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1. Introduction

In the last few years, interest in wearable technology for physiological signal mon-
itoring is rapidly growing, especially during and after the COVID-19 pandemic [1–3].
Specifically, considering that heart disease is the leading cause of death globally, continuous
monitoring of cardiovascular dynamics has crucial relevance to improving prevention and
diagnosis. Photoplethysmography (PPG) is a popular, non-invasive, and low-cost optical
technique that can provide useful information about the cardiovascular system, aiming to
reveal autonomic dysfunctions and peripheral vascular diseases during daily life. In fact,
due to its simplicity and versatility, this technology can be used to develop wearable and
wireless devices for out-of-hospital monitoring of both healthy and pathological subjects.

Even if technology has successfully increased the comfort of PPG sensors, in terms
of wearability, dimensions and battery life, scientific research is still working on several
issues, e.g., poor sensor contact, which leads to acquiring signals corrupted by noise and
motion artifacts, especially during physical activity [4]. In this context, there are still many
challenges related to PPG wearable device design and signal processing techniques to
derive robust indices. Furthermore, recent studies have shed light on the possibility of
extracting a good surrogate of PPG signal from face RGB video processing, opening the
door to not only wireless but also contactless monitoring. For this reasons, the investigation
of reliable PPG-derived parameters, including rhythm and morphology features, but also
heart rate variability descriptors, is growing in interest, comprising novel signal processing
methodologies for artifact removal and feature extraction.

This Special Issue focused on original research papers dealing with hardware and
software advances in the development of robust and reliable biomarkers for the non-
invasive monitoring of cardiovascular dynamics based on PPG signal acquisition. Topics
of interest for PPG signal applications included clinical pathologies, biometry, sleep and
sport monitoring.

2. Contributions

In the current Special Issue, the optimization of hardware and software systems for a
reliable PPG signal acquisition and pre-processing was one of the main topics. The influ-
ence of the light source wavelength of the PPG sensor on the accuracy of blood pressure
estimation was investigated by Toda et al. [5], who proposed a new system based on
four light-emitting diodes (near-infrared (NIR), red, green, and blue) acquiring multi-
wavelength PPG signals from the index finger. NIR was found to be the most accurate
wavelength for the estimation of systolic blood pressure from PPG signals, and blue was the
best performing when they extracted diastolic blood pressure and mean arterial pressure.
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In [6], the reliability of the pulse rate variability (PRV) module of a digital PPG-based
telemedical system (SNC4ALL) was evaluated and the SNC4ALL PRV algorithm was
compared to the well-known Kubios software [7]. The results obtained highlighted that
PRV analysis performed on PPG pulse signals was in good agreement with ECG-based
analysis in healthy subjects, both at rest and during the cold pressure test, and mainly when
the features related to the investigation of low-frequency oscillations were computed. In di-
abetic patients, agreement was weaker than in healthy subjects, but good concordance was
still obtained for some indices representing slow oscillations. The choice of the algorithm
used for detecting the heartbeats within the PPG signal is of crucial importance in order to
extract a PRV that is a reliable surrogate of the heart rate variability (HRV) obtained from
the ECG signal. Bizzego et al. compared three methods: Derivative-Based Detection (DBD),
Recursive Combinatorial Optimization (RCO), and Multi-Scale Peak and Trough Detection
(MSPTD) [8]. The MSPTD algorithm [9] resulted in the most accurate algorithm among
the three in discriminating heartbeats during high-magnitude body movements, such as
cycling, but its computational complexity grew exponentially with the sampling frequency
of the signal. Finally, all the investigated heartbeat detection algorithms appeared appro-
priate to process the cardiac component of the fNIRS data. Motion artifacts and data loss
are two really frequent issues to be addressed during the pre-processing of PPG signals
and derived parameters provided by wearables. Cajal et al. investigated data loss effects in
HRV metrics using both simulated and real missing data [10]. The PPG-derived heart rate
series were provided by Apple Watch during relaxing and stress-inducing experimental
conditions. The proposed segment-based gap-filling method improved the reliability of
the HRV features in case of scattered missing beats, especially for the frequency-domain
metrics. Furthermore, the authors suggested discarding segments with more than 35% of
missing beats or more than 20 s bursts to obtain errors lower than 20% in time-domain
metrics and Poincaré plot parameters. In [11], Tsai et al. presented a systematic approach
for the implementation of missing-feature imputation and ambiguous-feature resolution
from the analysis of component waves of PPG signals acquired from the finger and the
wrist. According to their findings, after the application of these techniques, the feature
availability from PPG waveforms achieved more than 98.6%, with a significant correlation
of up to 0.92 between finger and wrist PPG signals concerning the properties of the third
and fifth component waves.

