masks
0 1.77 1.80 2.08 1.00 1.02 1.18
1 6.37 7.71 8.45 1.00 1.21 1.33
2 3.72 3.70 3.84 1.01 1.00 1.04
3 0.40 0.40 0.40 1.00 1.01 1.00
4 0.27 0.26 0.24 1.12 1.09 1.00
5 0.40 0.39 0.45 1.03 1.00 1.14
6 0.63 0.68 0.67 1.00 1.08 1.07
7 0.52 0.51 0.51 1.01 1.00 1.00
8 3.04 3.24 3.78 1.00 1.07 1.24
9 2.65 0.98 3.80 2.71 1.00 3.89
10 1.23 1.29 1.26 1.00 1.05 1.02

εnorm 112.7% 100.0%130.3%

Table 5.2: DOT against baselines (No masks and All masks) in KITTI Odometry. Left: ATE
[m]. Right: ATE over best ATE per sequence.

ATE [m] ATE/ATEbest
Seq. No

masks
DOT

All

masks

No

masks
DOT

All

masks

0926-0009 1.23 1.24 1.44 1.00 1.01 1.17

0926-0013 0.26 0.26 0.27 1.00 1.00 1.03

0926-0014 0.86 0.82 0.78 1.11 1.06 1.00

0926-0051 0.37 0.36 0.37 1.02 1.00 1.02

0926-0101 8.66 10.26 12.37 1.00 1.18 1.43

0929-0004 0.32 0.30 0.30 1.08 1.03 1.00

1003-0047 13.81 1.25 2.23 11.01 1.00 1.78

εnorm 242.3% 100.0% 115.9 %

Table 5.3: DOT against baselines (No masks and All masks) in KITTI Raw. Left: ATE [m].
Right: ATE over best ATE per sequence.

system.

Evaluation metrics. As it is standard when evaluating real-time SLAM, in order to take into

account non-deterministic effects, we run each configuration 10 times per sequence and report

median values. All the experiments were run in a laptop with an Intel Core i5 processor and

8GB of RAM memory.

We report the absolute trajectory error (ATE) as proposed in [SEE+12b], which is the root-

mean square error (RMSE) of the estimated position of all frames with respect to the GPS

ground truth after both trajectories have been aligned. For an easier comparison between DOT

and the other two configurations, we report the average of the errors normalized by the value
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we obtained with DOT on each sequence εnorm = 1
n

∑n
i=0

εi
εDOT

.

The right columns in Tables 5.1, 5.2, 5.3 show the ATE normalized by the best ATE in each

sequence among the three configurations. Thus, a value equal to 1 identifies the best result,

while values > 1 are indicative of poorer performance. The color scale indicates the trade off

of the errors between the best result (green) and the worst (red).

Tracking accuracy. The ATE in Table 5.1, corresponding to the V-KITTI sequences, show

an accuracy improvement of 92.6% and 37.8% of our system with respect to the No masks and

All masks configurations, respectively. In addition, DOT scores best for 3 of the 5 sequences

evaluated.

Table 5.2 contains the ATE results for 11 trajectories of KITTI Odometry evaluated with the

three different configurations. DOT obtains in this case an overall performance which is 12.7%

and 30.3% better than No masks and All masks, respectively. Compared to V-KITTI, this

group of sequences contains less dynamic elements, so the use of masks is even detrimental.

According to the dataset specifications, the ground truth camera poses collected by the GPS

are accurate to within 10 cm. Therefore, no significant differences exist between the three

configurations in sequences 3, 4, 5, 6, 7 and 10. This is thought to be a consequence of the

small number of moving objects, as well as of the rich texture of the images, which provides a

large number of static points for estimating the camera motion.

The differences between sequences and methods are more evident with the last set of sequences

shown in Table 5.3, characterized by an abundance of moving objects. Overall, DOT achieves

improvements of 142.3% in ATE accuracy over No masks and 15.9 % over the All masks method.

