000127900 001__ 127900
000127900 005__ 20240705134144.0
000127900 0247_ $$2doi$$a10.1039/d3nr02026f
000127900 0248_ $$2sideral$$a135133
000127900 037__ $$aART-2023-135133
000127900 041__ $$aeng
000127900 100__ $$0(orcid)0000-0003-4874-6672$$aGarcia-Peiro, José I.$$uUniversidad de Zaragoza
000127900 245__ $$aPlatinum-based nanodendrites as glucose oxidase-mimicking surrogates
000127900 260__ $$c2023
000127900 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127900 5203_ $$aCatalytic conversion of glucose represents an interesting field of research with multiple applications. From the biotechnology point of view, glucose conversion leads to the fabrication of different added-value by-products. In the field of nanocatalytic medicine, the reduction of glucose levels within the tumor microenvironment (TME) represents an appealing approach based on the starvation of cancer cells. Glucose typically achieves high conversion rates with the aid of glucose oxidase (GOx) enzymes or by fermentation. GOx is subjected to degradation, possesses poor recyclability and operates under very specific reaction conditions. Gold-based materials have been typically explored as inorganic catalytic alternatives to GOx in order to convert glucose into building block chemicals of interest. Still, the lack of sufficient selectivity towards certain products such as gluconolactone, the requirement of high fluxes of oxygen or the critical size dependency hinder their full potential, especially in liquid phase reactions. The present work describes the synthesis of platinum-based nanodendrites as novel enzyme-mimicking inorganic surrogates able to convert glucose into gluconolactone with outstanding selectivity values above 85%. We have also studied the enzymatic behavior of these Pt-based nanozymes using the Michaelis–Menten and Lineweaver–Burk models and used the main calculation approaches available in the literature to determine highly competitive glucose turnover rates for Pt or Pt–Au nanodendrites.
000127900 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-114926RB-I00$$9info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742684-CADENCE
000127900 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000127900 592__ $$a1.416$$b2023
000127900 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ1
000127900 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000127900 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127900 700__ $$0(orcid)0000-0002-1791-0188$$aBonet-Aleta, Javier$$uUniversidad de Zaragoza
000127900 700__ $$aTamayo-Fraile, María L.
000127900 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000127900 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesús$$uUniversidad de Zaragoza
000127900 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000127900 773__ $$g15, 35 (2023), 14399-14408$$pNanoscale$$tNanoscale$$x2040-3364
000127900 8564_ $$s2276288$$uhttps://zaguan.unizar.es/record/127900/files/texto_completo.pdf$$yVersión publicada
000127900 8564_ $$s2788620$$uhttps://zaguan.unizar.es/record/127900/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127900 909CO $$ooai:zaguan.unizar.es:127900$$particulos$$pdriver
000127900 951__ $$a2024-07-05-12:47:03
000127900 980__ $$aARTICLE