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Abstract: This study investigates the relationship between soil moisture and the growth of Pinus
halepensis, P. nigra, P. sylvestris and P. uncinata, which are some of the main pine species of the
Iberian Peninsula, and the response of these species to soil drought. The role played by climatic and
geographic factors in the resilience of these species to drought events is also evaluated. A total of
110 locations of the four species studied were selected, with data ranging from 1950 to 2007. The
results show that the species that are less dependent on soil moisture best withstood droughts, while
those more dependent on it showed better adaptability. Additionally, climatic and geographic factors
had a stronger influence on the species’ resilience to soil drought at higher altitudes. The results of
this study can help us to better understand forest ecosystem dynamics and their reaction to droughts
in Mediterranean areas, where this phenomenon will be much more severe in the future due to
climate change.
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1. Introduction

Forests are one of the ecosystems that are the most vulnerable to extreme weather
events because their natural adaptation to change is very slow [1]. Water scarcity due
to the increase in the frequency and intensity of droughts has already caused a decrease
in forest productivity [2,3] as well as widespread tree death worldwide [1,4,5]. Where
existing forests have not yet reached maturity, there is a strong need to develop short-term
adaptation strategies [6]. In general, the development of active adaptation strategies, such
as planting more drought-resistant tree species, can achieve greater forest resistance and
resilience [7,8]. These strategies are crucial in areas where water availability is limited since
droughts have a greater impact on the physiology and growth of trees [9,10].

The Mediterranean region and especially the Iberian Peninsula have been identified as
prominent hotspots of unprecedented climate change due to limited water availability [11].
As a result of rapidly progressing environmental changes associated with episodic droughts
and heat waves, this region is expected to become hotter and drier, leading to more intense
and prolonged droughts and thus a decrease in water available for plants [12–14]. This will
have consequences in terms of tree growth and productivity, which can lead to an increase
in tree mortality [15–17].

A drought is considered a major cause of abiotic stress that reduces forest growth,
affects forest health and determines the geographic distribution of tree species [18]. The
effects of droughts on tree growth are influenced by the physiological characteristics of
individual species, as they tolerate droughts differently [19–21]. Therefore, the response
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of different tree species to changes caused by environmental factors, in terms of growth
and optimization in the use of available water, is a very important issue, especially in
Mediterranean areas [22].

When trees are under drought conditions, both the low water content in the soil and
the high evaporation cause alterations in their physiology, with cambial activity being one
of the processes that are affected from the outset [23]. This is because the formation of
xylem cells is limited by the following two drought-related effects: the loss of turgor and
the closure of stomata that reduce carbon assimilation [24,25]. This occurs for drought
events that range from very severe to less severe, being the most limiting factor in tree
growth worldwide [26]. The effect of a drought and its consequences on trees can be
studied by measuring the width of the rings. This variable is commonly used as the main
indicator of the response of trees to drought, both on large spatial and temporal scales [27].
Furthermore, in previous works, it was shown that this variable is more sensitive, and
therefore a better indicator than other commonly used indicators [28].

The vast majority of research investigating the relationship between droughts and tree
growth is performed through the study of climatic variables [29–33]. In this type of study,
droughts have been identified using climatic variables such as precipitation, temperature
or evapotranspiration. However, soil moisture is much more relevant in terms of droughts,
since soils act as a water reservoir during dry periods, with tree roots having access to deep
soil water [34].

In addition, most studies considering droughts refer to climatic or hydrological
droughts instead of soil drought [18,35]. There are very few studies that use the soil
moisture variable and investigate its relationship with tree growth [36–38]. This is because
until recently, there were no long-term soil moisture databases available [36]. However, in
recent years, this lack of data has been filled with both satellite and modeling soil moisture
data [39–41]. For instance, recently, a few studies have investigated the role of soil moisture
on Pinus halepensis growth, one of the dominant tree species in the Iberian Peninsula [36–38].
Therefore, effort is needed to characterize the response of other major pine species that can
also be found in this region.