Again, note how discarding dynamic objects in sequence 1003-0047 reduces significantly the

tracking errors. The sequences 0926-0009, 0929-0004 and 1003-0047 were cloned to generate

the V-KITTI synthetic sequences (1, 18 and 20). As expected, since the scenes contents are

identical, so is the qualitative analysis of the results.

The color scale used in Tables 5.1, 5.2, 5.3 shows how DOT tends to approach to the best

solution when it is not the most accurate trajectory (green). This proves that, while the use

of masks may be convenient, the accuracy is significantly improved if only the objects that

have been verified to be in motion are removed. These results demonstrate that DOT achieves

consistently a good performance both for static and dynamic scenes.
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Scene content adaptation. Figure 5.6 illustrates two scenarios that affect the SLAM

accuracy in a scene with dynamic objects. The lower row shows a road where all the vehicles

are in motion (Seq. 20 in Table 5.1). The high dynamism of all the vehicles in the scene violates

the rigidity assumption of ORB-SLAM2, and makes the system fail. Similarly, moving objects

in sequence 18 (Table 5.1) causes tracking failure of ORB-SLAM2 in 6 out of 10 trials (only

56% of the trajectory could be estimated in those cases).

The upper row shows an urban scene with several cars parked on both sides of the road (Seq.

01 in Table 5.1). Contrary to the previous case, the worst configuration is using all the seg-

mentation masks since a large number of points with high information content are removed for

tracking. ATE results in Table 5.1 for this sequence shows that extracting points from a larger

area results in a better accuracy of the estimated trajectory.

Summing up, notice how not using dynamic object masks increases the trajectory error due to

matching points on moving objects. However, applying masks without verifying if the object

is in motion discards a high amount of information, especially when a large part of the scene

is occupied by vehicles. DOT achieves a trade-off between those two opposing scenarios by

estimating the actual motion state of the objects in order to get higher tracking robustness and

accuracy.

Loop closure. Not all differences in trajectory accuracy are due to poor tracking performance.

The loop closure module of ORB-SLAM2 reduces the drift and therefore also the inaccuracies

produced by dynamic objects or by the removal of parked vehicles. We have observed that

ORB-SLAM2 running with DOT masks is able to close the loop 6 out of 10 runs in sequence

9 of KITTI Odometry (see Table 5.2), while none was identified when using All masks. This

results in a broader error variability.

Segmentation errors. Compared to other approaches, DOT is capable of alleviating segmen-

tation errors. Neural networks sometimes mislabel static objects (e.g., traffic signs or buildings)

as dynamic, DOT corrects this error by re-tagging the object as static (see Figure 5.7). As

another example, when the network does not fire in one of the sequence frames, DOT is able

to fill the gap by propagating the object mask.
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Figure 5.7: Segmentation error. Comparison between All masks and DOT masks. Notice
that a wrong segment from Detectron2 (the sign in the red square is assigned a car label) is
correctly classified as static by DOT.

5.5.2 Mask propagation

As explained in section 5.4.6, our approach allows to reduce the frequency of network seg-

mentation by propagating pre-existing masks in the intermediate frames. Figure 5.8 shows

the number of correctly labeled pixels minus mislabeled ones (ground truth in black) on every

frame of V-KITTI when DOT uses 100% of Detectron2 segmentations (red), 50% (blue), 33%

(yellow) and 25% (green). Note how the masks stay accurate when being propagated except

when tracking failures occur or a moving object enters the scene between segmentations (see

also intersection over union on V-KITTI in Table 5.4). We believe this result may be helpful

for real time object tracking specially for high frequency image streams.

Rate Seq01 Seq02 Seq06 Seq18 Seq20

1.0 0.88 0.88 0.84 0.90 0.89
0.5 0.74 0.83 0.67 0.85 0.84
0.33 0.72 0.80 0.60 0.85 0.81
0.25 0.69 0.78 0.55 0.84 0.81

Table 5.4: Intersection over union in the V-KITTI dataset for different segmentation rates.

