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Abstract 

Reinforcement sensitivity theory (RST) of personality establishes the punishment sensitivity trait 

as a source of variation in defensive avoidance/approach behaviors. These individual differences 

reflect dissimilar sensitivity and reactivity of the fight-flight-freeze and behavioral inhibition 

systems (FFFS/BIS). The sensitivity to punishment (SP) scale has been widely used in personality 

research aimed at studying the activity of these systems. Structural and functional neuroimaging 

studies have confirmed the core biological correlates of FFFS/BIS in humans. Nonetheless, some 

brain functional features derived from resting-state blood-oxygen level-dependent (BOLD) 

activity and its association with the punishment sensitivity dimension remain unclear. This 

relationship would shed light on stable neural activity patterns linked to anxiety-like behaviors 

and anxiety predisposition. In this study, we analyzed functional activity metrics “at rest” [e.g., 

regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF)] 

and their relationship with SP in key FFFS/BIS regions (e.g., amygdala, hippocampus, and 

periaqueductal gray) in a sample of 127 healthy adults. Our results revealed a significant negative 

correlation between the fALFF within all these regions and the scores on SP. Our findings suggest 

aberrant neural activity (lower fALFF) within the brain’s defense system in participants with high 

trait anxiety, which in turn could reflect lower FFFS/BIS activation thresholds. These neurally-

located differences could lead to pathological fear/anxiety behaviors arising from the FFFS and 

BIS. 
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1. Introduction 

One of the most influential taxonomies of personality in contemporary personality psychology 

came hand in hand with reinforcement sensitivity theory (RST; Gray, 1982) and its revised 

version (rRST) in 2000 (Gray & McNaughton, 2000; McNaughton & Corr, 2008). Within the 

rRST, the behavioral and biological description of fear and anxiety behaviors was central. Based 

on the original RST, the revised version proposed two neurobehavioral systems in charge of the 

defense system: the fight-flight-freeze system (FFFS) and the behavioral inhibition system (BIS). 

The former would be responsible for mediating avoidance responses aroused by fearful stimuli, 

whereas the latter would be activated by conflict situations of approach-avoidance (and also by 

approach-approach or avoidance-avoidance situations; see McNaughton & Corr, 2004, 2008). 

This clear distinction of fear and anxiety in two separate dimensions established the most 

notorious difference between the RST and the rRST, since in the original theory they were 

conflated in a single anxiety domain. Of note, the behavioral approach system (BAS) would 

mediate responses toward appetitive, rewarding stimuli. Remarkably, the FFFS and BIS can also 

be distinguished in two ways: categorically and hierarchically. The category refers to the 

“defensive direction”, that is, whether the behavioral action keeps the organism away from danger 

(FFFS) or moves it toward danger—this action would be mediated by the BIS by inhibiting 

behaviors and increasing risk assessment when both appetitive and aversive stimuli are present in 

the same direction and a conflict emerges between the FFFS and BAS. The hierarchy refers to the 

level of activation. This activation depends on the “defensive distance”, that is, the perceived 

distance from a threatening stimulus (Corr & McNaughton, 2012; McNaughton & Corr, 2004, 

2019). This hierarchy is represented by a neural top-down/bottom-up activation of interconnected 

regions. The FFFS is composed of the amygdala (fear perception) and the medial hypothalamus 

and periaqueductal gray (PAG; defensive avoidance behaviors), whereas the BIS relies on the 

hippocampus (defensive approach behaviors) and the amygdala (Adrián-Ventura, Costumero, 

Parcet, & Ávila, 2019a; McNaughton, DeYoung, & Corr, 2016). 



Behaviorally, the activity of these systems is crucial for keeping organisms alive. Indeed, the 

behavioral responses elicited by potential threatening stimuli via FFFS or BIS are purely adaptive. 

