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ABSTRACT: The unsaturated hydride complex RhQkH ,k-C-(CHgN)}(IPr) {IPr = 1,3-bis-(2,6-diisopropylphenyl)imazolin-
2-carbene} 2) has been prepared via C-H activation of 2-phemidine and fully characterized by spectroscopi¢huds and X-
ray diffraction analysis. CompleX efficiently catalyzes the isomerization of terntiaad internal olefins under mild conditions to
give preferentially thée regioisomers. CompleR also catalyzes the hydroarylation of terminal iolefwith 2-phenylpyridine to
yield selectively monmrtho-alkylated derivatives. Tandem isomerization-alkigia processes were observed for internal olefins.
In contrast to olefins, double alkenylation is aive for internal alkynes. The marked complemgnteactivity of olefins and
alkynes toward hydroarylation with 2-phenylpyridiabows for a tandem alkylation/alkenylation trasrshation to yield substitu-
ted styrenes. These heterobiaryl compounds exduidd chirality which have been experimentally cddted and corroborated by
DFT calculations. A catalytic cycle for hydroarytat reactions has been proposed based on thefidatitin of key reaction in-
termediates and H/D exchange experiments. Theioeaséems to proceed by initial C-H activation gbt®nylpyridine, subse-
guent insertion of alkene or alkyne, and reducéilmination steps. DFT calculations shows that o#ige elimination is the rate
determining step for alkene hydroarylation whemaégratory insertion is the highest barrier for aikyhydroarylation.

INTRODUCTION

Transition metal mediated C-H activation is a pdweand
versatile methodology for the preparation of higlled value
organic scaffolds in a selective and atom-econdmizaner:
Precise control over reactivity of the metallic wanis of par-
amount importance in order to construct elaboratexdhitec-
tures from simple starting materials. Particulathgonjugated
alkenyl-arenes (or styrenes) are attractive syitthatgets due
to its relevant applications in medicinal chemisanyd func-
tional materialé. One of the most reliable catalytic methods
that has remarkably contributed to this field is tirozoki-
Heck approach. However, the requisite of a preactivated
arene constitutes an important drawback (Schemalterna-
tively, many research efforts have been directethéooxida-
tive coupling of arenes with alkenes after the panng work
by Fujiwara and Moritani with palladium cataly$ts spite of
these remarkable advancesglectivity issues are still chal-
lenging. Another completely different synthetic ess to
styrenes is the addition of an aromatic ring acs=arbon-
carbon triple bond, namely hydroarylation of alkyhenter-
estingly, simple unbiased arenes can be engagéusiriotal
atom-economy approach. Depending on the substattshe
metallic fragment, activation of the alkyne canwcgrevious-
ly to electrophilic Friedel-Crafts attack of theylamgroup,
thereby resulting inrans-addition product$. However, this

methodology is generally limited to electron-ricteres, het-
eroarenes or intramolecular processes. An altemnathithway
entails an initial C-H activation of the arene dolled by a C-C
coupling with the alkyn&.The process can occur via a metal-
hydride intermediaf&® or, alternatively, by a redox-neutral
base-mediatéd or ligand-to-ligand proton transfer mecha-
nism® In these cases, in contrast to the Friedel-Cradth-
way, acidic electron-deficient arenes are preferred

A foremost milestone in alkyne hydroarylation wasg in-
troduction of a directing group in the arene maidtyis step-
forward expanded the range for operative aromatiags and
unsaturated substrates, as demonstrated by thealework
of Murai’s groug in ruthenium-catalyzed hydroarylation of
olefing® and alkyne$® Efficient catalysts do not limit to ru-
thenium-based exampl&sput other transition metal catalysts
based on iridiunt’ cobalt?’> manganes¥, and particularly
rhodium?* have been involved in directing group-promoted
alkyne hydroarylation. Generally, the reaction paoceed by
two main distinct routes) the classical Murai’s pathway that
entails the formation of a metal-hydride interméeligia oxi-
dative additiof®?*02ck11ei242n4iiy 3 nonoxidative elec-
trophilic or base-promoted aromatic C-H activatidif
MH11a12e413.14 he narticipation of a metal-hydride species i th
former mechanism accelerates the insertion stepresbe
higher selectivity has been claimed in the caseoobxidative
processes. Even though the directing group fatbtéhe C-H
activation, the presence of fregtho positions on the aromatic



ring requires the control of

Ob,d f,g,ik,l11b,c,12a-d,f,13,14b,c,e,g,j or bOth reaction
siteslOnitiib12adeliabdihy - aqdition to the regioselectivity
issues for unsymmetrical alkynes. Consequently, ema-
search efforts still have to be done with the afrdeveloping

more efficient catalytic systems.
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Scheme 1. Transition Metal-Mediated Preparation of
Styrenes
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The advent of N-heterocyclic carbenes (NHCs) aanlig
for transition metal complexes has revolutionized tield of
homogeneous catalysiswith important significance in C-H
activation’® As very powerful electron-donating ligands,
NHCs favor oxidative addition processes. In addititheir
generally high steric hindrance allows for a contneer selec-
tivity. Being aware of this fact, our research grdwas devel-
oped in recent years a variety of NHC-based rhodiatalysts
active in C-H activation’ Particularly, dinuclear compounds
of type [Rhf-Cl)(NHC)(7*-olefin)],, proved to be valuable
starting materials for the preparation of mononacleom-
plexes RhCI(NHC){*-olefin)(L) by simple bridge-cleavage
with a nucleophilic ligand® These derivatives exhibited excel-
lent activities and selectivities in catalytic atisyhomo*'® and
cross-dimerizatioh’® as well as hydroalkenylation of N-
vinylpyrazoles'” 2-thienylpyridine}’® and 2-vinylazin€$®"to
produce valuable N-bridge heterocycles. In the sewf the
research, we have observed that the presence afogem-
directing group facilitates the formation of meltgidride

intermediate species. Notably, besides the piongemork of
Murai's group with RuBCO)(PPh),” and that of the Prof. Yi
and coworkers using the cationic complex
[(CeHs) RUH(CO)(PCY)]BF,,"* metal-hydride derivatives have
been only scarcely introduced as pre-synthesizedlytia
precursors in C-H activation proce$s:’9* This gap might
seem surprising due to the inherent advantageiof species
directly involved in the catalytic cycle as catalpsecursors,
thus avoiding preactivation steps. Moreover, mbtalrides
are also known to be efficient catalysts for oléomeriza-
tion”* which open the way to the development of tandeta- ca
lytic processe& Herein, we report on the N-directed hy-
droarylation of unsaturated substrates catalyzedabgew
hydride-rhodium-NHC compound. The high selectivity
wards the mono-hydroarylated product using olefallws
for the controlled preparation of a range of subtd styrenes
by subsequent alkenylation of these intermediatévatéves
with internal alkynes. The hydride precursor i®afficient in
olefin isomerization and tandem processes involving
droarylation reactions. In addition, the proposeak theen
investigated by theoretical calculations at DFTelev