5.6 Conclusions

DOT is a novel front-end algorithm for SLAM systems that robustly detects and tracks

moving objects by combining instance segmentation and multi-view geometry equations.

Our evaluation with ORB-SLAM2 in three public datasets for autonomous driving research
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Figure 5.8: Mask propagation. We show for each frame of V-KITTI the number of correctly
labeled pixels minus mislabeled ones respect to the ground truth (black), when DOT uses all
masks from Detectron2 (red), 50% (blue), 33% (yellow) and 25% (green).
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[GLU12][GWCV16][CMH20] demonstrates that DOT-generated object motion information al-

lows us to segment the dynamic content, significantly improving its robustness and accuracy.

The independence of DOT from SLAM makes it a versatile front-end that can be adapted with

minimal integration work to any state-of-art visual odometry or SLAM system. Unlike other

systems, the mask tracking of DOT reduces the rate at which segmentation (typically involving

high computational cost) should be done, reducing the computational needs with respect to

the state of the art.



Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

In this thesis, Information-Driven Navigation, we developed new probabilistic methods

to improve accuracy, robustness and efficiency of Visual SLAM. The core of our work and

contributions is issued in three main articles contained in chapters 2, 3 and 4. Along these pub-

lications we have thoroughly analyzed previous approaches and we have presented a significant

number of new tecniques which have been ablated and compared with the state of the art. The

detailed descriptions of our state-of-the-art solutions, our open-source SID-SLAM1 and the

new Mininal Texture dataset1 provide a solid base for future developments in the field.

As a summary of our work, for our first publication [FCT20] we applied information metrics

in a visual odometry RGB-D framework based on direct methods with the aim of reducing

its computational footprint. From the experiments and results performed in this work, we

found that a better uncertainty model for visual measurements would lead to more realistic

information metrics and became an instrumental element to our information-driven approach.

In our second publication [FMCT22] we derived a covariance model for multi-view residuals

from which the key element is the formulation of a term based on perspective deformation.

Finally, we combined both contributions in the formulation of the first complete semi-direct

RGB-D SLAM system, that uses tightly and indistinctly features and direct methods. We

1We will publicly release the code and data after the ECCV review process to respect its double blind policy.
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elaborate on these three contributions in more detail below along with our new Minimal Texture

dataset and the publication of Dynamic Object Tracking (DOT) [BFC+21].

As mentioned above an important element of our visual SLAM solutions is an information-

theoretic approach to point selection. In chapter 2 we have proposed a novel criterion to

select the most informative points to be tracked in a RGB-D odometry framework. We have

shown experimentally that using a small number of very informative points and keyframes

can have a significant impact in the computational cost of RGB-D odometry, while keeping

an accuracy similar to the state of the art. Specifically, our experimental results show that

tracking the 24 most informative points is enough to match the performance of the state of the

art while reducing the computational cost up to a factor 10×. Up to our knowledge, this is

the first time that Information Theory is applied to direct odometry and SLAM methods. We

believe that our results will facilitate the use of visual odometry and SLAM in small robotic

platforms and AR/VR glasses, that are limited in computation and power.

A better model for the residual covariances will improve the accuracy of multi-view structure

and motion estimations. Moreover, it will lead to more realistic uncertainty estimates, which

is crucial in real-world applications and particularly in our information driven approach. In

chapter 3 we derive a model for the covariance of the visual residuals in multi-view SfM,

odometry and SLAM setups. The core of our approach is the formulation of the residual

covariances as a combination of geometric and photometric noise sources. And our key novel

contribution is the derivation of a term modelling how local 2D patches suffer from perspective

deformation when imaging 3D surfaces around a point. Together, these add up to an efficient

and general formulation which not only improves the accuracy of both feature-based and direct

methods, but can also be used to estimate more accurate measures of the state entropy and

hence better founded point visibility thresholds. We validate our model with synthetic and real

data and integrate it into photometric and feature-based Bundle Adjustment, improving their

accuracy with a negligible overhead.