In other words, these systems comprise “survival circuits” (McNaughton & Corr, 2018). There 

are two functioning modes of the FFFS/BIS circuits: checking mode and control mode. In the first 

case, the system acts as a comparator, monitoring all environmental information to detect possible 

aversive stimuli. The presence of an aversive stimulus activates the control mode, promoting 

response inhibition. Thus, individual differences in FFFS and BIS activity are associated with a 

cognitive pattern characterized by an attentional bias toward aversive stimuli (see Ávila & 

Torrubia, 2008, for a review). This pattern leads to more intense processing of threat-related 

stimuli (E. Fox, 1996; Mogg, Bradley, Williams, & Mathews, 1993), higher distractibility due to 

neutral and aversive peripheral stimuli (Broadbent, Broadbent, & Jones, 1986; E. Fox, 1994; 

Mathews, May, Mogg, & Eysenck, 1990; Poy, Eixarch, & Ávila, 2004), and enhanced vigilance 

for aversive stimuli, such as threatening faces or pictures (Bradley, Mogg, Falla, & Hamilton, 

1998; Byrne & Eysenck, 1995; Mogg, Garner, & Bradley, 2007; Reinholdt-Dunne, Mogg, & 

Bradley, 2009; Yiend & Mathews, 2001). Therefore, in anxious persons, attentional mechanisms 

are more easily triggered by threat cues (Mathews, Yiend, & Lawrence, 2004; Mogg & Bradley, 

2002), thus facilitating  learning processes in aversive contexts (Avila, 2001; Avila, Moltó, & 

Segarra, 1995; Avila & Parcet, 2000). These differences can be captured by self-reported 

personality questionnaires, such as the BIS/BAS scales (Carver & White, 1994) or the Sensitivity 

to Punishment and Sensitivity to Reward Questionnaire (SPSRQ; Torrubia et al., 2001). In this 

regard, the BIS and SP scales have been extensively used in personality research to quantify the 

(hyper/hypo)activity of both the FFFS and BIS as a conflated dimension of “punishment 

sensitivity” (Corr, 2008; McNaughton & Corr, 2004), which serves as an index of underlying 

differences in the perceived defensive distance. Namely, individuals scoring high on these 

scales—largely associated with anxiety-related personality traits such as Neuroticism or Harm 

Avoidance—would perceive real distances as shorter, thus showing more intense and frequent 

defensive behaviors. Therefore, the hyperactivity/hypoactivity of these systems is observable on 

the psychopathological continuum. Previous studies have associated FFFS hyperactivation with 



panic and phobic disorders (Barlow, 1988; Kimbrel, 2008; Pickering & Corr, 2008), and 

hyperactivation of the BIS with generalized anxiety disorders (Hundt, Nelson-Gray, Kimbrel, 

Mitchell, & Kwapil, 2007; Kimbrel, 2008; Maack, Tull, & Gratz, 2012; Sportel, Nauta, de Hullu, 

de Jong, & Hartman, 2011; Struijs et al., 2018; Vervoort et al., 2010). Likewise, BIS hypoactivity 

has been linked to psychopathic traits (Fowles, 1980; Kimbrel, Nelson-Gray, & Mitchell, 2007; 

Newman, MacCoon, Vaughn, & Sadeh, 2005; Ross, Benning, Patrick, Thompson, & Thurston, 

2009; Ross et al., 2007). Thus, evidence from clinical contexts emphasizes the relationship 

between the punishment sensitivity dimension and internalizing (higher scores) and externalizing 

(lower scores) disorders (Bijttebier, Beck, Claes, & Vandereycken, 2009; Corr & McNaughton, 

2015), a relationship that is also observed in children and adolescents (Slobodskaya, 2016). 

At the neural level, a number of studies have also investigated the relationship between BIS/FFFS 

activity (measured by the BIS and SP scales) and the brain structure and function (Standen, Firth, 

Sumich, & Heym, 2022). Anatomically, research analyzing gray matter volume (GMV) in healthy 

young adults has found a positive relationship between SP and BIS scores and the GMVs of the 

amygdala and hippocampus (Adrián-Ventura et al., 2019a; Barrós-Loscertales et al., 2006; 

Cherbuin et al., 2008; Holmes et al., 2012; Levita et al., 2014). Functionally, different studies 

have also tested RST predictions in humans using functional MRI (fMRI) paradigms. By using 

different fMRI tasks, BIS scores have been positively related to blood-oxygen level-dependent 

(BOLD) activity in the anterior cingulate cortex and amygdala in fear-evoking conditions 