RESULTS AND DISCUSSION

The ability of [Rhg-Cl)(IPr)(rP-coe)h (1) {IPr = 1,3-bis-
(2,6-diisopropylphenyl)imidazolin-2-carbéné undergo C-H
activation of arylpyridines has been evidencedHhsyreaction
of 1 with 2-phenylpyridine. After 2 h at 80 °C, the ahsated
hydride complex RhCIH&-N,«-C-(CHgN)}IPr) (2) was
obtained, which was isolated as a yellow solid T¥8yield
(Scheme 2). The presence of a hydride ligan®? i corrobo-
rated by a shielded doublet &t24.67 ppm in théH NMR
spectrum at -30 °C. The highry (50.2 Hz) points to a
square-pyramidal structure with the hydride locattdthe
apical positiort’* Moreover, thé*C{*H}-APT NMR spectrum
displays two doublets & 185.7 (Jc.rn = 57.0 Hz) and 163.9
(Jcrn = 32.0 Hz) ppm, corresponding to the carbene aed t
ortho-metalated carbon atoms, respectively. Metal-NH@-co
plexes bearing activated phenylpyridine are wetin, but
the disposition of the quelate ligand does notofella clear
trend. In fact, coordination of the pyridine moietis™ or
trans* to the carbene depends on subtle stereolectréfeicte
within the metal environment. Moreover, isolatednpbexes
containing hydride and ortho-metalated phenylppedili-
gands are very scaréesince usually they are transient species
that easily undergo reductive elimination. It isrtiny to note
that complex2 has been previuoslin-situ detected as an
intermediate in borylation reactiofi¥.

Scheme 2. Preparation of  RhCIHEN,4C-
(C1HgN)}(IPr) by C-H Activation of 2-Phenylpyridine
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In order to establish the stereochemistry2pfan X-ray
structural analysis has been performed. (Figurdfg asym-
metric unit of2 contains two crystallographically independent
molecules (see Figure S1 in Supporting Informatsmwing
very similar angles and bond lengths, thus only afnihe two



complexes is discussed herein. The metal centeibiexta
distorted square pyramid coordination polyhedro@.17)° in
which the hydride ligand occupies the apical positand the
carbene carbon atom C(1) and the chlorine atometyumtori-
al cis positions. The ortho-metalated 2—phenyl pyridicews
pies the two remaining equatorigk positions with the nitro-

gen atom N(30}rans to the IPr carbon atom [N(30)-Rh(1)—

C(1) 177.81(7)°]. The two aromatic rings are almugplanar
[N(30)-C(31)-C(36)—C(37) 3.98(29)°] with a C(31)36
bond length of 1.462(3) & nicely fitting in with a Csp-Cs
single bond. The pitchd} and the yaw) angled” of the
NHC moiety are close to cero indicating an almosial ar-
rangement of the NHC ring with respect to the RhC()L)
bond. Further, as a consequence of the chetalék-C) co-
ordination mode of the metallated phenylpyridine tyaw
angles of the pyridyl and the phenyl moieties hairailar
values but opposite signs (pyridyl —=5.6°; phenyl,5#). On
the other hand, probably as a consequence of thi &rsion
angle N(30)-C(31)-C(36)-C(37) [3.98(29)°], smalltchi
angles are observed for the pyridyl (0.3°) andpthenyl (4.8°)
moieties. Finally, it is worth a mention that, tetbest of our

knowledge,? is the first structurally characterized Rh—NHC-

hydride complex resulting from a C-H activation 2+
phenylpyridine.
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Figure 1. ORTEP view of RhCIHK-N,k-C—(Cy;HgN)}(IPr) (2)

with the thermal elipsoids at 50 %. Only one compté the
asymmetric moiety is shown and most hydrogen atoewe been
omitted for clarity. Selected bond lengths (A) arles (°) are:
Rh(1)-C(1) 1.9994(19); Rh(1)-Cl(1) 2.4277(5); RR{4}30)

2.1020(17); Rh(1)-C(37) 1.995(2); C(36)-C(31) 1@)2C(1)—
Rh(1)-N(30) 177.81(7); C(37)-Rh(1)-Cl(1) 167.87(83(1)-
Rh(1)-CI(1) 89.92(6); C(37)-Rh(1)-N(30) 80.29(8);(30)—
Rh(1)-H(1) 79.5(11); C(1)-Rh(1)-H(1) 85.8(11); N3Rh(1)—
H(1) 93.6(11); CI(1)-Rh(1)-H(1) 110.7(11), C(37)36)-C(31)-
N(30) 3.98(29). Pitchd) and yaw ¢) angles (°) are: NH@ 2.0,

Y —1.7; pyridyl,0 0.3, —5.6; phenylg 4.8, 7.5.

Catalytic Activity in Olefin Isomerization . The particular
structure of hydride compleX prompted us to study its per-
formance in olefin isomerization reactictfisCatalytic tests

with 5 mol% loading oR in CDg at room temperature showed

excellent activity for the isomerization of terminand Z-

olefins to yield E-alkenes with high selectivity (Scheme 3,

Table 1). Short times were needed to efficientlymisrize
allylbenzene or 1-octene with very higiiZ selectivity (entry
1-2). The terminal olefin 4-phenyl-1-butene wasnisoized
into 4-phenyl-2-butene in 20 min at room tempemat{(entry
3), which smoothly evolved further into 1-phenyblitene
(50% conversion after 12 h at room temperatureyeddi

chain-walking isomerizatidf® of 4-phenyl-1-butene to the
conjugated olefin was attained at 80 °C for 1 thwibmplete
selectivity for theE-isomer (entry 4). 1,5-Hexadiene was also
susceptible of isomerization to yield 2,4-hexadjestowing a
thermodynamid,E/E,Z ratio of 81/19 (entry 5). Interestingly,
the formation of 1,4-hexadiene resulting from themeriza-
tion of only one double bond was observed at thiy stage
of the reaction. The reactivity of allyl butyl eth&as some-
what different. Terminal-to-internal olefin isomeation was
almost complete in 25 min with 70% selectivity (entry 6).
However, the amount oZ-isomer smoothly increased with
time reaching a thermodynamic equilibrium wifZ ratio of
45/55 (entry 7, see Fig S2 in Supporting InformaticAn
internal olefin such asis-stilbene was isomerized twans
stilbene in only 5 min with 99% selectivity (ent8y. Rather
surprisingly, isomerization of diethyl 2,2-diallystonate did
not take place at room temperature (entry 9). Haweleat-
ing the sample at 80 °C for 5 min resulted in thest@reose-
lective formation of the exocyclic alkene derivatigiethyl 3-
methyl-4-methylenecyclopentane-1,1-dicarboxyfite.

