000127946 001__ 127946
000127946 005__ 20240720100840.0
000127946 0247_ $$2doi$$a10.3390/pr11102851
000127946 0248_ $$2sideral$$a134977
000127946 037__ $$aART-2023-134977
000127946 041__ $$aeng
000127946 100__ $$0(orcid)0000-0002-1002-1396$$aMiana, Mario$$uUniversidad de Zaragoza
000127946 245__ $$aA Practical Approach for Biochemical Modeling in the CFD Evaluation of Novel Anaerobic Digester Concepts for Biogas Production
000127946 260__ $$c2023
000127946 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127946 5203_ $$aThe detailed physics-based description of anaerobic digesters is characterized by their multiscale and multiphysics nature, with Computational Fluid Dynamics (CFD) simulations being the most comprehensive approach. In practice, difficulties in obtaining a detailed characterization of the involved biochemical reactions hinder its application in the design of novel reactor concepts, where all physics interplays in the reactor must be considered. To solve this limitation, a practical approach is introduced where a calibration step using actual process data was applied for the simplified biochemical reactions involved, allowing us to efficiently manage uncertainties arising when characterizing biochemical reactions with lab scale facilities. A complete CFD modeling approach is proposed for the anaerobic digestion of wastewater, including heat transfer and multiphasic flow. The proposed multiphase model was verified using reference data and, jointly with the biochemical modeling approach, applied to a lab-scale non-conventional anaerobic digester for winery wastewater treatment. The results showed qualitative improvement in predicting methane production when the diameter of the particles was reduced, since larger particles tend to move downwards. The biochemistry of the process could be simplified introducing a preexponential factor of 380 (kmol/m3)(1 – n)/s for each considered chemical reaction. In general, the proposed approach can be used to overcome limitations when using CFD to scale-up optimization of non-conventional reactors involving biochemical reactions.
000127946 536__ $$9info:eu-repo/grantAgreement/EUR/LIFE17/ENV-ES-331
000127946 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127946 590__ $$a2.8$$b2023
000127946 592__ $$a0.525$$b2023
000127946 591__ $$aENGINEERING, CHEMICAL$$b80 / 170 = 0.471$$c2023$$dQ2$$eT2
000127946 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ2
000127946 593__ $$aProcess Chemistry and Technology$$c2023$$dQ3
000127946 593__ $$aBioengineering$$c2023$$dQ3
000127946 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127946 700__ $$aMartínez Santamaría, Ana
000127946 700__ $$aCarbajo, Jose B.
000127946 700__ $$aBengoechea, Cristina
000127946 700__ $$aGarcía, Gorka
000127946 700__ $$0(orcid)0000-0001-6906-9143$$aIzquierdo, Salvador$$uUniversidad de Zaragoza
000127946 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000127946 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000127946 773__ $$g11, 10 (2023), 2851 [17 pp.]$$pProcesses$$tPROCESSES$$x2227-9717
000127946 8564_ $$s1939290$$uhttps://zaguan.unizar.es/record/127946/files/texto_completo.pdf$$yVersión publicada
000127946 8564_ $$s2679560$$uhttps://zaguan.unizar.es/record/127946/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127946 909CO $$ooai:zaguan.unizar.es:127946$$particulos$$pdriver
000127946 951__ $$a2024-07-19-18:45:43
000127946 980__ $$aARTICLE