(Bunford, Roberts, Kennedy, & Klumpp, 2017; M Reuter et al., 2004), whereas the amygdala and 

the ventromedial prefrontal cortex are also positively correlated with BIS scores in the presence 

of appetitive stimuli (high-calorie food images vs low-calorie food images) in anxious, stressful 

contexts (Neseliler et al., 2017). Furthermore, two previous studies analyzed the functional 

connectivity (FC) between the amygdala and hippocampus in task-based fMRI paradigms (Hahn 

et al., 2010; Hahn, Heinzel, et al., 2013). Interestingly, by means of psychophysiological 

interaction (PPI) analyses, the authors found a positive association between the amygdala-

hippocampus FC and SP during loss anticipation conditions (for reviews see Kennis et al., 2013; 



Standen et al., 2022). Based on all this evidence, the amygdala and hippocampus seem to be RST 

hotspots in the human brain. 

However, these previous fMRI studies (task-based) were primarily focused on the neural response 

to discrete emotional stimuli, whereas the sensitivity and capacity of the brain’s defense system 

to detect threatening cues in the checking mode have been less explored. This predisposition could 

be studied by means of resting-state fMRI (rs-fMRI). Rs-fMRI provides useful information about 

stable brain patterns (Gratton et al., 2018; Sanchez-Alonso, Rosenberg, & Aslin, 2021), that is, 

how intrinsically the brain works “by default” (i.e., in the absence of stimuli). Only two 

investigations have tested resting-state metrics and their association with the SP personality trait. 

In a recent study, Costumero et al. (2021) found an association between the rs-FC of BIS/FFFS 

areas, such as the amygdala, hippocampus, and PAG, and the scores obtained on the SP scale. 

Nonetheless, the relationship between SP and the rs-FC patterns was observed in the eyes-open 

sample only. Specifically, the rs-FC between the PAG and the amygdalae and left hippocampus 

was negative, whereas the connectivity between the hippocampus and amygdala was positive in 

both hemispheres. In another study, Hahn, Dresler, et al. (2013) analyzed the local 

synchronization of resting-state BOLD activity. In this study, the authors examined the regional 

homogeneity (ReHo)—a connectivity measure between neighboring voxels (Aiello et al., 

2015)—of both the amygdala and hippocampus, and its correlation with SP. Results showed a 

negative correlation between the ReHo within these regions and the SP scale. This negative 

association would reflect a local desynchronization (i.e., aberrant neural firing) within these 

regions in individuals who scored high on this personality trait (see Hahn, Dresler, et al., 2013). 

However, even though this latter research analyzed resting-state BOLD activity metrics and 

BIS/FFFS activity, other resting-state activity measures were not explored. Particularly, no 

previous investigation has examined the relationship between the fractional amplitude of low 

frequency fluctuations (fALFF; Zou et al., 2008) and punishment sensitivity. fALFF analyzes the 

amplitude within low-frequency bands relative to the entire frequency range (Zuo et al., 2010). 

Thus, fALFF quantifies slow fluctuations—characteristics in resting-state—in single voxels 



independently, whereas ReHo depends on the synchronization (“connectivity”) of near voxels 

(Aiello et al., 2015). Although previous studies have analyzed the ALFF in patients with 

medicated or treated generalized anxiety disorders, observing differences in core anxiety areas 

such as the hippocampus (e.g., Chen et al., 2020; Cui et al., 2020; Shen et al., 2020), research on 

its association with the punishment sensitivity trait in healthy adults is lacking. By analyzing this 

relationship, we could provide new predisposing factors for anxiety-like disorders from the RST 

framework. 

Thus, the aim of this study was to analyze the relationship between BIS/FFFS activity, based on 

the scores obtained on the SP scale, and the ReHo and fALFF resting-state measures as proxies 

of neural activity and brain metabolism (Deng et al., 2022). We expected a different pattern of 

activity in key FFFS/BIS structures as a function of SP, reflecting the expected differences in the 

checking mode and predisposing these structures to different responses when detecting an 

aversive cue. Based on a previous study (Hahn, Dresler, et al., 2013) and the observed structural 

differences in these regions (Adrián-Ventura et al., 2019a), we expect to find differences in the 

ReHo of key areas within the defense system. In particular, we hypothesize a negative association 

between SP scores and ReHo within the amygdala, hippocampus, and PAG, whereas this 

relationship should be altered for fALFF in any direction, given that no previous research has 

explored this association. 