Scheme 3. Mechanism for Olefin Isomerization Catedly
by 2
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Table 1. Olefin Isomerization Promoted by 2

Entry» Olefin Product t(min)  Conv (%) E/Z
! (" O 30 99 98/2
2 e U Ao 15 98 99/1
3 N O 20 99  86/14
4 N O 60° 99 99/1
5 N/ N 180 99 81/19
6 —~ T s 98 70/30
7 -~ 7 0 99 45/55
8 ax &/ s 99/1
9 S g 99

EIOOC COOCEt
EtO0C COOEt

%0.5 mL of GDg, 5 mol% of complex2, [alkene] = 0.4 M at room
temperature’80°C. Isomerization not detected.

The assumed alkene isomerization mechanism erttegls
insertion of the olefin in the rhodium-hydride bo(@icheme
3). Accordingly, the hydride signal & disappeared from the
'"H NMR spectrum just after addition of a terminakfin.
However, that resonance emerges again at high rsiome
without a detrimental influence on the catalyti¢iaty in the
case of chain walking isomerization (entry 4). Tfast indi-
cates that, in spite of the high steric hindrantéhe IPr lig-
and, insertion of internal olefins occurs but thie-&kyl in-



termediate formed is in equilibrium with the motatde Rh-
hydride. The observed selectivity Bolefins for catalyst2
points to a kinetic origin, likely due to a favorgetlimination
step!’*®since increasing of time or temperature resultarin

increment ofZ-amount in accordance to thermodynamic equi-

librium.

Alkene Hydroarylation. The notable catalytic activity of
complex 2 for olefin isomerization under mild conditions
arises from the easy insertion of alkenes intoRheH bond.
This fact evidences its potential as catalyst fmbon-carbon
coupling reactions. Accordingly, the hydride compl has
been revealed as a valuable catalyst for the hygetmn of
terminal olefins with 2-phenylpyridine (Scheme ?4)The
reactions were carried out in sealed NMR tubes ®ithol%
of 2 using GDs as solvent at 90 °C and monitored by
NMR.

Scheme 4. Hydroarylation of Alkenes with 2-Phengiigipe
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The selective alkylation of only one of tbetho positions of
2-phenylpyridine was observed, except for ethylémeear 2-
(2-alkylphenyl)pyridine  derivatives resulting fromanti-
Markovnikov hydroarylation were exclusively isoldtavith
good to high vyields. Furthermore, the reaction \edrkvell
with both aryl and aliphatic alkenes. The hydroatigih of 2-
phenylpyridine with 3,3-dimethyl-1-butene was coetplin 2

3h,24h
0%

4-phenyl-1-butene quickly isomerized in the pregseof2 to
the corresponding internal olefin under the hydyladion
catalytic conditions. In spite of the lack of reaity observed
for an internal olefin such asis-stilbbene (Scheme 4), C-C
coupling between 2-phenylpyridine and these olefireceed-
ed efficiently (Scheme 5). However, the outcomehef reac-
tion was not the expected branched alkyl derivatasulting
from the coupling of the internal olefin, but thiegar one
arising from the terminal alkene was obtained mdténdeed,
the same linear alkyl derivative was formed startirom 1-
octene, 2E-octene or Z-octene. These tandem isomeriza-
tion-hydroarylation processes are directed by therplay of
thermodynamic and kinetic factors. Thus, the is@zagion of
terminal to internal alkene is thermodynamicallyeferred,
whereas the coupling of terminal olefin with 2-pieyridine
is kinetically favored? Another interesting tandem process is
the cyclization-hydroarylation of the terminal déer2,2-
diallylmalonate with 2-phenylpyridine to affor@l in 67%
isolated yield.

Scheme 5. Tadem Isomerization-Hydroarylation and Cy
clization-Hydroarylation Reactions
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Alkyne Hydroarylation. Complex?2 efficiently catalyzed

h affording3a with 91% isolated yield whereas styrene needed the hydroarylation of internal alkynes with 2-phkayyidine.

12 h to be transformed in@b. The catalytic activity is quite
sensitive to the electronic effects on the aromatig of the
olefin. Thus, electron-donating groups increasedhydroary-
lation rate 8c-d), whereas a reduction of the catalytic activity
was observed for electron-releasing grol§®s. (The introduc-
tion of a substituent in the position also resulted in a drastic
drop in activity 8f, 48 h, 69% isolated yield), whereass-
stilbene did not react at all, likely due to stezftects. Accord-
ingly, reaction with ethylene (2 bar for 48 h) riked in the
double alkylated produ@g. It is interesting to note that the
dimer 1, precursor of2, is a poor hydroarylation catalyst,
indicating thatcatalyst preformation is essential for efficient
catalysis

Terminal olefins susceptible to isomerization exeith dis-
tinct reactivity. For example, 1-octene, 3-phemysbpene or

In contrast to olefins, the double alkenylation @f
phenylperydine to yield 2-(2,6-bis-alkenyl-phenybidine
derivatives was exclusively observed (Scheme 6¢ Stereo-
chemistry of the products was confirmed'ByNOESY NMR
experiments. Th&-E isomerda was exclusively formed as a
result of tandensyn hydroarylation of two molecules of 4-
octyne. Alternatively, the initially formedE-E product 4b
from diphenylacetylene underwent an isomerizatioocess
on one of thertho-alkenyl groups to afford the-Z mixed 2-
(2,6-bis-alkenyl-phenyl)pyridine4b’, which was the sole
isomer isolated after column chromatography (88%idyi
Unfortunately, the hydroarylation of terminal allemsuch as
phenylacetylene, benzylacetylene or 1-hexyne wasiagess-
ful due to competitive dimerization, cyclotrimerian and
polymerization reactions.



