000127928 001__ 127928
000127928 005__ 20241125101144.0
000127928 0247_ $$2doi$$a10.1039/d3gc01017a
000127928 0248_ $$2sideral$$a135093
000127928 037__ $$aART-2023-135093
000127928 041__ $$aeng
000127928 100__ $$aZárate-Roldán, Stephany
000127928 245__ $$aAlkylation of amines with allylic alcohols and deep eutectic solvents as metal-free and green promoters
000127928 260__ $$c2023
000127928 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127928 5203_ $$aA novel approach for the allylic alkylation of anilines, hydrazides, indole derivatives and additional interesting nucleophiles is described, which involves the direct use of a variety of allylic alcohols under very mild conditions, such as room temperature, and the use of sustainable deep eutectic solvents (DESs). The search for the optimum DES to be used in the reaction revealed that a simple mixture of choline chloride (ChCl) and lactic acid provides excellent results for a wide range of substrates with high isolated yields. This methodology represents a significant improvement compared to other procedures described in the literature, for which high temperatures, stronger reaction conditions or metal catalysts are usually required. In some cases, this protocol provides the first examples of trapping allylic carbocations with indole derivatives. In addition, challenging nucleophiles such as amides, carbamates, azides or sulfonamides, among others, have also been successfully used. All these features render this procedure an appealing and green alternative compared to other examples reported in the literature on the alkylation of amines by allylic alcohols. Preliminary mechanistic studies using unsymmetrically substituted alcohols support that the reaction could proceed via an SN1 pathway.
000127928 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2019-104379RB-C21$$9info:eu-repo/grantAgreement/ES/AEI/PID2020-117455GB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E07-23R
000127928 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000127928 590__ $$a9.3$$b2023
000127928 592__ $$a1.878$$b2023
000127928 591__ $$aGREEN & SUSTAINABLE SCIENCE & TECHNOLOGY$$b14 / 91 = 0.154$$c2023$$dQ1$$eT1
000127928 593__ $$aPollution$$c2023$$dQ1
000127928 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b32 / 231 = 0.139$$c2023$$dQ1$$eT1
000127928 593__ $$aEnvironmental Chemistry$$c2023$$dQ1
000127928 594__ $$a16.1$$b2023
000127928 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127928 700__ $$0(orcid)0000-0003-0553-0695$$aGimeno, M. Concepción
000127928 700__ $$0(orcid)0000-0002-5244-9569$$aPérez Herrera, Raquel
000127928 773__ $$g25, 14 (2023), 5601-5612$$pGreen chem.$$tGREEN CHEMISTRY$$x1463-9262
000127928 8564_ $$s2399396$$uhttps://zaguan.unizar.es/record/127928/files/texto_completo.pdf$$yVersión publicada
000127928 8564_ $$s2578260$$uhttps://zaguan.unizar.es/record/127928/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127928 909CO $$ooai:zaguan.unizar.es:127928$$particulos$$pdriver
000127928 951__ $$a2024-11-22-12:03:51
000127928 980__ $$aARTICLE