Forest ecosystems in the Iberian Peninsula cover an area of approximately 26 million
hectares, a large part of which are coniferous stands, occupying an area of 5.7 million
hectares [42]. Seven different pine species can be found in the Iberian Peninsula, five of
which are autochthonous species (Pinus halepensis Mill, P. nigra J. F. Arnold, P. uncinata
Ramond ex A. DC, P. sylvestris L. and P. pinaster Ait.) and two of which were introduced
(P. pinea L. and P. radiata D. Don) [43,44].

The growth of these species has been primarily related to climatic variables [20], since
the role of these variables as environmental factors is beyond question and the related data
are commonly available. Most of the studies on tree resilience to droughts only take into
account the effect of meteorological conditions in the same period in which the drought
event occurs, ignoring the conditions that existed before and after said period. However, it
was shown in different studies that these conditions can explain a large part of the resilience
response [45,46]. Some studies have come to integrate the conditions after drought events,
and the observed effects have not been consistent with the characteristics of the drought
event of study [47,48]. The use of drought vulnerability indices in combination with tree-
ring data is the method that is commonly used [35,49–51]. Among these indices, the most
widely used approach in the literature was proposed by the authors of [52], who defined
recovery, resistance and resilience indices based only on the ring width index (TRI) values
before, during and after a drought event. Although several published works discussed
some specific issues related to the Lloret indices [53], others [54] proved its suitability.
These indices have been widely used in different forest species and under different types of
climates worldwide, showing the specific vulnerability pattern of each case [8,28,47,55].

The present study has two main objectives. The first is to study the response of four
major pine species in the Iberian Peninsula—P. halepensis (PIHA), P. nigra (PINI), P. sylvestris
(PISY) and P. uncinata (PIUN)—to droughts defined by the soil water content and using
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resilience indices. Secondly, the role played by environmental and geographic factors
in these pine species’ endurance to droughts is assessed. As environmental factors, the
study uses soil moisture, temperature, radiation, evaporation, precipitation and dew point
temperature for the period between 1950 and 2007 for the 110 locations where the tree
growth series were selected.

2. Dataset and Methodology
2.1. Study Area and Dendrochronological Dataset

The study area includes most of the species’ distribution range across the Iberian
Peninsula, which climatically represents a transitional area between temperate and Mediter-
ranean climates (Figure 1). Thus, the northern part of the study area is more strongly
affected by the Atlantic influence, having, in general, a higher mean annual precipitation
(>1500 mm) and a lower mean annual temperature (<12 ◦C) [56]. Coastal and southern
areas have a more typical Mediterranean climate, with warm and dry summers and mild
and relatively wet winters, but include semiarid areas where the mean annual precipitation
locally can be lower than 300 mm [56].

The dendrochronological dataset contains 110 sites, including 28 for PIHA, 48 for
PISY, 15 for PIUN and 19 for PINI. This specific dataset was selected from previous re-
search [56,57] based on the homogeneity of the forestland cover and soil conditions (marls
and limestone) at the sampled sites. Chronologies developed over open forest areas or
inhomogeneous landscapes were discarded.
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Figure 1. Location of the tree samples used in the study for the four pine species including Pinus
halepensis (PIHA), Pinus nigra (PINI), Pinus sylvestris (PISY) and Pinus uncinata (PIUN). A more
detailed description of the dendroclimatic dataset and climatic conditions across the study area can
be found in [58,59].

Each of the study sites included in this study is represented by 10 to 35 dominant or
codominant sample trees with healthy trunks and no signs of human intervention. These
samples were processed according to standard procedures to identify and date the exact
position of the annual rings (see specific details in [56,57]). Crossdating was verified using
COFECHA [60]. Then, the tree ring width measurements were performed to the nearest
0.01 mm using the TSAP-Win program and a LINTAB™ 5 measuring device (Rinntech,
Heidelberg, Germany).