In chapter 4 we combined our two previous contributions in the formulation and implementation

of SID-SLAM, a complete SLAM framework for RGB-D cameras. Our main contribution is

a semi-direct approach that, for the first time, combines tightly and indistinctly photometric

and feature-based image measurements. Additionally, SID-SLAM uses information metrics

to reduce the state size with a minimal impact in the accuracy. Our evaluation on several
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public datasets shows that we further improve state-of-the-art performance regarding accuracy,

robustness and computational footprint in CPU real time. We release the source code with

the aim of being a SLAM solution for researchers1 and to provide a solid framework for future

developments in the field.

We recorded Minimal Texture, a new dataset to facilitate state-of-the-art research on semi-

direct SLAM, particularly: (i) a better understanding of visual uncertainties of both features

and photometric approaches [FMCT22], (ii) the efficient use of all the information on the

image which maximizes SLAM robustness and reduces its computational footprint [FCT20].

Our dataset consists of 16 RGB-D sequences with conceptually simple but challenging content.

The dataset was recorded with a Realsense D435i, capturing intensity and depth images of

resolution 1920 × 1080 at rate of 30 Hz. We used a ceiling-mounted Vicon system to record

millimeter-level ground truth for the camera pose.

Finally, in chapter 5 we present DOT (Dynamic Object Tracking) [BFC+21], a front-end that

combines instance segmentation and multi-view geometry to generate masks for dynamic ob-

jects in order to allow SLAM systems based on rigid scene models to avoid such image areas

in their optimizations. To determine which objects are actually moving, DOT segments first

instances of potentially dynamic objects and then, with the estimated camera motion, tracks

such objects by minimizing the photometric reprojection error. In the end, only actually dy-

namic masks are generated. Our results show that our approach improves significantly the

accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes. This contribu-

tion was issued in collaboration with the first author in the frame of her master thesis. Our

contributions are: (i) the code is built over the classes and methods from Information-Driven

Navigation implementations, (ii) the information criteria to tackle the movement decision is

based on our information contributions, (iii) the experiments, results and the publication itself

was carried out in collaboration with the main author.
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6.2 Discussion and Future Work

There are several lines of research that build on and could improve the results of this work.

The following lines of research are specially promising:

• Our “Model for Multi-View Residual Covariances based on Perspective Deformation” can

be applied to different vision related problems. For example the accuracy of a camera

calibration can be modelled as the trade-off between a sufficiently informative geometric

configuration and the image noise that perspective deformations produce. In other tasks

such as semantic segmentation or object/place recognition, perspective deformation is

also an issue if viewpoints vary significantly.

• The development of a probabilistic photometric model could improve the accuracy of the

information metrics. If one takes a step forward, in order to reduce SLAM computational

footprint to its mininum, uncertainties that arise from noise sources such “dynamic ob-

jects” or “illumination changes” need to be tackled. We required novel algorithms and

tools that estimate not only uncertainties from geometric sources (such as an RGB-D

sensor) but also those associated to more complex scene behaviours.

• Efficient selection of points, keyframe insertion and elimination of redundancy in the

context of information-driven SLAM can be further investigated, for example by searching

for an optimal solution instead of sequential and loosely coupled point selection. The

windowed keyframe optimization framework employs effective heuristics which allow the

real-time operation of SLAM systems. We think that further analysis on the information

of the optimization setup could offer even better results.
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6.3 Resumen de los logros de la tesis

En esta tesis, Information-Driven Navigation , desarrollamos nuevos métodos prob-

abiĺısticos para mejorar la precisión, robustez y eficiencia del SLAM Visual. El núcleo

de nuestro trabajo y contribuciones se encuentra publicado en tres art́ıculos principales

contenidos en los caṕıtulos 2, 3 y 4. A lo largo de estas publicaciones hemos analizado en

profundidad técnicas anteriores y hemos presentado un número significativo de técnicas

nuevas que han sido contrastadas y comparadas con el estado del arte. Las detalladas

descripciones de nuestras soluciones del estado del arte, nuestro código libre SID-SLAM

y el nuevo Minimal Texture dataset proveen una base sólida para futuros desarrollos

en el campo.