 

2. Material and methods 

2.1 Participants 

A total of 136 participants were selected from different projects carried out by our research group. 

Part of this dataset was used in previous studies that investigated personality traits using RST and 

other structural (Adrián-Ventura et al., 2019a; Parcet, Adrián-Ventura, Costumero, & Ávila, 

2020) and resting-state (e.g., functional connectivity; Adrián-Ventura et al., 2019a; Costumero et 

al., 2021) MRI metrics. All the participants were recruited through local advertisements. The vast 



majority were undergraduate students (90%), given that our group is integrated in a university 

campus. After ruling out subjects with excessive head movement (see Image Preprocessing 

section), a final sample of 127 participants underwent data analysis (64 women; age: mean = 

23.94, SD = 7.28, range = 18-49). All of them were right-handed according to the Edinburgh 

Handedness Inventory (Oldfield, 1971). No participant referred to a history of neurological, 

psychiatric, or severe medical disorders, none had traumatic brain injury with loss of 

consciousness, and none of them used psychoactive medications. Participants were informed of 

the nature of the research and provided written informed consent before inclusion. The research 

project was approved by the Ethical Committee of Jaume I University and was in accordance with 

The Code of Ethics of the World Medical Association (Declaration of Helsinki). 

 

2.2 Personality assessment 

All participants completed the Sensitivity to Punishment (SP) scale from the Sensitivity to 

Punishment and Sensitivity to Reward Questionnaire (SPSRQ; Torrubia et al., 2001). The SP 

scale is a self-report measure consisting of 24 dichotomous (“Yes/No”) items designed to assess 

the reactivity and responsivity of the BIS/FFFS by evaluating behavioral responses to potential 

aversive or conflicting situations. This scale has good content validity and strongly correlates with 

other anxiety-like personality traits, such as the BIS scale or Harm Avoidance, and with different 

punishment and anxiety scales (Caseras, Àvila, & Torrubia, 2003; Torrubia, Ávila, & Caseras, 

2008). In our sample, the mean score on the SP scale was 9.99 (SD = 5.37; skewness = 0.23, 

kurtosis = -0.56), and the scale showed good internal consistency (Cronbach’s α = 0.86). 

 

2.3 Image acquisition 

Images were all acquired on the same 1.5T scanner (Siemens Avanto; Erlangen, Germany). 

Participants were placed inside the MRI scanner in a supine position, and their heads were 

immobilized with pads in order to reduce head movement. During scan sessions, participants were 



required to be in a resting state and instructed to keep their eyes closed without sleeping or 

thinking about anything in particular. After scanning, all the participants explicitly stated that they 

had not experienced any issues during the session. For the rs-fMRI scan, 200 volumes were 

recorded using a gradient-echo T2*-weighted echo-planar imaging sequence (TR = 2000 ms; TE 

= 48 ms; matrix = 64 x 64; voxel size = 3.5 x 3.5 mm; flip angle = 90°; slice thickness = 4 mm; 

slice gap = 0.8 mm). We acquired a total of 24 interleaved axial slices parallel to the anterior–

posterior commissure covering the whole brain. Prior to the resting state sequences, structural 

images were also acquired using a 3D T1-weighted MPRAGE sequence with TR = 2200 ms, TE 

= 3.79 ms, TI = 1090 ms, flip angle = 15°, voxel size = 1 × 1 × 1 mm, matrix = 256 x 256, and 

bandwidth = 160 hz/px, which facilitated the localization and co-registration of the rs-fMRI data. 

 

2.4 Image preprocessing 

The rs-fMRI data processing was performed with the Data Processing Assistant for Resting-State 

fMRI Advance Edition (DPARSFA, V5.1_201001; http://rfmri.org/DPARSF; Yan & Zang, 

2010), a toolbox within the Data Processing and Analysis for Brain Imaging software (DPABI, 

V5.1_201201; http://rfmri.org/dpabi; Yan et al., 2016). This software was run under the Statistical 

Parametric Mapping (SPM12, v7771; https://www.fil.ion.ucl.ac.uk/spm/) package in a Matlab 

(R2018, v9.5; https://www.mathworks.com/) environment. 