Then, for each site, a TRI chronology was constructed. To remove the low-frequency
variability from the tree ring width series and emphasize the high-frequency variability,
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we applied double detrending. Thus, a negative exponential function followed by a cubic
smoothing spline with a 50% cutoff frequency and a 30-year response period was applied to
each individual series. We then constructed the residual chronologies, which were produced
after removing the first-order autoregression for each previously obtained detrended tree
ring series. Finally, a biweight robust estimation of the mean was applied to construct the
residual chronologies. These analyses were performed using the dplR library [61].

2.2. ERA5-Land

For this research, several climatic variables from the ERA5-Land reanalysis database
of the European Center for Medium-Range Weather Forecasts (ECMWF) were used [62].
The database provides hourly values of several land variables on a regular 10 × 10 km
resolution grid. The time series of the pixels containing the 110 pine sites for temperature,
radiation, evaporation, precipitation and soil moisture at different depths were obtained.
For the variables of radiation, precipitation and evaporation, the accumulated daily values
were calculated. For the variables of temperature and soil moisture, the data at 12 h and
00 h were used to obtain an average daily value. In turn, for soil moisture, the values
of the first three layers of the soil profile (0–100 cm depth) were used, thus obtaining a
daily average root zone soil moisture value. The dew point temperature of the ERA5-Land
database was adopted as an auxiliary variable to calculate, together with the temperature,
the vapor pressure deficit following the method described in [63].

2.3. Analysis

To meet the two objectives of this study, different analyses were carried out for each
objective. This study follows the approach adopted in [38] to study the role of soil moisture
in the growth variability of the four considered pine species. First, from the 110 daily soil
moisture time series corresponding to each pine sample, monthly average values were
obtained. Subsequently, a monthly correlation analysis (Pearson method) was performed
between these time series and the TRI values of each species, thus obtaining an R value
and a percentage of samples with significant results for every month, from October of the
previous year to December of the corresponding year.

To study the pines’ response to droughts through resilience indices, the four indices
presented in [52] were used. The first is the resistance index, which is the level of growth of
a species during the drought event compared to the growth before it. Values less than 1
indicate that the pine grows less during the event. The recovery index is the ability of the
pine species to restore growth after the event in comparison to the growth values during
the event. Values greater than 1 indicate that the pine grows more after the event. The
resilience index represents the ability of the pine to return the post-event growth values
to those before the event. Values close to 1 indicate that the pines grow practically the
same before and after the event. Finally, the relative resilience index is the weighting of
the resilience based on the damage caused by the drought event. Prior to the calculation
of these four indices, the drought events for the study period were defined based on the
soil moisture anomaly time series of all 110 locations, verifying that there were no major
differences among them on a similar temporal pattern (Figure 2). The close correspondence
between the series shows the concurrence of events affecting all species along the entire
spatial domain.

Subsequently, the 25th percentile threshold was applied to the annual soil moisture
anomalies to establish dry years, and the 75th percentile was applied to establish humid
years. Afterward, the drought events were chosen by considering the methodology of [52],
by which the drought events, defined as periods of dry years regardless of the duration,
have two years with normal or humid values before and after the event. Thus, within the
study period, four drought events were defined, including 1953–55, 1958, 1994–95 and
1999–2001 (Figure 3).
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Figure 3. Mean annual soil moisture anomalies for the entire spatial domain. Normal years (grey), 25–75th
percentile; dry years (brown), below 25th percentile; and humid years (blue), above 75th percentile.

Once the drought events were defined and identified, the four resilience indices were
calculated for each sample using the following formulas:

Resistance (Rt) = TRI_Ev/TRI_PreEv, (1)

Recovery (Rc) = TRI_PostEv/TRI_Ev, (2)

Resilience (Rs) = TRI_PostEv/TRI_PreEv, (3)

Relative Resilience (RRs) = Rs − Rt, (4)
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where TRI_PreEv, TRI_Ev and TRI_PostEv are the TRI values before the drought event,
during the drought event and after the drought event, respectively. The TRI_PreEv and
TRI_PostEv were calculated as the averages of the TRI values of the two years before and
after the event, respectively, and the TRI_Ev was calculated as the average of the TRI values
during the event. In addition, differences among the species for each of the four resilience
indices were tested using the Kruskall–Wallis test (p < 0.05).

