000127953 001__ 127953
000127953 005__ 20241125101146.0
000127953 0247_ $$2doi$$a10.3390/w15173094
000127953 0248_ $$2sideral$$a135059
000127953 037__ $$aART-2023-135059
000127953 041__ $$aeng
000127953 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, Sergio$$uUniversidad de Zaragoza
000127953 245__ $$aNon-Equilibrium Bedload Transport Model Applied to Erosive Overtopping Dambreach
000127953 260__ $$c2023
000127953 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127953 5203_ $$aBedload sediment transport is an ubiquitous process in natural surface water flows (rivers, dams, coast, etc), but it also plays a key role in catastrophic events such as dyke erosion or dam breach collapse. The bedload transport mechanism can be under equilibrium state, where solid rate and flow carry capacity are balanced, or under non-equilibrium (non-capacity) conditions. Extremely transient surface flows, such as dam/dyke erosive collapses, are systems which always change in space and time, hence absolute equilibrium states in the coupled fluid/solid transport rarely exist. Intuitively, assuming non-equilibrium conditions in transient flows should allow to estimate correctly the bedload transport rates and the bed level evolution. To get insight into this topic, a 2D Finite Volume model for bedload transport based on the non-capacity approach is proposed in this work. This non-equilibrium model considers that the actual bedload sediment discharge can be delayed, spatial and temporally, from the instantaneous solid carry capacity of the flow. Furthermore, the actual solid rate and the adaptation length/time is governed by the temporal evolution of the bedload transport layer and the vertical exchange solid flux. The model is tested for the simulation of overtopping dyke erosion and dambreach opening cases. Numerical results seems to support that considering non-equilibrium conditions for the bedload transport improves the general agreement between the computed results and measured data in both benchmarking cases.
000127953 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2022-IAR-03
000127953 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127953 590__ $$a3.0$$b2023
000127953 592__ $$a0.724$$b2023
000127953 591__ $$aWATER RESOURCES$$b40 / 128 = 0.312$$c2023$$dQ2$$eT1
000127953 593__ $$aAquatic Science$$c2023$$dQ1
000127953 591__ $$aENVIRONMENTAL SCIENCES$$b169 / 358 = 0.472$$c2023$$dQ2$$eT2
000127953 593__ $$aWater Science and Technology$$c2023$$dQ1
000127953 593__ $$aGeography, Planning and Development$$c2023$$dQ1
000127953 593__ $$aBiochemistry$$c2023$$dQ2
000127953 594__ $$a5.8$$b2023
000127953 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127953 700__ $$aFernández-Pato, Javier
000127953 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000127953 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000127953 773__ $$g15, 17 (2023), 3094$$pWater (Basel)$$tWater (Switzerland)$$x2073-4441
000127953 8564_ $$s15550064$$uhttps://zaguan.unizar.es/record/127953/files/texto_completo.pdf$$yVersión publicada
000127953 8564_ $$s2706506$$uhttps://zaguan.unizar.es/record/127953/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127953 909CO $$ooai:zaguan.unizar.es:127953$$particulos$$pdriver
000127953 951__ $$a2024-11-22-12:04:38
000127953 980__ $$aARTICLE