De forma general, en nuestra primera publicación [FCT20] aplicamos métricas de infor-

mación en una odometŕıa visual RGB-D basada en métodos directos con el objetivo de

reducir su impacto computacional. De los resultados y experimentos llevados a cabo en

este trabajo, adujimos que un mejor modelo de incertidumbre para las medidas visuales

conduciŕıa a medidas de información más realistas y se convertiŕıa en un elemento in-

strumental de nuestro trabajo dirigido por información. En nuestra segunda publicación

[FMCT22] derivamos un modelo de covarianzas para residuos multivista del que el ele-

mento clave es la formulación de un término basado en la deformación perspectiva. Final-

mente, combinamos ambas contribuciones en la formulación del primer sistema completo

semi-directo RGB-D de SLAM que utiliza de forma integrada e indistinta caracteŕısticas

y métodos directos. A continuación desarrollamos estas tres contribuciones en más de-

talle junto con nuestro nuevo Minimal Texture dataset y la publicación de Direct Object

Tracking (DOT) [BFC+21].

Como se menciona anteriormente un elemento importante de nuestras soluciones para el

SLAM Visual es una estrategia de selección de puntos basada en Teoŕıa de la

Información. En el caṕıtulo 2 proponemos un criterio nuevo para seleccionar los puntos

más informativos para ser utilizados en una odometŕıa RGB-D, manteniendo una precisión

similar al estado del arte. Espećıficamente, nuestros resultados experimentales muestran

que utilizar los 24 puntos más informativos es suficiente para alcanzar los resultados del

estado del arte a la vez que se reduce el coste computacional hasta un factor de 10 veces.

Hasta donde sabemos, esta es la primera vez que la Teoŕıa de la Información se aplica
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en métodos de odometŕıa y SLAM directos. Creemos que nuestros resultados facilitarán

el uso de la odometŕıa visual y del SLAM en pequeñas plataformas robóticas y gafas

AR/VR, que están limitadas en capacidad computacional y potencia.

Un modelo mejor de covarianzas de los residuos mejoraŕıa la precisión de la estructura

y movimiento multi-vista. Más aún, llevaŕıa a estimaciones más realistas de la incer-

tidumbre, que son cruciales en aplicaciones reales y particularmente en nuestra estrategia

dirigida por información. En el caṕıtulo 3 derivamos un modelo para las covarianzas de

los residuos visuales para algoritmos de SfM multi-vista, odometŕıa y SLAM. El núcleo

de nuestra propuesta es la formulación de las covarianzas de los residuos como una combi-

nación de fuentes de ruido geométricas y fotométricas. Y nuestra novedosa contribución

clave es la derivación de un término que modela cómo superficies locales 2D adolecen de

deformación perspectiva cuando se proyectan superfices 3D alrededor del punto. Todo

ello, conduce a una formulación general y eficiente que no sólo mejora la precisión tanto

de métodos basados en caracteŕısticas como métodos directos, sino que también puede

utilizarse para estimar medidas más precisas de la entroṕıa del estado y por ello mejores

umbrales para la visibilidad de los puntos. Validamos nuestro modelo con datos sintéticos

y reales y lo integramos en un algoritmo de Bundle-Adjustment fotométrico y basado en

caracteŕısticas, mejorando su precisión con una sobrecarga computacional despreciable.