To study the role played by environmental and geographic factors in the drought
resilience of the four considered pine species, a multivariate regression analysis was con-
ducted. The variables considered were soil moisture, temperature, radiation, evaporation,
precipitation, vapor pressure deficit, latitude, longitude, altitude and distance to the coast.
They were normalized to facilitate the subsequent analyses. The set of variables preferable
for multivariate modeling was filtered based on collinearity using the variance inflation
factor (VIF). The VIF is an indicator of the collinearity of each variable that is dependent
on the correlation coefficient Ri between the i variable and the remaining variables of the
model as follows:

VIF = 1/(1 − Ri
2), (5)

Variables with VIF values >10 are usually considered highly collinear and removed
from the set of variables [64], while variables with 5 > VIF > 3 have an admissible degree
of collinearity [65,66]. One combination of three, four and five variables was selected for
the assessment of the models. The selection of the multivariate models was based on the
corrected Akaike information criterion (AICc) [67,68]. The model with the lowest AICc was
the one considered optimal, while in the case of equal AICc between the evaluated models,
the best R2-adjusted (R2-adj) value determined the best model.

The results of the models were evaluated regarding the relative contribution of each
variable. The relative contribution of each variable was computed using the weights of
the AIC scores (referred to as AICw) of all possible combinations of models for the set of
variables in use, following the method described in [69]. The probabilities of occurrence of
each variable can be used (AICcmodavg and relaimpo R packages) to obtain the relative
importance of each variable [70], which is a metric that indicates the proportion of the
variance explained by the variable within the model. The relative importance can even
be expressed in relative terms so that the results can be depicted in terms of the total
percentage of the variance caused by each variable.

3. Results and Discussion
3.1. Relationship between Soil Moisture and Tree Growth

The results obtained in the correlation analysis between the soil moisture and TRI
(Figure 4) on a monthly scale show how the PIHA species obtained the highest correlation
values throughout the months, as well as the highest percentage of samples with significant
results. The maximum values, both in terms of correlation and percentage of significant
samples, were obtained in May and June (median of 0.41 and 82%, respectively), as observed
in previous studies [36–38]. PINI stood out for its high correlation values in the months of
the previous year, while in the corresponding year, it obtained negative R values, reaching
the highest percentage of significant samples in March. PISY obtained low correlation
values throughout the period, with the median oscillating between −0.15 and 0.2, reaching
the maximum percentage of significant samples in June-July with positive R values, while
another maximum of significant samples was reached in April, but with negative values.
PIUN was the species that obtained the lowest values in terms of correlation and percentage
of significant samples (between −0.1 and 0.15 for the median of R and between 0 and 20%
for the percentage of significant samples), except in July, when the maximum R value was
obtained (median of 0.2) and the percentage of significant samples reached 40%. Therefore,
the PINI, PISY and PIUN species obtained much lower percentage values of significant
correlations than PIHA.
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Figure 4. Monthly temporal evolution of the 75th percentile (top dashed line), median (solid line),
and 25th percentile (bottom dashed line) of the coefficient of correlation (R) values between soil
moisture and TRI and the percentage of significant (p < 0.05) cases (yellow bars) for (a) PIHA, (b) PINI,
(c) PISY and (d) PIUN.

The difference among the species seems clear, with PIHA being the species that is
the most sensitive to soil moisture compared to the other species, while PIUN is the least
sensitive species. PINI depends, to a large extent, on soil moisture in the last months of
the year prior to its growth, while in the corresponding year, it seems that excessive soil
moisture may negatively affect its growth. PISY growth depends positively on soil moisture
in the summer months, while in spring, it is negatively related to soil moisture.