Among the growing plethora of wearable PPG sensor applications, clinical studies
certainly play a leading role, considering the enormous recent advances in the field of
telemedicine and e-health. In this Special Issue, the advantages of using the PPG signal
were explored in several medical fields. PPG sensors integrated into wearable systems
for light reflection rheography (LRR) could play a role in the early detection of deep vein
thrombosis (DVT) in the lower limbs, as described in [12]. In this study, the occlusion of
lower limb veins was simulated by pressuring a cuff up to 100 and 150 mmHg for slight
and serious DVT scenarios, respectively. Under the serious DVT scenario, three parameters
were able to classify positive or negative DVT states with an accuracy higher than or
equal to 73%. A PPG signal can be also considered an additional biomarker for seizure
detection. Glasstetter et al. explored the performance of wearable PPG-based identification
of ictal tachycardia using the HR, finding good temporal agreement with the ECG-based
method [13]. However, the authors highlighted a relevant negative effect of spontaneous
movements on their findings when they attempted to identify ictal tachycardia in non-
motor seizures. In clinical scenarios, when communicative functions are compromised,
there is a strong need for reliable markers to assess pain levels in critically ill patients. In [14],
the authors compared the results obtained through fourteen machine learning algorithms
in terms of pain intensity classification, using PPG time, frequency and morphological
features. An accuracy of 96.6% was reached in the discrimination of high pain and no pain
levels using an artificial neural network on the data acquired from twenty-two healthy
subjects during transcutaneous electrical nerve stimulation.
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Given the growing use of wearable systems to monitor physiological signals during
sleep, our Special Issue could not miss the contributions regarding this crucial aspect
that significantly influences an individual’s quality of life. Lagazzera et al. presented
UpNEA, a novel sleep-monitoring platform based on a smart glove, recording PPG, SpO2,
and three accelerometer signals, a mobile application and a remote server [15]. The machine
learning algorithms used for apnea and hypopnea detection showed promising results
in highlighting sleep-disruptive breathing events and classifying them. For example,
an accuracy value of 92.6% was found in the discrimination of central and obtrusive apnea.
Castiglioni et al. investigated PPG and ECG signals acquired from twenty-one participants
sleeping at high altitude (as a model of a sleep breathing disorder) and five alpine guides
sleeping at sea level and extremely high altitudes [16]. The authors compared frequency
features, multi-scale entropy and self-similarity of the PPG- and ECG-derived tachograms.
Even if the finger-PPG systems resulted in measuring cardiovascular signals with sufficient
quality in extremely high altitudes, their findings showed significant differences in the
high-frequency power values and entropy metrics at short scales.

One of the most relevant advantages of wearable PPG systems is that thanks to
their absolute non-invasiveness, they can be used during sports activities to monitor
physical effort and prevent life-threatening situations. Although further testing is needed,
an algorithm for the real-time processing of pulse oximeter and accelerometer data and
recognition of pre-drowning symptoms in swimming pools was proposed in [17].

PPG signals are also currently used for biometric purposes, given the possibility of
acquiring them easily and at low cost. A novel algorithm based on the study of PPG signal
diffusive dynamics was reported in [18], and it was compared to eight existing techniques.
The approach proposed reached the best equal error rate and processing times, considering
40 PPG signals measured with commercial devices.

As part of this Special Issue, new frontiers regarding PPG signal acquisition in contact-
less mode have been explored in the work of van Es et al. [19]. The authors compared eight
algorithms for the extraction of PPG signals from face RGB videos, in terms of pulse rate
and PRV features. The plane-orthogonal-to-skin (POS) and chrominance-based (CHROM)
techniques were found to be the most robust for the assessment of autonomic dynamics
by using remote-PPG, and Poincaré maps were suggested as the most reliable method to
extract vagal dynamics information.

3. Conclusions

In conclusion, the contributions to this Special Issue allowed a varied journey into
novel algorithms for PPG series processing and data analysis, new solutions for signal
acquisition in both wearable and contactless modes, and interesting fields of application
from clinical to sport and biometric monitoring.

All the findings reported reaffirm the need to continue refining existing techniques
and proposing new approaches for the non-invasive acquisition and processing of PPG
signals, which with its many strengths can continue to revolutionize our daily lives and
clinical practices aimed at diagnosis and prevention.
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