Scheme 6. Hydroarylation of Internal Alkynes with 2
Phenylpyridine
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Tandem Alkylation/Alkenylation. The marked comple-
mentary reactivity of alkenes and alkynes in hydylaion
reactions with 2-phenylpyridine promoted bprompted us to
combine these two reactions in a tandem processder to
prepare 2-(2-alkyl-6-alkenyl-phenyl)pyridine detivas with
good to high yields (Scheme *)In a preliminary test, sty-
rene, diphenylacetylene and 2-phenylpyridine wemngechin
the presence d. Unfortunately, only the alkyne hydroaryla-
tion products4b and 4b’ were obtained, indicating that al-
kynes react faster than olefins, thus inhibiting #tandem
process. Therefore, it was necessary to perfornnethetion in
two steps. Firstly, the alkene hydroarylation tonfidhe mon-
oalkylated arylpyridine derivatives, and subseqiyerihe
hydroarylation of an internal alkyne in the samacter to
synthesize the unsymmetrical alkyl-alkenyl di-sitbstd
phenylpyridine derivatives 2-(2-alkyl-6-alkenyl-
phenyl)pyridine5-6. A comparative study of the rate of the
catalytic reactions using styrene and diphenylderty as
substrates showed that the double alkenylation ef 2
phenylpyridine is faster than olefin hydroarylatioas ex-
pected from the observed catalytic outcome (seeS3dgin
Supporting Information). However, alkenylation dkydated-
phenylpyridine has an intermediate rate. This pahts to an
electronic effect playing a role in the second bydylation
step, since alkenyl-substitution accelerates tlaetien over
alkyl-funcionalization.

The synthetic scope of this tandem process wayzethby
using a range of alkyl and aryl terminal olefinglatiphenyla-
cetylene or 4-octyne as internal alkynes (SchemeAs)a
general trend, diphenylacetylene reacted faster thactyne
(5 vs6). Indeed, the presence of a substituent on thdaadd
phenylpyridine also influences the catalytic atyivivith a
similar trend to that observed in olefin hydroatiga. Thus,
hydroarylation of diphenylacetylene with 2-(2-
neopentylphenyl)pyridine3a, afforded5ain 71% yield after 4
h, whereas 2-{2-(2-phenylethyl)phenyl}pyridin8b, gave5b
in 81% vyield after 7 h. Moreover, electron densitythe aro-
matic ring of the pendant alkylic chain also afettte perfor-
mance of the catalyst. As observed for the olefidrbaryla-
tion, an electron-donating group increases thdytatactivity
(5d), while it is reduced with an electron-withdrawisgbstit-
uent 66). The reaction involving compoungf containing a
methyl group on the aliphatic chain required a bigtatalyst
loading (10 mol%) and high temperature (120 °Cafford 5f
in 65% yield. Interestingly, the same trends wedrseoved in
the tandem alkene/alkyne hydroarylation reaction®living
4-octyne.

Scheme 7. Tandem Alkylation/Alkenylation of 2-

Phenylpyridine with Olefins and Internal Alkynes
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The heterobiaryl compounds-6 exhibit axial chirality®
Rotation around the biaryl axis is restricted irchsuderiva-
tives, and depends on the nature of the substitfethie alkyl
chain, as it becomes evident from the fluxionalawdr ob-
served in the'H NMR spectra. Thus, the coalescence peak
observed at room temperature for the >@Fbtons adjacent to
the phenyl group dba splits into two triplets at -40 °C (Figure
2). Line-shape simulation using the gNMR modelirgkage
and further Eyring analysis allow the calculatidrite activa-
tion parameters for the rotation process that twinto be4H
= 12.8+1.1 kcal mdl and4S = 1.4+2.1 cal mélK™. Moreo-
ver, the rotational process f6a was studied by DFT calcula-
tions (Figure 2, top right). the relaxed potenéakrgy surface
(PES) scan was performed by considering the N-GG87
dihedral angle value. PES scan was carried outndrdabe
bond C2-C7 by changing the torsion angle in 103ssfeom —
180° to +180°. Energy barriers of 13.6 and 11.3l koal™
were calculated between the more stable perperdidigpo-
sitions and the coplanar structures, which agreibk tihe
experimental values.
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The NMR spectra of, 8 and10 are in agreement with pro-
posed structures in Scheme 8. The presence oflajkylds in
7 and 8 is corroborated by the appearance in tHeNMR
spectra of the signals corresponding to the diestepic
methylene protons at2.85 and 1.75 ppm fatand 2.94, 2.17,
1.74 and 1.68 ppm fo8. Moreover, theC{*H}-APT NMR
spectra show three doublets for the correspondimgRar-
bon atoms. The more deshielded signal appeaisl@l.5 )
and 181.2 ppm§), with Rh-C coupling around 60 Hz, corre-

CD.Cl, showing the coalescence of the two diastereotopic sponding to the carbene carbon atom. Bntho-metalated

protons of the CEPh fragment: experimental (bottom left) and
calculated (bottom right). Potential energy surfacanfor the
rotation of the pyridine-phenyl axis (top right).

Mechanistic studies In order to gain insight into the reac-
tion mechanism, a series of stoichiometric reastiah low
temperature were carried out (Scheme 8). A toluireslu-
tion of 2 in a NMR Young-tube under 2 bar of ethylene at -30
°C afforded the Rh-ethyl complex RhCI(E®{N,«-C-
(CyHgN)H(IPT) (7) as a result of the insertion of ethylene into
the Rh-H bond. A similar linear alkyl complex
RhCI(GH4Ph){x-N,«-C-(C,;HgN)}(IPr) (8) was obtained after
treatment of2 with styrene at -30 °C, via anti-Markovnikov
selective insertion. However, both alkyl complexsshave
very differently at room temperature. The internagel7 in the
presence of ethylene gas evolved to the formaticheoredu-
ced Rhethylene dimer [Ri-Cl)(IPr)(17*-C,Ha)]» (9) and the
coupled product 2-(2,6-diethylphenyl)pyridiBg. In contrast,
no C-C coupling was observed wh&mwas warmed to room
temperature. Instead, amf-styrene complex RhCH-
CH,=CHPh)-N,2-phenylpyridine)(IPr) 10) bearing a 2-
phenylpyridinek-N coordinated ligand was obtained via rege-
neration of2 by g-hydride elimination and subsequent hy-
dride-aryl reductive elimination. These resultsady demon-
strated the reversibility of the C-H activation amigratory
insertion processes. In contrast to the olefinstaaztion was
observed after addition of diphenylacetylene tolat®on of 2
at room temperature. However, after heating theptsamt 80
°C for one night, a mixture afb, 4b’ and other unidentified
compounds was obtained.