Some studies show that the growth of these pine species is correlated with precipitation
and temperature in areas with a Mediterranean climate [71]. Other studies show that soil
temperature has a greater importance for the growth of pines than precipitation [72]. A
study that examined how drought conditions affect the PISY species found that, although
conditions are more favorable for growth in the summer, this pine grows more in the
spring [73], but the study did not use soil moisture as an environmental variable. In the
PIHA species, the results obtained with soil moisture in [38] show a similar behavior, with
correlation values and percentages of samples with statistical significance similar to those
obtained in this study, highlighting the importance of this variable compared to other
climatic variables since it is the most suitable variable to characterize the growth of these
pine trees. The soil water content is decisive for the growth of PIHA, and this variable is
much more determinant as the environmental conditions are more arid [38].

Although variables related to soil moisture have been used to study tree growth, the
absence of studies where this variable has been used to study the growth of PINI, PISY and
PIUN makes comparisons difficult. However, the obtained results seem to be consistent
with the species studied. PIHA is a species that is located mainly at low altitudes, where soil
moisture is more critical, even more so in Mediterranean environments where water-limited
conditions predominate. Therefore, it is consistent that its growth is highly dependent on
soil moisture. In contrast, PIUN grows in high mountain areas (above 2000 m.a.s.l.), where
other factors, such as temperature [55,74], are much more important than soil moisture. In
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contrast, PINI and PISY grow at altitudes between 1200 and 2000 m.a.s.l. but not as high
as PIUN, and therefore, soil moisture gains slightly more prominence, although there are
other factors that are even more important, such as snow water equivalent [75].

3.2. Tree Species’ Response to Droughts

Resilience indices were calculated for drought episodes defined by soil moisture
anomalies (Figure 5). In terms of resistance, PIHA showed values less than 1, which
indicates that it is the species that is the most affected by drought events. PINI and PISY
obtained values close to 1, which indicates that they are not greatly affected by droughts
in terms of resistance. PIUN was the least affected by this type of event, since most of its
resistance values were above 1. In terms of recovery, PIHA obtained values above 1 in
all cases, which means that it recovers well after a drought event. The recovery values
obtained by PINI and PISY were slightly above 1, which indicates that they once again
show growth values similar to those prior to the drought event. However, the samples
corresponding to the PIUN species, while not affected as much by droughts in terms of
resistance, show lower recovery values. The results for both the absolute and relative
resilience indices show that PIHA once again obtained the highest values, that is, it grows
more than before the drought event regardless of the damage caused by the drought. Low
values of resilience were obtained by PIUN, perhaps because it is the species that is the
least affected by droughts in terms of recovery and resistance, as was seen before.
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Figure 5. Resistance, recovery, resilience and relative resilience indices observed for the four studied
pine species. The central lines of boxplots indicate the median value, vertical hinges indicate first and
third quartiles, error bars indicate the 95% confidence interval of the median and + symbol indicate
outlier values, which are values beyond the 95% confidence interval threshold. Different letters in the
boxes indicate significant differences between species (Kruskall–Wallis test, p < 0.05).

Regarding the pattern observed in the results, PIHA showed a greater range of values
for the four indices, followed by PINI and PISY, with PIUN showing the least variability.
This is probably related to the spatial variability of the samples used in the study. As shown
in Figure 1, PIHA is more spatially distributed over the Iberian Peninsula. In turn, PINI
and PISY occupy less surface within the studied area, while the PIUN samples are only
located in the northern half of the peninsula. Although it was found that the pattern of soil
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moisture was very similar in all areas, other factors may have a different spatial pattern
and may influence these species to be more or less sensitive to droughts.

