000127871 001__ 127871
000127871 005__ 20231127095528.0
000127871 0247_ $$2doi$$a10.1016/j.carbon.2015.09.018
000127871 0248_ $$2sideral$$a93136
000127871 037__ $$aART-2016-93136
000127871 041__ $$aeng
000127871 100__ $$aBlanco, M.
000127871 245__ $$aEffect of structural differences of carbon nanotubes and graphene based iridium-NHC materials on the hydrogen transfer catalytic activity
000127871 260__ $$c2016
000127871 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127871 5203_ $$aA proper design of heterogeneous molecular catalysts supported on carbon materials requires a systematic study of "metal-carbon support interactions" and their influence on catalytic activity. In this study, hybrid materials containing covalently anchored iridium N-heterocyclic carbene (NHC) organometallic complexes have been successfully prepared from oxidized and partially reduced carbon nanotubes (CNTs). The preparation method for these supported materials relies on the selective functionalization of the superficial hydroxylic groups using the imidazolium salt, 1-(3-hydroxypropyl)-3-methyl-1H-imidazol-3-ium chloride. The hydrogen transfer catalysis activity of these nanotube-based hybrid catalysts was tested by the reduction of cyclohexanone to cyclohexanol with 2-propanol, and the results of the tests were compared with those obtained using similar hybrid graphene-based catalysts. While EXAFS analysis revealed a common first coordination shell of the iridium atom for all the hybrid materials examined, independently of whether they were either supported on carbon nanotubes or graphene materials, catalytic activity in all the reduced materials was significantly superior. Moreover, catalytic systems based on reduced CNTs exhibited a better performance than those based on reduced graphene materials. Both these facts suggest there is a positive correlation between hydrogen transfer catalytic activity, reconstruction of the aromatic carbon structure and the smaller amount of oxygen functional groups.
000127871 536__ $$9info:eu-repo/grantAgreement/ES/MEC/AP2010-0025$$9info:eu-repo/grantAgreement/ES/MINECO/AP2010-0025$$9info:eu-repo/grantAgreement/ES/MINECO/CSD2009-00050$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2013-42532-P$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2013-42532-P
000127871 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127871 590__ $$a6.337$$b2016
000127871 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b32 / 273 = 0.117$$c2016$$dQ1$$eT1
000127871 591__ $$aCHEMISTRY, PHYSICAL$$b23 / 144 = 0.16$$c2016$$dQ1$$eT1
000127871 592__ $$a2.091$$b2016
000127871 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000127871 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000127871 700__ $$aÁlvarez, P.
000127871 700__ $$aBlanco, C.
000127871 700__ $$0(orcid)0000-0002-0545-9107$$aJiménez, M. V.$$uUniversidad de Zaragoza
000127871 700__ $$aFernández-Tornos, J.
000127871 700__ $$0(orcid)0000-0002-3327-0918$$aPérez-Torrente, J. J.$$uUniversidad de Zaragoza
000127871 700__ $$0(orcid)0000-0002-9706-3272$$aBlasco, J.$$uUniversidad de Zaragoza
000127871 700__ $$0(orcid)0000-0002-9029-1977$$aSubías, G.$$uUniversidad de Zaragoza
000127871 700__ $$aCuartero, V.
000127871 700__ $$0(orcid)0000-0001-7154-7239$$aOro, L. A.$$uUniversidad de Zaragoza
000127871 700__ $$aMenéndez, R.
000127871 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000127871 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000127871 773__ $$g96 (2016), 66-74$$pCarbon$$tCarbon$$x0008-6223
000127871 8564_ $$s1767560$$uhttps://zaguan.unizar.es/record/127871/files/texto_completo.pdf$$yPostprint
000127871 8564_ $$s1837472$$uhttps://zaguan.unizar.es/record/127871/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000127871 909CO $$ooai:zaguan.unizar.es:127871$$particulos$$pdriver
000127871 951__ $$a2023-11-27-09:46:00
000127871 980__ $$aARTICLE