The preprocessing steps included: 1) removal of the first five volumes to rule out possible 

artifacts; 2) slice timing correction for interleaved acquisitions (the middle slice was used as the 

reference point); 3) head motion realignment using a six-parameter (rigid body) linear 

transformation with a two-pass procedure (registered to the first image and then registered to the 

mean of the images after the first realignment); 4) co-registration of the individual T1-w structural 

images to the mean functional image; 5) segmentation of the structural images into gray matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF) by “New Segment + DARTEL” 

(Ashburner, 2007);  6) removal of spurious variance (nuisance covariates) through linear 

http://rfmri.org/DPARSF
http://rfmri.org/dpabi
https://www.fil.ion.ucl.ac.uk/spm/
https://www.mathworks.com/


regression: 24 parameters from the head motion correction (“Friston 24”; Friston et al., 1996), 

scrubbing regression of volumes with framewise displacement of (FD) > 0.2 mm (Jenkinson), 

polynomial (linear and quadratic) trends, and the WM and CSF signals (segmentation masks 

thresholded at 99% probability) via “CompCor” (5 principal components; Behzadi et al., 2007); 

and 7) spatial normalization by DARTEL to the Montreal Neurological Institute (MNI) space 

(voxel size 3 × 3 × 3 mm). The next preprocessing steps were differentially adapted to the ReHo 

and fALFF data (see sections below). 

Participants with more than 1.0 mm or 1.0 degree of head motion in any of the six directions or 

less than 150 volumes with FD < 0.2 mm (ensuring at least 5 minutes of resting state data with 

low FD) were excluded for further analysis (9 participants). 

 

2.5 Regional homogeneity (ReHo) analysis 

The regional homogeneity (ReHo) maps were obtained to explore regional synchronization of 

fMRI time courses between neighboring voxels. After spatial normalization, a band-pass temporal 

filtering (0.01–0.1 Hz) was applied, and Kendall’s coefficient of concordance was calculated 

between each voxel’s BOLD time series and those of its 27 neighbors. The ReHo value of each 

voxel was divided by the global mean ReHo of the whole-brain mask, and the resulting ReHo 

maps were smoothed with a 4-mm FWHM Gaussian kernel (Yan & Zang, 2010). 

 

2.6 Fractional amplitude of low-frequency fluctuations (fALFF) analysis 

Differences in the amplitude of regional spontaneous activity were explored by analyzing the 

fractional amplitude of low-frequency fluctuations (fALFF). After spatial smoothing, the time 

series of each voxel was transformed into the frequency domain and band-pass filtered (0.01–0.1 

Hz). Then, the square root was calculated at each frequency of the power spectrum, the averaged 

square root (i.e., ALFF) was obtained at each voxel, and a ratio between the total amplitude within 



the low-frequency range and the total amplitude of the detectable frequency range was calculated 

(i.e., fALFF; Yan & Zang, 2010; Zuo et al., 2010). Another modification made in the data 

preprocessing pipeline was the omission of polynomial detrending, given that it has been shown 

to negatively impact fALFF maps (Woletz et al., 2019). 

 

2.7 Statistical analysis 

Once the ReHo and fALFF metrics had been obtained for each participant, the resulting 

standardized (z-scored) maps were analyzed at the SPM’s 2nd level. Based on our hypotheses, 

region of interest (ROI) analyses were conducted by taking core FFFS/BIS regions (Gray & 

McNaughton, 2000). In particular, we selected the amygdala and the hippocampus from the 

Hammers atlas (http://brain-development.org/; Hammers et al., 2003). This atlas has two 

advantages over other available parcellations, that is, a primary focus on the temporal lobe and 

the removal of the hippocampus tail, which are especially relevant for our study (i.e., we are 

interested in the most anterior sections; see Bannerman et al., 2004; Fanselow & Dong, 2010). 