En el caṕıtulo 4 combinamos las dos contribuciones anteriores para presentar SID-

SLAM, un sistema completo de SLAM para cámaras RGB-D. Nuestra contribución prin-

cipal es una estrategia semi-directa que, por primera vez, combina de forma integrada e

indistinta med́ıdas en la imagen fotométricas y basadas en caracteŕısticas. Además, SID-

SLAM utiliza métricas de información para reducir el tamaño del estado con un impacto

mı́nimo en la precisión. Nuestra evaluación en diversos datasets públicos muestran que

mejoramos el funcionamiento del estado del arte en cuanto a precisión, robustez y carga

computacional en una CPU en tiempo real. Liberamos el código con el objetivo de con-

vertirlo en una solución de SLAM para investigadores y para proveer un marco sólido

para futuras mejoras en el campo.

Grabamos Minimal Texture, un dataset nuevo para facilitar la investigación del estado

del arte en SLAM semi-directo, particularmente: (i) un mejor entendimiento de las in-

certidumbres visuales tanto de caracteŕısticas como de métodos fotométricos [FMCT22],

(ii) la utilización eficiente de toda la información de la imagen que maximice la robustez
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del SLAM y reduzca su carga computacional [FCT20]. Nuestro dataset consiste en 16

secuencias RGB-D con contenido conceptualmente simple pero desafiante. El dataset

fue grabado con una cámara Realsense D435i, capturando imágenes de intensidad y de

profundidad con resolución 1920 × 1080 y con una frecuencia de 30 Hz. Utilizamos un

sistema Vicon montado en el techo para registrar con precisión de miĺımetros un ground

truth para la posición de la cámara.

Finalmente, en el caṕıtulo 5 presentamos DOT (Dynamic Object Tracking) [BFC+21], un

front-end que combina segmentación de instancias y geometŕıa multi-vista para generar

máscaras para objetos dinámicos que permitan a los sistemas de SLAM basados en mode-

los ŕıgidos de la escena evitar ese tipo de áreas de las imágenes en sus optimizaciones. Para

determinar qué objetos se están moviendo realmente, DOT segmenta primero instancias

de objetos potencialmente dinámicos y después, con la estimación del movimiento de la

cámara, localiza esos objetos minimizando el error fotométrico de reproyección. Al final,

sólo se generan máscaras para los objetos que ciertamente se mueven. Nuestros resul-

tados muestran que nuestro método mejora significativamente la precisión y la robustez

de ORB-SLAM2, especialmente en escenas altamente dinámicas. Esta contribución fue

publicada en colaboración con la primera autora en el marco de su tesis final de máster.

Las contribuciones aportadas por Information-Driven Navigation: (i) el codigo se con-

struyó sobre las clases y métodos de la odometŕıa visual fotométrica en [FCT20], (ii) el

criterio de información que toma la decisión del movimiento de los objetos está basado

en las contribuciones de información de esta tesis, (iii) y los experimentos, resultados y

la publicación misma fueron desarrollados en colaboración con la autora principal.
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and Juan D Tardós. ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual–Inertial, and Multimap SLAM. IEEE Transactions on Robotics, 2021. 3,

54, 62, 64, 65, 67



BIBLIOGRAPHY 97

[CICD15] Siddharth Choudhary, Vadim Indelman, Henrik I Christensen, and Frank Del-

laert. Information-based reduced landmark SLAM. In 2015 IEEE International

Conference on Robotics and Automation (ICRA), pages 4620–4627, 2015. 15

[CKB+14] Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert.

Eliminating conditionally independent sets in factor graphs: A unifying per-

spective based on smart factors. In 2014 IEEE International Conference on

Robotics and Automation (ICRA), pages 4290–4297. IEEE, 2014. 14

[CMH20] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual KITTI 2, 2020.

81, 87

[CZK15] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust Reconstruction of

Indoor Scenes. In IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 3, 9, 38

[Dav05] Andrew J Davison. Active search for real-time vision. In Tenth IEEE Interna-

tional Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages

66–73. IEEE, 2005. 3, 5, 14, 18

[Dav18] Andrew J Davison. FutureMapping: The computational structure of spatial AI

systems. arXiv preprint arXiv:1803.11288, 2018. 2, 3, 13

[DNZ+17] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian
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