The results shown by the four pine species studied through the resilience indices are
in line with those of previous studies in which the method of [52] was used. However,
those studies used other drought indices or approaches and other variables, such as
precipitation, mean temperature or NDVI, to study the relationship between droughts
and resilience [16,28,76]. In turn, the present results are in line with those obtained in the
correlation analysis shown in the preceding section. It seems coherent that PIHA, being the
species that is the most dependent on soil moisture, is the one that is the most influenced
by droughts. Drought events also affect the growth of both PINI and PISY, although not
as much as PIHA, while PIUN, as the species that is the least dependent on soil moisture,
shows a lower impact of soil drought on its growth.

These results are in agreement with the studies that demonstrated that the plastic
character of pines is related to the adaptation of their cambial activity and growth rate to
climate variability [59,77,78]. When subjected to soil moisture scarcity, PIHA reduces its
growth, and later, when the soil water content is recovered, it properly grows again. That
is, its biophysical activity stops when the climatic conditions are not favorable in terms
of water availability, which demonstrates its adaptability [58]. However, this is not the
case with the rest of the species studied, and according to climate change projections, those
species could be more stressed by drought events in the future than PIHA [56,59].

Differential growth responses to droughts between taxonomic groups may be relevant
in drought-prone and diverse regions, such as the Mediterranean basin [79].

Evergreen gymnosperms dominating the semi-arid and drought-prone areas dis-
played lower resistance but faster recovery than evergreen gymnosperms and deciduous
angiosperms dominating the temperate and wet regions [28]. This seems to be the case
for Pinus halepensis, which inhabits dry regions, and which displays a lower resistance
to droughts but a great capacity to recover. This trade-off between forest resistance to
droughts and recovery after droughts has been previously reported [16,76].

It is plausible that such a difference in the species resilience may be due to the exis-
tence of species-specific adaptations and physiological mechanisms to cope with droughts.
However, the involved mechanisms remain unclear and poorly understood [25].

In this sense, the isohydric/anisohydric framework was proposed to clarify tree
species in relation to their different responses to stomatal closure at different vapor pressure
deficits, or leaf water potentials during droughts [25,80]. The anisohydric behavior is
related with species that regulate water potential within a narrow range, reducing the
cavitation risk at the cost of a reduced carbon uptake [81]. On the contrary, species with a
higher isohydricity tend to decrease their water potential during droughts, allowing for
trees to maintain C assimilation rates at the risk of the occurrence of hydraulic failures [82].

Within this framework, our study suggests that, along the spectrum of isohydric to
anisohydric, the PIHA species will demonstrate more isohydric behavior, while PIUN will
be the more anisohydric one, with PISY and PIUN located in an intermediate position.

3.3. Environmental Modulation of Pine Resilience

Some environmental factors closely related to soil moisture can also participate in
the differences in drought response among the four pine species. Among them, both
climatic and geographic variables are of relevance. The concurrent role of these variables
was evaluated via multivariate analyses of the resistance, recovery, resilience and relative
resilience indices of each tree species.

The filtering of the suitable environmental variables for the drought response of
the four pine species indicated that the optimal set of variables included three climatic
variables (temperature, radiation, vapor pressure deficit), soil moisture and one geographic
variable among latitude, longitude and distance to the coast. The geographic variable
differs depending on the resilience index and species, as shown in Table 1.
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Table 1. Average R2 values obtained from the multivariate modeling of the four resilience indices
(resistance, Rt; recovery, Rc; resilience, Rs; relative resilience, RRs) for each pine species with details
of the main geographic variable included in the optimal model.

R2 Rt Rc Rs RRs

PIHA 0.26 0.79 0.35 0.09
Geo. Latitude Latitude Longitude Longitude

PINI 0.14 0.57 0.37 0.26
Geo. Coast Latitude Altitude Latitude

PISY 0.19 0.28 0.11 0.44
Geo. Longitude Longitude Coast Longitude

PIUN 0.11 0.58 0.39 0.28
Geo. Altitude Altitude Coast Altitude

The mean R2 obtained by the optimal model for each species (Table 1) shows the
highest mean values for PIHA (R2 = 0.37), followed by PINI and PIUN (R2 = 0.34), with
PISY showing the lowest value (R2 = 0.26). A comparison of the R2 values among the
studied indices shows the highest values for recovery, followed by resilience, relative
resilience and resistance. These results indicate that other types of factors also play a role in
droughts in forests, such as the type of soil in which the trees are found or the extent of the
rocky cover and soil stoniness [83].