Scheme 8. Detected Intermediates for Olefin Hyddation
Reaction

rhodium-aryl carbon atom resonates at 17ZPand 172.4
ppm @), displaying smalledcr, values around 39 Hz. Finally,
the Rh-alkyl carbon atoms are observed at 18.3-(g,= 32.4
Hz) and 23.4 ppm (dc.rn = 34.3 Hz), for7 and8, respective-
ly. On the other hand, th#! NMR spectrum of comple£0
shows a set of signals at4.55 (dd,Jy4 = 12.3, 7.6 Hz,
CH=CH,), 2.24 (d,Jy.s = 7.6 Hz, CH=CH) and 1.63 ppm (d,
Jun = 12.3 Hz, CH=CH), which confirms the coordination of
styrene to the rhodium atom. THE{'H}-APT NMR spectra
of 10 also show three doublets, one for the Rh-€arbon
atom (181.9, djc.rn = 54.0 Hz) and two for the?-coordinated
styrene ab 54.1 Jcrn= 16.1 Hz, CH=CH) and 32.3 dc.rn=
15.6 Hz, CH=CH).

As we have shown, the catalytic activity of compleis af-
fected by equilibrium processes both in C-H actbrags well
as in insertion steps. To shed light on the hyddaton
mechanism deuterium-labeling experiments have hsmn
formed (Scheme 9). The catalytic H/D exchange on 2-
phenylpyridine (0.18 mmol) with CI®D (0.5 mL) promoted
by 2 (5 mol%) showed 73% of incorporation of deuterium
atoms at bottortho positions of 2-phenylpyridine after 12 h at
80°C. Otherwise, treatment of 2-phenylpyridine wstigrene-
ds (0.18 mmol) in 0.5 mL of gDs in the presence a@ (5
mol%) produced a H/D exchange between vinyl fragnoén
perdeuterated styrene (60, 58 and 54%) and bdtio-aryl
protons of 2-phenylpyridine (60%) after 3 h at rotempera-
ture. Then, heating the sample for 12 h at@0resulted in the
formation of the anti-Markovnikov 2-(2-
phenethylphenyl)pyridine product, with both Ctoups (60
and 62%) andrtho-arene positions (57%) partially deuterat-
ed. The observed pattern for H/D exchange confthrasexist-
ence of equilibriums both on C-H activation andeiti®n
steps of the catalytic cycle. In addition, the samamount of
deuterium incorporation at the and 3 positions of styrene
implies that Markovnikov and anti-Markovnikov inten
pathways occurs at similar rates. Moreover, a lkénstudy
comparing the rate for styrene and styrdpéyydroarylation
gave a KIE (Kinetic Isotopic Effect) of 1.06. Thialue sug-
gests that no X-H cleavage occurs in the rateilgitstep,



therefore, C-H activation and migratory insertidaps might
be discarded in favor of reductive eliminatitn.
Scheme 9. Deuterium Labeling Experiments
A) Proton/Deuterium exchange experiment:
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Based on the detected intermediates at low temperaind
deuterium labeling experiments, a plausible medmanfor
hydroarylation reactions is proposed in SchemeTh@ first
step involves the coordination of the unsaturatdessate on

the complexX2. Subsequently, the insertion of the olefin/alkyne

may occur either by hydrometallation into Rh-H badby

carbometallation into Rh-C bond. However, a hydraiagion

pathway is proposed in view of alkyl intermediaesnd 8

detected in the reactivity studies. Furthermore, itisertion
step via Markovnikov (route 1) or anti-Markovnika@addition

(route Il) might yield the corresponding Rh-hydrdnd de-

rivatives which would be in equilibrium, as confethby the
deuterium-labeling experiments. Reductive elimioatcould

be operative only for the linear anti-Markovnikopesies to
yield the C-C coupled organic product and a rhodiuspe-

cies similar to detected intermedidt8. Finally, C-H activa-
tion of 2-phenylpyridine within rhodium(l) speciesgenerates
the catalytic active species.

Scheme 10. Proposed Catalytic Cycle for Hydroanytat
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Theoretical Calculations on the Mechanism A detailed
DFT computational analysis on the mechanism of dgdia-
tion promoted by has been carried out. All the energia&(
in kcal mol) are relative to the starting poiAtand the corre-
sponding reactants. Firstly, the hydroarylationotefins was
studied using propene as an alkene model (FigureTl3

structure ofA consists of a square-planar rhodium(l) environ-

ment containing IPr, chlorido and 2-phenylpyriditigands,
the later displaying an agostic interaction betweaaortho-

phenyl C-H bond and the metallic center. This imté&on is
easily broken by coordination of propene to fdmsimilar to
10, resulting in a net stabilization by 4.2 kcal fhaDtherwise,
compoundA is a putative intermediate for the formation of th
rhodium-hydride active specm-m similar to2, via a low ener-
gy C-H activation procesd®®' Next, anti-Markovnikov
insertion of the olefin into the Rh-H bond takeagd viaTSF
to give the Rh-alkyl complefG, similar to 8. Finally, alkyl-
aryl reductive elimination througffSH vyields a rhodium
square planar speciéssimilar toA but bearing artho alkyl-
substituted 2-phenylpyridine, which lies 5.9 kcadlthbelow
A. Ligand exchange between 2-phenylpyridine anduite-
tionalized counterpart closes this exergonic cétalgycle.
Among the three transition stat@§H has the highest energy,
thus reductive elimination is rate-limiting, shogian overall
barrier fromB of 23.3 kcal mot. Moreover, formation o6 is
a reversible process, in agreement with the expaiah re-
sults and deuterium labeling experiments. Com@Bewas
initially formed after treatment a2 with styrene at low tem-
perature, but evolves into the more stalelefin complex10
at room temperature.

The unsuccessful double-alkylation of 2-phenylpyrédwas
also explained by DFT calculations. In a similarywas ob-
served forA, coordination of a propene moleculelttw yield
J, resulting in a stabilization of 8.9 kcal rifphigher than that
observed forB. From this point, the iteration of a similar
pathway to that previously described via C-H adiora
(TSK), olefin insertion TSN) and reductive elimination
(TSP) results in the formation @ bearing a doubly-alkylated
2-phenylpyridine ligand. The absolute energy levelsall
these transition states are lower than those fdondheir
counterpartd SC, TSF, andTSH, respectively. However, the
higher energetic barrier frothto TSP in comparison with that
from B to TSH (27.9vs 23.3 kcal mdf), makes the second
hydroarylation process unfeasible at the currentperature
conditions. The reason for this fact is an addélostabiliza-
tion of J with respect td. Structural analysis of intermediate
J reveals that two hydrogen atoms of the alkyl Sttt of
the 2-phenylpyridine lie at 3.130 and 3.424 A te tlegatively
charged chlorine ligand, indicating that some tygeweak
electrostatic interaction might be present. Analysf non-
covalent interactions using the NCI metffoveals a weakly
attractive interaction region which can be respaesof the
additional stability ofl compared td@ (see Sl).