Moreover, we also included the PAG as a ROI. This mask was selected from the Harvard 

Ascending Arousal Network (AAN) Atlas (Edlow et al., 2012). Once extracted, the amygdala and 

hippocampus were added up for each hemisphere together with the bilateral PAG mask, thus 

resulting in a left (left amygdala and left hippocampus plus bilateral PAG) and right (right 

amygdala and right hippocampus plus bilateral PAG) ROI. The statistical inference for the ROI 

analyses was calculated via threshold-free cluster enhancement (TFCE, version r224; Smith & 

Nichols, 2009), a statistical toolbox freely distributed as an SPM extension. This method offers a 

non-parametric permutation approach that provides two advantages over traditional parametric 

approaches: better control of nonstationary smoothing and the avoidance of initial (arbitrary) 

cluster-forming thresholds (Li, Nickerson, Nichols, & Gao, 2017; Smith & Nichols, 2009). All 

the analyses included age and sex as covariates of no interest (i.e., nuisance regressors), whereas 

sex was also taken as a covariate of interest within an omnibus (interaction) model in order to 

explore differential effects by sex. All results were controlled for the false discovery rate (FDR) 

http://brain-development.org/


at p < 0.05, whereas the number of permutations was set at 5000, and the cluster size was weighted 

on focal effects. 

 

3. Results 

Regarding fALFF, the ROI analysis yielded a significant result for the right hemisphere ROI (i.e., 

right amygdala + hippocampus). Specifically, a first negative correlation was observed between 

the scores on the SP scale and the ROI’s fALFF (k = 21 voxels; pFDR-corrected = 0.008; TFCE 

= 43.05; local maxima at MNI x, y, z = 21, -18, -15, co-located within the hippocampus). Within 

the same cluster, a significant subpeak was also observed (pFDR-corrected = 0.023; TFCE = 

28.04; local maxima at MNI x, y, z = 24, -6, -21, co-located within the amygdala). A second 

negative correlation within the right ROI was also observed in the PAG area (k = 2 voxels; pFDR-

corrected = 0.008; TFCE = 25.28; local maxima at MNI x, y, z = -3, -33, -9). These results can 

be seen in Fig. 1. Additionally, sensitivity power analyses revealed that with our sample (N = 127) 

we could reliably detect effects of r = -0.25 with 80% power (α = 0.05, two-tailed). Our correlation 

values (r = -0.43 and r = -0.32, see Fig. 1) reached this threshold, thus showing that our study was 

well-powered. The interaction (omnibus) model did not show significant differences by sex. 

In relation to ReHo, no significant positive or negative results were found when analyzing the 

relationship between SP and ReHo within the ROIs. Likewise, no differential effects by sex were 

observed. Given that no results were obtained at the established threshold, we directly test the 

negative associations found in Hahn, Dresler, et al. (2013) and analyzed the left and right 

amygdala and hippocampus individually through partial correlations in IBM SPSS v.26. At the 

uncorrected level (p < 0.10), we only observed a negative association for the right amygdala (p = 

0.046, one-tailed; r = -0.15) and right hippocampus (p = 0.081, one-tailed; r = -0.13) mean ReHo 

(controlling for age and sex). Still, these results did not survive the FDR correction, so they should 

be taken as a trend. 



 

Fig. 1. Results from the TFCE-ROI analysis. A) A negative correlation was observed between the fALFF 

of the right ROI (co-located within the amygdala/hippocampus) and the scores on the sensitivity to 

punishment scale. B) Within the right ROI, a negative correlation was also observed in the PAG area. For 

visualization purposes, the scatterplots represent the correlation between the sensitivity to punishment 

scores (controlling for age and sex) and the average of the significant resulting voxels (first eigenvariate) 

from each cluster. The color bar represents log p-values (FDR-corrected). PAG: periaqueductal gray. 