The results of the relative contribution of the main environmental factors influencing
the variance of the resilience indices shown in Figure 6 indicate differences among the pine
species. PIHA is primarily driven by soil moisture both in terms of resistance and recovery
(over 40% of variance explained by soil moisture). The vapor pressure deficit is the second
most relevant variable for PIHA in terms of resistance, recovery and relative resilience.
Radiation plays a key role in the resilience of PIHA. Geographic variables dominated by
latitude and longitude play a moderate role.

The relative contribution of the energy-related variables is dominant in the case of
PINI and notable in the case of PIUN. The vapor pressure deficit stands out among the
rest of the variables in the case of the resistance, recovery and relative resilience indices of
PINI, indicating a remarkable sensitivity of this tree species to the evaporation processes
related to that variable. The geographic variable primarily contributes to the variability of
the resilience of PINI. PINI is also notably influenced by radiation compared to the other
three species and is the second most responsive species to temperature, after PIUN.

The relative contribution of temperature to the variance in the recovery, resilience
and relative resilience indices of PIUN is high compared to the rest of the participating
variables, except for the notable case of the geographic variable. The relative contributions
of radiation, vapor pressure deficit and soil moisture remain low. Radiation and vapor
pressure deficit fall within the range of low contribution, which is also shown by PISY.

PISY shows a reduced effect of climatic variables on the variance of the indices. Among
the climatic variables, temperature and vapor pressure deficit prevail over radiation, while
this last variable shows a more consistent contribution to all indices, similar to the case
of soil moisture. Temperature and radiation show the largest contribution to resilience
over relative resilience, recovery and resistance for this species. These results are under the
uncertainty of the R2 values shown in Table 1.

While the contribution of soil moisture is considerable for PIHA, it presents a minor
influence on the variation in the four indices for the other pine species. This is consistent
with the quick response to droughts that is characteristic of PIHA, which is singular
on its ability to quickly halt or resume growth depending on stress, up to the point of
presenting recurrent ring discontinuities [32]. However, the difference is inconsistent with
the isohydric approach that PIHA has in common with PINI, PISY and PIUN and the
relatively high sensitivity to xylem embolism compared to those species [84]. Among the
many uncertain exogenous (e.g., fires) or endogenous (e.g., lifecycle) aspects that may be
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involved in this paradox observed for PIHA, physiological and phylogenetic factors have
been the focus of investigation [85]. These factors reveal what confers the barely diverse
PIHA with such an advanced drought response, as it is the most phylogenetically recent
Mediterranean species [86].
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Nevertheless, the distinct exposure of each species to a dominant factor (e.g., soil
moisture for PIHA, vapor pressure deficit for PINI, geographic variable for PISY and
temperature for PIUN) reflects their different biogeographic niches and expresses their
distinct traits of response to drought-induced stress. Interestingly, an individual factor
seems to dominate the response of each species to droughts.

In the case of soil moisture, the plasticity of PIHA growth in relation to soil moisture
implies an advantage of this pine species over the medium-altitude species (PINI, PISY)
and high-altitude species (PIUN) under the scenario of decreasing trends in soil moisture
in the Iberian Peninsula [87]. This result indicates that PIHA may better endure this type of
sustained climate anomaly and outcompete or expand its biogeographic distribution into
the low-altitude locations of PINI and PISY in soils and exposures experiencing increasing
soil water restrictions [88,89].