The anti-Markovnikov selectivity of the alkene hgdryla-
tion process has been also studied. Figure 4 skimavenergy
profile for the olefin insertion and reductive elimation steps
for Markonikov (blue, left) and anti-Markovnikov ditions
(red, right). The first step displays similar enetgarrier for
the 2,1 or 1,2 insertion, 18\& 17.9 kcal mot, respectively.
However, the transition state corresponding to lirenched
alkyl-phenyl reductive eliminationTGH") is located 2.9 kcal
mol* aboveTSH, therefore disfavoring the formation of the
branched-alkyl functionalized phenylpyridine. Moveg, the
uniform distribution of the deuterium atoms ovee tthree
olefinic positions of styrene observed in the H/Echleange
experiments is explained by two fadfsreductive elimination
as rate-limiting step, and) similar energies observed for both
insertion types (Scheme 9, B).
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Next, the alkyne hydroarylation processes wereutaied
(Figure 5). In this case, the coordination of a euvale of
alkyne intoA is disfavored by 3.5 kcal mbl Another im-
portant difference is the rate-limiting step. Inntast to al-
kene hydroarylation, transition state for insertepTSF ™ is
more disfavored than that of reductive eliminatidBH""
(22.3vs 17.7 kcal mat). This is in agreement with the failure
to detect experimentally any intermediate relatet” after

from A to TSF” is lower than that observed for alkene hy-
droarylation (22.3/s 23.3 kcal maf). Moreover, according to
the experimental results, the second alkyne hysitatéon
with the alkenyl-functionalized phenylpyridine iaster than
the first alkyne hydroarylation process. The enebgyrier
between the more stable rhodium-hydride intermediat
and the higher energy transition state correspandinthe
alkyne insertionTSN"", is only 21.3 kcal mdl. The origin of

treatment of2 with diphenylacetylene. The energetic barrier the different behavior of alkenes and alkynes se&nbe



related to coordination of the unsaturated ligamdhe corre-
sponding square-planar agostic intermedigtesr 1. While
coordination of alkene tbreduces the ground state energy of
the intermediate] by 8.9 kcal mal, the coordination of an
alkyne tol " is disfavored. The stabilization gained in thse

of the alkenes increase the energetic barrier, tiaumspering
the catalytic process.

Finally, the relevant intermediate and transititates for de-
termining the energetic barrier for the tandem laky
tion/alkenylation process was calculated (FigureA6¥epara-
tion of 23.4 kcal maot was found, which lies between that
obtained for the operative double alkenylation anfeasible
double alkylation.
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Figure 6. Comparison of energy barriers for double alkyla-
tion (left, red), double alkenylation (center, Bl@nd tandem
alkylation/alkenylation (right, green).

CONCLUSION

A new NHC-rhodium-hydride complex RhCIK{N,4-C-
(CiyHgN)}(IPr) has been revealed as efficient catalyst fo
olefin isomerization and C-C coupling reactionsghiselec-
tivity for the formation of thée-regioisomer is observed in the
isomerization of internal or terminal alkenes, irdihg chain-
walking processes, as a result of a favgtedimination step.
Hydroarylation of olefins with 2-phenylpyridine kao the
selective formation of linear morartho-alkylated derivatives
whereas internal alkynes afford bis-ortho-alkergdatcom-
pounds. The rhodium-hydride catalyst promotes tang®m-
erization/hydroarylation processes and more intergly
alkylation/alkenylation reactions as a useful segtith ap-
proach to functionalized styrenes.

Stoichiometric reactions at low temperature, déunerla-
beling experiments, and DFT studies have revealpteeha-
nism entailing C-H activation, migratory insertiand reduc-
tive elimination. In the case of olefin hydroarytet, both C-H
activation as well as migratory insertion are rsime, where-
as reductive elimination is the rate-limiting stefpowever,
migratory insertion is rate-limiting for alkyne hyzhrylation.
DFT calculations have disclosed a high barriertfar double
alkylation process whereas tandem alkylation/all&ion
rate-determining step lies well below that andtglig above
the operational double alkenylation. The origin floe differ-
ent behavior of alkenes and alkynes arises fronctiedina-
tion of the unsaturated substrates to a C-H agigécmediate
species. While coordination of alkynes is disfadoralkenes
stabilize agostic intermediates, therefore resgltman incre-
ment of the barrier. An additional stabilization mon-
covalent interactions between the mono-alkylatextipct and

the chloride ligand renders the double alkylatisacpss un-
feasible.

EXPERIMENTAL SECTION

General Considerations All reactions were carried out
with rigorous exclusion of air using Schlenk-tuleetniques.
The reagents were purchased from commercial sowcds
were used as received. Organic solvents were tyestand-
ard procedures and distilled under argon prior 46 ar ob-
tained oxygen- and water-free from a Solvent Peatfon
System (Innovative Technologies). The organometailie-
cursor [Rh(a-CI)(IPr)(7*-coe)l (1) was prepared as previously
described in the literaturé&® Chemical shifts (expressed in
parts per million) are referenced to residual saiyeeaks H
and™*C{*H}). Coupling constants], are given in Hz. Spectral
assignments were achieved by combinatiortbfH COSY,
BC{*}-APT and *H-*C HSQC/HMBC experiments. C, H,
and N analyses were carried out in a Perkin-EIng002
CHNS/O analyzer. High-resolution electrospray messctra
(HRMS) were acquired using a MicroTOF-Q hybrid quad
pole time-of-flight spectrometer (Bruker Daltonid3temen,
Germany). GC-MS analysis were recorder on an AgB&73
mass selective detector interfaced to an Agiler8068eries
gas chromatograph system, using a HP-5MS 5% phrenyl
thyl siloxane column (30 m x 250 mm with a 0.25 rfilm
thickness).