 

4. Discussion 

In this study, we analyzed the relationship between the punishment sensitivity trait from RST and 

brain activity metrics at rest in a large sample of healthy young adults. Contrary to our hypothesis, 

our results showed no association between the SP scale—as an index of FFFS/BIS activity—and 

the brain’s regional homogeneity within the defense system. Importantly, however, a negative 

correlation between the scores on this scale and the fALFF of core regions within the defense 

system (e.g., the amygdala, hippocampus, and PAG) was observed. Therefore, 

A) 

B) 

r = -0.43 

r = -0.32 



avoidance/approach behaviors previously described in animal models can be biologically tracked 

in key brain regions and neural systems (namely, the FFFS and BIS) subject to underlying 

variances in their activation levels. Our study links anxious personality behaviors arising from 

these systems to abnormal spontaneous neural activity (i.e., lower fALFF) within the amygdala, 

hippocampus, and PAG, reflecting differences in the checking mode. These results provide new 

evidence supporting the biological foundations of RST in the human brain. 

Regarding ReHo, we did not find any significant associations between SP and the ReHo of key 

FFFS/BIS areas. Although we found a tendency when replicating previous findings (p < 0.10), 

we were not able to find a link between the amygdala and hippocampus ReHo and SP (Hahn, 

Dresler, et al., 2013) and Neuroticism from the Zuckerman-Kuhlman Personality Questionnaire 

(ZKPQ; see Gentili et al., 2017). Some methodological issues could account for these differences. 

One of them could be related to the sample size, given that in the studies by Hahn, Dresler, et al. 

(2013) and Gentili et al. (2017), the samples consisted of 27 and 31 participants, respectively, 

which differ greatly from the sample size of the present investigation (N = 127). Indeed, in 

previous studies with larger samples, Tian et al. (2016) and Wei et al. (2011) found no association 

between trait anxiety from the State-Trait Anxiety Inventory (STAI) and Neuroticism from the 

Eysenck Personality Questionnaire (EPQ) and the amygdala and hippocampus ReHo. In the latter 

study, the authors only found a negative correlation between Neuroticism and a cluster located in 

the middle frontal gyrus, whereas in the former, a positive correlation was observed between trait 

anxiety scores and the ventromedial prefrontal cortex. Dissimilarities between studies could also 

stem from other methodological aspects, such as age distribution. Previous findings have shown 

effects of age on punishment sensitivity behaviors (Betts et al., 2020; Pagliaccio et al., 2016) and 

resting-state neural activity patterns (Hu, Chao, Zhang, Ide, & Li, 2014; Jiang & Zuo, 2016; Zhai 

& Li, 2019). In our study, the mean age was similar to the ones reported in the aforementioned 

studies, however, we displayed a larger standard deviation (i.e., a wider range). Furthermore, we 

included age as a covariate in our analyses. Thus, we cannot rule out age effects when comparing 

differences between studies. Another methodological issue would be associated with underlying 



differences in self-reported instruments (i.e., SP, Neuroticism and trait anxiety). Thus, further 

research is needed to confirm the possible relationship between cerebral ReHo and anxiety-related 

personality traits. 

When analyzing the low-frequency fluctuations, however, we did find a significant negative 

correlation between the SP scale and the fALFF within the amygdala, hippocampus, and PAG. 

The fALFF is defined as the sum of amplitudes within the low-frequency range (0.01–0.1 Hz) 

relative to the entire detectable frequency spectrum (Zou et al., 2008; Zuo et al., 2010). Thus, 

fALFF provides information on the intensity of spontaneous brain activity, which in turn may 

provide evidence about the activity patterns in discrete regions and, subsequently, in resting state 

networks (Buzsáki & Draguhn, 2004; Mennes et al., 2010; Zuo et al., 2010). This information is 

of particular interest in terms of behaviors arising from stable personality traits. Brain inter-

individual activity during fMRI tasks is reflected in the brain’s intrinsic functioning (i.e., at rest; 

Fox et al., 2007; Smith et al., 2009). In this line, a recent study linked the resting-state fALFF at 

the voxel-level to glucose metabolism, oxygen, blood flow, and blood volume through PET 

imaging (Deng et al., 2022). A lower fALFF, conversely, could also be reflecting a 

neurobehavioral compensation mechanism (Wang et al., 2018). That is, high trait anxiety could 

lead to lower FFFS/BIS activation thresholds. Hence, in the presence of aversive cues—or at 

larger defensive distances—, participants with higher SP would need less activation of the defense 

system areas than participants who score low on this trait. Thus, in relation to the RST framework, 

it would be plausible to link deviant behaviors arising from the BIS and FFFS to lower fALFF 

within core anxiety regions such as the amygdala, hippocampus, and PAG. From this perspective, 

these neural patterns at rest would define the extent to which the FFFS and BIS process and 

respond to potential aversive stimuli (for a similar interpretation, see Hahn, Dresler, et al., 2013). 