In contrast, the temperature increase in Spain [90], while not showing a uniform trend
in all time periods and areas [91,92], poses both an opportunity and a limitation to the
temperature-sensitive PIUN [93,94]. However, even the relatively limited contribution
of soil moisture can pose a threat, since PIUN growth is affected by snow cover, whose
temporal change may alter the influence of soil moisture on this species [75], including its
phenology [95]. The results imply a reduction in the biogeographic distribution of PIUN
due to the limited altitudinal belt available in the Pyrenees, especially in the Iberian range,
for the upward tree line shift of this species [96].

The notable responsiveness of PINI to the increasingly relevant vapor pressure deficit [97]
warns against neglecting the importance of this factor on tree growth [98] in combination with
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soil moisture [99]. There is an increased concern about the major role of evapotranspiration
processes on drought stress in areas with a Mediterranean climate [100]. Therefore, rising
vapor pressure deficit levels may jeopardize the status of PINI forests, particularly among
the widespread reforestation plantations of the species in Spain that are located beyond its
ecological niche [101].

Finally, it was observed that the geographic variable has a remarkable influence on
the variance of the four tree growth indices analyzed for PISY. This result may lead to a
misperception of the endurance of the species to climate change compared to the other
Iberian pines, which is at least not true compared to PINI [102]. However, until there
is further evidence of such an insensitive response, the results merely imply that the
variance is spurred by the geographic diversity of the species in the Iberian Peninsula [103],
regardless of the samples evaluated in this study. Diversity is also high in PIUN, which
is the second most affected species by geographic factors in our results. The gradient of
continentality from SW to NE is correlated with longitude and coastal distance in the Iberian
Peninsula [104] and may be under the geographic signal of PISY. This was corroborated in
this work, since the longitude and distance to the coast are the most relevant geographic
variables (Table 1).

Overall, the results illustrate the distinct response of pine species to drought events,
which has implications for the long-term sustainability of medium-altitude (PINI and PISY)
and high-altitude (PIUN) pine forests in Spain [105], and the favorable drought response
traits found for PIHA. Recent studies [106,107] made in several European regions other
than the Mediterranean one also show the limitations of the acclimatation of pine species
to the changing climate.

Negative effects of an altered forest status due to droughts can propagate to the rest
of the land system, from reductions or increases in water yields with consequences on
water availability [108,109] to feedbacks of the land–atmosphere system [110] of these
Mediterranean regions, which are increasingly prone to extreme events [111,112].

4. Conclusions

The results obtained in this research show that soil moisture is a very important
variable in the growth of pines, but for the pine species that are located at higher altitudes,
the influence of other environmental factors increases. In addition, for the species in which
soil moisture is the most important variable for growth (P. halepensis), soil moisture was
found to be critical in the spring months, as observed in previous studies.

In line with these results, it was found that when the growth of a pine species is more
dependent on soil moisture, it is more influenced by soil drought. This means that when
soil moisture is scarce, these species stop growing as they normally grow. Once the drought
event passes, these species grow the most compared to the others.

It was observed that the variables that most influence the growth of pine species in the
Iberian Peninsula during soil drought events, in addition to soil moisture, are temperature,
radiation, vapor pressure deficit and some of the geographic variables linked to each
species. Nevertheless, this study shows that soil moisture is the most influential variable on
soil drought resilience in the pine species growing at lower altitudes. Similarly, in species
growing at higher altitudes, energy-related variables and geographic features play a greater
role in the resilience of pines after soil drought events.

The results obtained in this study can help us to understand the dynamics of existing
pine species in the Iberian Peninsula in periods of soil drought and their consequences
in areas with a Mediterranean climate. This study can be very valuable for the adaptive
management of Mediterranean pine forests, since, as has been seen, Pinus halepensis seems
to be a species that is particularly adapted to soil drought and, therefore, is a model species
for an extension of its distribution range in Mediterranean areas. However, more research
should be carried out since, according to many studies, climate change will intensely affect
these areas. This scenario will make the droughts more intense and longer lasting, making
these forests one of the most threatened ecosystems.
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