Preparation of RhCIH{ x&-N,x-C-(C1;HgN)}(IPr) (2). A so-
lution of dinuclear compleg (300 mg, 0.23 mmol) in 100 mL
of toluene was treated with 2-phenylpyridine (@7, 0.470
mmoles) and stirred for 2h at 80°C. After filtratidhrough
Celite the solvent was evaporated to dryness. Awidibf
hexane induced the precipitation of a yellow solthjch was
washed with hexane (3 x 4 mL) and dried in vacueldr 280
mg (87%). Anal. Calcd. for gH4sN;CIRh: C, 66.91; H, 6.65;
N, 6.16. found: C, 67.18; H, 6.77; N, 6.2 NMR (500 MHz,
tolueneds, 243 K): 6 9.64 (d,Jy.y = 5.7, 1H, H,,), 7.2-6.8
(10H, Hy), 6.69 (d.Jyy = 8.0, 1H, H.,)), 6.66 and 6.55 (both
d, Juy = 1.7, 2H, =CHN), 6.56 (dd}., = 8.0, 7.4, 1H, H,),
6.12 (dd, .y = 7.4, 5.7, 1H, H), 4.08, 3.79, 3.22, and 2.82
(all septJyy = 7.4, 4H, CHMg,), 1.88, 1.65, 1.15, 1.06, 1.04,
1.02, 0.95, and 0.64 (all d,.4; = 7.4, 24H, CHMg,), -24.67
(d, Juy = 50.2, 1H, Rh-H)”C{*H}-APT NMR (125.6 MHz,
tolueneds, 243 K):06 185.7 (dJc.rn = 57.0, Rh-G;,), 163.9 (d,
Jern = 32.0, Rh-Gy), 163.6 (dJcrn = 2.0, G,y), 150.8 (s, &
oy, 148.5, 147.7, 146.8, and 144.9 (all g,-F, 146.9 (s, @
P, 139.9, 130.0, 129.8, 129.6, 128.4, 128.2, 12423.6,
123.5, and 123.2 (all s, Gk, 139.3 and 135.4 (both s\,
136.2 (s, Gpy), 121.7 and 121.3 (both s, =CHN), 120.7 (s,
o) 116.5 (s, Gpy), 29.4, 29.3, 28.6, and 28.3 (all s, CHMe
27.2, 26.3, 25.7, 25.6, 23.9, 23.6, 22.9, and 226 s,
CHMep,).

In-situ Formation of RhCI(Et) { &N,x-C-(C1HN)}(IPr)
(7). ANMR Young tube containing a toluedg-solution of2
(30 mg, 0.044 mmol) was charged with 2 bar of ethgl at
243 K. NMR Spectra were measured immediately attkw-
peratureH NMR (400 MHz, toluenels, 243 K):5 10.07 (d,
Jhn = 4.9, 1H, Hyp), 7.2-6.4 (10H, ), 6.97 (d, s = 7.4,
1H, Hspy), 6.69 (dd,Jy.y = 7.8, 7.4, 1H, Hl,), 6.76 and 6.57
(both d,J4.4 = 1.6, 2H, =CHN), 6.22 (dd}4 = 7.8, 4.9, 1H,
Hspy), 4.51, 3.58, 3.33, and 3.30 (all seft,, = 7.4, 4H,
CHMep,), 2.85 and 1.75 (both m, 2H, RhgH1.82, 1.77,
1.40, 1.33, 1.19, 1.12, 1.09, and 0.95 (albgd, = 7.4, 24H,
CHMep,), -0.10 (m, 3H, Rh-CkCH.). *C{*H}-APT NMR
(100.4 MHz, toluenel;, 243 K): 6 181.5 (d,Jc.rn = 60.8, Rh-



Cirr), 172.9 (dJcrn = 38.7, Rh-Gy), 163.8 (s, &), 150.9 (s,
Copy, 149.1, 147.6, 145.4, and 144.2 (all g,F, 146.9 (s,
Cq-pn), 140.5, 130.4, 130.0, 129.8, 129.0, 127.0, 124239,
123.8, 123.3, 123.1, 121.6 (all s, gH=CHN), 136.7 and
134.3 (both s, N), 136.4 (s, &;), 120.6 (S, &y, 116.9 (s,
Cspy)s 29.6, 29.4, 29.0, and 28.7 (all s, CHM)e 27.5, 26.9,
26.2, 26.1, 26.0, 23.8, 23.3, and 22.9 (all s, CHM€.8.3 (d,
Je.rn = 32.4, RhCHCH), 14.4 (s, RhCKCHy).

In-situ  Formation of RhCI(CH ,CH,Ph){ #-N,x-C-
(CHgN)Y(IPT) (IPr) (8) . A solution of 2 (30 mg, 0.044
mmol) in tolueneds (0.5 mL, NMR tube) at 243 K was treated
with styrene (5uL 0.044 mmol). The tube was kept at low
temperature for 30 min before the recording ofspectra’H
NMR (400 MHz, toluenals, 243 K): 5 10.18 (d,Jy.4 = 5.5,
1H, He,py), 7.4-6.9 (10H, K, 6.98 (d,Juy = 8.2, 1H, H,),
6.92 (dd,Jyy = 7.8, 7.1, 2H, Hppng), 6.76 and 6.55 (both br,
2H, =CHN), 6.75 (ddJy.4y = 8.2, 6.7, 1H, Hl,), 6.71 (t,Jn =
7.1, 1H, Hepns), 6.47 (d, Iy = 7.8, 2H, Hpng), 6.25 (ddJyp
= 6.7, 5.5, 1H, Bl,,), 4.66, 3.47, 3.33, and 3.32 (all septy
= 6.3, 4H, CHMg)), 2.94 and 1.74 (both m, 2H, Rh@EH,),
2.17, and 1.68 (both m, 2H, Rh@EH,), 1.94, 1.80, 1.27,
1.15, 1.14, 1.12, 0.96, and 0.59 (all # = 6.3, 24H,
CHMep,). “C{*H}-APT NMR (100.4 MHz, toluendl,
243K): 6 181.2 (d,Jc.rn = 60.3, Rh-Gy), 172.4 (d,Jcrh =
40.2, Rh-Gy), 164.0 (d,Jcrn = 1.9, G.), 151.0 (s, ;).
149.1, 147.2, 145.3, 144.0 (all s,.&), 146.9 (s, Gpy, 142.1
(d, Jorn = 3.1, Gepns), 140.6, 138.9, 130.0, 129.7, 125.2,
123.9, 123.8, 123.7, 123.1, and 121.6 (all spfEH36.7 (s,
Cupy), 136.4 and 134.4 (both s\, 128.1 (S, Gens), 127.5
(s, Guphs)y 125.4 and 124.6 (both s, =CHN), 123.3 ),
120.7 (s, Gpy), 117.0 (s, &), 40.2 (s, RhCLCH,Ph), 29.7,
29.4, 28.9, and 28.7 (all s, CHM& 23.4 (d,Jcrn = 34.3,
RhCH,CH,Ph), 27.6, 27.0, 26.1, 26.0, 23.8, 23.4, 22.9, and
20.5 (all s, CHMg,)).