The implications of our results align with the foundations of RST. The amygdala, hippocampus, 

and PAG play a central role in the FFFS/BIS, thus driving a repertoire of behavioral responses 

associated with fear and anxiety (Gray & McNaughton, 2000; LeDoux, 1994). Whereas previous 

structural and (task-based) functional studies have confirmed the RST basis in humans (see 



Standen et al., 2022 for a recent review), our results also highlight individual differences at rest—

particularly in fALFF. These findings complement the results by Hahn, Dresler, et al. (2013), in 

relation to ReHo, and studies analyzing the connectivity between these regions and its relationship 

with SP, showing significant correlations at rest (in the eyes-open condition, see Costumero et al. 

2021) or during loss anticipation (Hahn et al., 2010). Moreover, the negative correlation between 

trait anxiety and fALFF within the hippocampus was previously reported (Xue, Lee, & Guo, 

2018). Other studies did not find a relationship between anxiety personality traits and fALFF in 

any of these regions. In particular, using the Neuroticism scale from the ZKPQ and the NEO Five 

Factor Inventory (NEO-FFI), only a negative correlation was co-located within the precuneus 

(Gentili et al., 2017; Kunisato et al., 2011). All this evidence suggests that individual differences 

in amygdala, hippocampus, and PAG activity can be tracked specifically in the context of RST. 

Therefore, a lower fALFF within these regions plus a larger volume (Adrián-Ventura et al., 

2019a) could represent a biological vulnerability trait to anxiety-related disorders. Indeed, in the 

clinical context, higher ALFF values within the hippocampus have been reported in patients with 

generalized anxiety disorder (GAD) under medication or in remission, in contrast to healthy 

controls (Chen et al., 2020; Cui et al., 2020; Shen et al., 2020). These studies would establish a 

higher ALFF within the hippocampus as a marker of recovery from anxiety disorders. Note, 

however, that the latter studies analyzed ALFF (but not fALFF) measures, and so our 

interpretation is speculative. 

To the best of our knowledge, this is the first study to analyze the relationship between the 

punishment sensitivity personality trait and fALFF using rs-fMRI. The reported results add new 

evidence about the neurobiological correlates of RST in humans in terms of stable brain patterns 

at rest. However, our research has some limitations. On the one hand, we used the SP scale as a 

conflated measure of FFFS/BIS activity. Although this approach would be in line with the original 

RST framework (Gray, 1982), the rRST suggest that individual differences in FFFS/BIS activity 

are explained by separate dimensions of fear and anxiety (Corr & Cooper, 2016). Along these 

lines, new scales have been specifically designed for the assessment of rRST systems, which 



could be helpful in future rRST studies. Among these new instruments we found the Jackson-5 

(Jackson, 2009), the Reinforcement Sensitivity Questionnaire (RSQ; Smederevac, Mitrović, 

Čolović, & Nikolašević, 2014), the revised Reinforcement Sensitivity Theory Questionnaire 

(rRST-Q; Reuter, Cooper, Smillie, Markett, & Montag, 2015), and the Reinforcement Sensitivity 

Theory of Personality Questionnaire (RST-PQ; Corr & Cooper, 2016). So, by using these scales, 

the personality dimensions raising from the anxiety and fear systems would be more accurately 

evaluated. Still, the SP trait provides a valid index to study individual differences within the 

defense system as a source of variation in defensive approach/avoidance behaviors. On the other 

hand, we utilized a 1.5T scanner to collect the rs-fMRI scans. Currently, however, higher 

magnetic field scanners (i.e., 3T) are the gold standard, even though 1.5T scanners are still 

common. Thus, although these methodological issues do not compromise our results, they should 

be taken into account in future research. 
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