In-situ  Formation of RhCI(#*CH,=CHPh)(x-N-2-
phenylpyridine)(IPr) (10). A freshly prepared solution of
was warming to room temperature for 10 min and twmried
to low temperature for the recording of the spectraNMR
(400 MHz, tolueneds, 243K):8 8.37 (d,Ju.y = 5.7, 1H, H),
8.25 (d,Jyni = 7.6, 2H, Hpnpy, 7.60, 7.44, 7.22, and 7.12 (all
d, Jun = 8.0, 4H, H,p), 7.53 and 7.47 (both 3,,, = 8.0, 2H,
Hp_|pr), 7.31 (tv‘JH-H = 73, 1H, h!-PhPQ: 6.93 (dd,JH_H = 76, 73,
2H, Hypnpy), 6.80 (t,Jyy = 6.8, 1H, Hpng), 6.56 and 6.09
(both br, 4H, Hy.), 6.55 (m, 1H, H,), 6.54 (m, 1H, H,),
6.53 and 6.49 (both d,;4 = 1.9, 2H, =CHN), 5.93 (dd.4 =
6.5, 5.7, 1H, H,), 4.96, 4.30, 2.55, and, 2.11 (all seft, =
6.8, 4H, CHMe,), 4.55 (dd, 44 = 12.3, 7.6, 1H, CH=C}),
2.24 (d,dy4 = 7.6, 1H, CH=CH), 1.93, 1.74, 1.27, 1.20, 1.15,
1.13, 1.02, and 0.92 (all d,.4 = 6.8, 24H, CHMg,), 1.63 (d,
Jun = 12.3, 1H, CH=CH). *C{*H}-APT NMR (100.4 MHz,
tolueneds, 243K): 5 181.9 (dJc.rn = 54.0, Rh-G,), 158.9 (s,
Copys 154.4 (s, Gpy), 148.8, 148.6, 146.2, and 146.0 (all g, C
pr)s 146.3 (S, Grns) 140.6 (S, Gpr, 138.1 and 137.9 (both s,
CN), 134.4 (s, &py), 129.8, 129.6, 125.2, 125.0, 123.8, 123.4
(all's, Gnapy, 128.5 (S, Gerpy, 128.0, 127.7, and 123.2 (all s,
Cens), 127.9 (S, Gpnpy, 127.6 (S, Geney), 125.1 and 124.9
(both s, =CHN), 123.0 (s,46), 120.7 (s, &py), 54.1 (d,Jc.rn
= 16.1, CH=CH), 32.3 (d,Jc.rn = 15.6, CH=CH), 28.9, 28.7,
28.7, and 28.5 (all s, CHM#@, 26.8, 26.7, 26.5, 26.2, 24.0,
23.7,22.1, and 22.0 (all s, CHM#&

Standard conditions for hydroarylation of alkenes ad
alkynes with 2-phenylpyridine. A NMR tube containing a
solution of 0.01 mmol of catalyg in 0.5 mL of GDgs was
treated with 0.20 mmol of 2-phenylpyridine and Or@thol of

alkene or 0.40 mmol of alkyne and heated at 90T#e. reac-
tion course was monitored B4 NMR and the conversion
was determined by integration of the correspondé@sgpnanc-
es of the alkyne and the products.

Standard conditions for tandem hydroarylation with 2-
phenylpyridine. A NMR tube containing a solution of 0.01
mmol of catalys2 in 0.5 mL of GDg was treated with 0.20
mmol of 2-phenylpyridine and 0.20 mmol of alkenegjieh
was heated at 90°C to obtain the monoalkylated comg.
Afterwards, 0.20 mmol of alkyne was added to theRibe
and heated at 90 °C. The reaction course was meditny'H
NMR and the conversion was determined by integnatibthe
corresponding resonances of the alkyne and thaipted

Crystal Structure Determination. Single crystals o for
the X-ray diffraction studies were grown by diffosiof hex-
ane into a toluene solution @f X-ray diffraction data were
collected at 100(2) K on a Bruker APEX SMART CCO-di
fractometer with graphite-monochromated M@ radiation
(A = 0.71073 A) using 0.6& rotations. Intensities were inte-
grated and corrected for absorption effects withINGA-
PLUS* and SADABS® programs, both included in APEX2
package. The structures were solved by the Pattersghod
with SHELXS-97° and refined by full matrix least-squares on
F* with SHELXL-2014Y" under WinGX%®

Crystal data for 2. 4(CsgHssCINsRN)- GHg, M = 2820.64
g-mor™, monoclinic, PZn, a = 22.2298(10) A, b = 14.0027(6)
A, ¢ = 23.0551(11) Ap = 102.7880(10)°, V= 6998.5(5)°AZ
= 2, Dy = 1.339 Mg-r, 1 = 0.596 mm', F(000) = 2948,
yellow prism, 0.283 x 0.260 x 0.090 My, = 1.442° 9oy =
28.702°, limiting indexes —2®<29, -18k<18, -3(I<30,
reflections collected/unique 140709/17219 [R(int0:6481],
data/restraints/parameters 17219/17/851, GOF =51.B6=
0.0335[I>3 (I)], WR? 0.0752 (all data). Largest diff.
peak/hole 0.853/-0.784 A

Determination of rotational barriers. Full line-shape analy-
sis of the dynami¢H NMR spectra of5a were carried out
using the program gNMR (Cherwell Scientific Pubiigh
Limited). The transverse relaxation tine, was estimated at
the lowest temperature. Activation parametar§ and AS
were obtained by linear least-squares fit of theiriy plot.
Errors were computed by published methSds.

Computational details. All DFT theoretical calculations were
carried out using the Gaussian program packagée M06
method? has been used for both energies and gradient-calcu
lations. All atoms were treated with the def2-SVazib sef
together with the corresponding core potential Ror for ge-
ometry optimizations. Energies were further refimgdsingle
point calculations using the def2-TZVP basis set salvent
corrections using the SMbapproach for benzene as imple-
mented in G09. The “ultrafine” grid was employedaih cal-
culations. All reported energies are Gibbs freergies re-
ferred to a 1 M standard state using the corregifoposed by
Goddard Ill et af* at 90° C including basis set and solvent
corrections. The nature of the stationary points w@nfirmed

by analytical frequency analysis, and transitioateg were
characterized by a single imaginary frequency smoading

to the expected motion of the atoms. The NCIPLOJgpant®
has been used for the NCI maps.
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