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Abstract: Bedload sediment transport is an ubiquitous process in natural surface water flows (rivers,
dams, coast, etc), but it also plays a key role in catastrophic events such as dyke erosion or dam
breach collapse. The bedload transport mechanism can be under equilibrium state, where solid rate
and flow carry capacity are balanced, or under non-equilibrium (non-capacity) conditions. Extremely
transient surface flows, such as dam/dyke erosive collapses, are systems which always change
in space and time, hence absolute equilibrium states in the coupled fluid/solid transport rarely
exist. Intuitively, assuming non-equilibrium conditions in transient flows should allow to estimate
correctly the bedload transport rates and the bed level evolution. To get insight into this topic, a
2D Finite Volume model for bedload transport based on the non-capacity approach is proposed in
this work. This non-equilibrium model considers that the actual bedload sediment discharge can be
delayed, spatial and temporally, from the instantaneous solid carry capacity of the flow. Furthermore,
the actual solid rate and the adaptation length/time is governed by the temporal evolution of the
bedload transport layer and the vertical exchange solid flux. The model is tested for the simulation of
overtopping dyke erosion and dambreach opening cases. Numerical results seems to support that
considering non-equilibrium conditions for the bedload transport improves the general agreement
between the computed results and measured data in both benchmarking cases.

Keywords: dam breaching; overtopping erosion; bedload transport; non-equilibrium transport; finite
volume methods; breach side stability

1. Introduction

In surface water flows, such as river or coasts, the bed material particles are transported
by two main mechanisms: suspended load transport accounts for the sediment particles
moving within the flow column, whereas bedload transport involves the particles moving
in a relatively thin layer over the static bed stratum. In this bedload transport layer, the
solid particles are in contact with the underlying static stratum and hence the particle
velocity is much lower than that of the the surrounding fluid [1]. The bedload transport
plays a key role in the riverbed morphology since it can lead to marked and rapid variations
in the bed level. Bedload transport can occur under a steady equilibrium state or, contrarily,
under transient non-equilibrium conditions. The classical equilibrium approach considers
that the actual bedload rate is the capacity of the flow to carry solid weight and hence
only depending on instantaneous local flow features. The capacity bedload rate can be
estimated using different empirical closure relations found in literature [2] and is the most
widespread approach in current bedload transport models [3–10].

Contrarily, in bedload models based on the non-equilibrium assumption, the actual
transport rates must be computed through the advection of the solid particles in the
bedload layer and the mass exchange with the underlying static riverbed [11–15], and
usually it does not agree with the local load carry capacity of the flow. Intuitively, assum-
ing non-equilibrium conditions in transient flows should allow to estimate correctly the
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solid transport rates and the bed evolution, but this topic remains uncertain nowadays.
Van-Rijn [16] suggested that the bedload rate can be assumed equal to the solid carry ca-
pacity event in moderate unsteady flows, since the adjustment of the transported solid load
to new local flow conditions proceeds enough rapid close to the riverbed surface. However,
this assumption was only conceptual and not supported by theoretical or numerical results.
Later, analysing numerically the time scale of the processes involved in bedload transport,
Cao et al. [13,17] found that the bedload rate was able adapt rapidly to the local carry
capacity in flood cases. These works seem to justify the widespread application of the
equilibrium/capacity bedload models [17]. However, this fact is not supported by any
results in case of highly transient erosive dambreach flows.

Assuming non-equilibrium conditions for the bedload transport requires to compute
locally both the thickness of the bedload transport layer and the bulk velocity of the solid
particles. Furthermore, the net exchange flux of solid particles between static riverbed and
moving bedload layer also has to be estimated, since it works as a source/sink of solid load.
Therefore, non-equilibrium bedload models for transient flows involve a high uncertainty in
the estimation of the parameters associated to entrainment/deposition vertical flux and the
transport layer thickness and velocity. In the specialized literature, different strategies have
been reported to overcome this uncertainty. El Kadi Abderrezzak et al. [18] assumed non-
storage conditions for the transport layer and approximated the net solid flux through the
interface between the static bed and the moving transport layer by the divergence between
the actual and capacity transport rates. This theoretical model also introduced the adaptation
length concept, fixed in time and space, leading to the quasi-steady relaxation flux approach
for bedload models. Based on the same adaptation length concept, refs. [11,19,20] proposed
more complex approaches to determine the net exchange flux through the interface but
accounting now for the mass storage in the bedload transport layer. These models assume
the actual transport rate as one of the unknown conservative variables, but they estimate the
bulk bedload layer velocity using the closure relations found in literature [21–23] developed
in laboratory under solid carry capacity conditions.

Recently, novel complex developments applying the non-capacity approach in bedload
transport models have been derived, most of them based on the pioneering work Charru [24].
This work studies, at a grain scale, the mechanical interaction between moving fluid (clear
water) and sediment particles at the interface between the static riverbed and the moving
bedload layer. Based on this particle-scale momentum balance, Zech et al. [25] modelled
the net exchange flux through the interface as a function of the shear stress exerted by
the flow in the bedload transport layer and the shear strength for the incipient motion
at the upper boundary of the static underlying stratum. Based also on [24], Fernández-
Nieto et al. [14,26] derived closure relationships for the erosion and deposition rates at
the static-moving interface, leading to a novel expression for the actual solid transport
rate under non-equilibrium conditions. Under equilibrium conditions, this new expression
for the solid transport reduces to the classical formula for bedload rate. Some interesting
works have been recently published modelling bedload transport rates in cohesive clay–
silt–gravel mixtures [27,28]. Finally, Bohorquez and Ancey [15] performed a grain-scale
analysis of the particle activity at the bedload transport layer and proposed expressions for
the entrainment/deposition rates including an additional diffusion term in the non-capacity
bedload transport equation.

In this work, the novel generalized non-equilibrium bedload transport formulation
developed by Martínez-Aranda et al. [29,30] for 2D bedload transport models is used to
simulate dyke overtopping erosion and dam breach collapse processes. The equilibrium
and non-equilibrium approaches are compared for different synthetic tests and experi-
mental benchmarking cases. The main goal of this work is to test the suitability of the
non-equilibrium approach for these highly unsteady erosive flows. This manuscript orga-
nized as follows: in Section 2 the system of conservation equations for 2D bedload transport
is introduced; the numerical method is detailed in Section 3; the model results for one
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synthetic test and two experimental benchmarking cases are analysed in Section 4; and
finally the main conclusions are drawn in Section 5.

2. Mathematical Modelling of 2D Generalized Bedload Transport

The 2D governing equations for bedload transport assuming non-equilibrium ap-
proach can be written as a compact conservation laws system [30], which includes the
conservation laws for the water mass and the depth-averaged momentum of the flow,
together with the transport equation for the erodible bed material:

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= Sb(U) + Sτ(U) (1)

where U = (h, hu, hv, zb)
T are the conservative variables, F(U) and G(U) are the conser-

vative fluxes along the x- and y-coordinates respectively:

U =


h

hu
hv
zb

 F(U) =


hu

hu2 + 1
2 gh2

huv
qbx

 G(U) =


hv

huv
hv2 + 1

2 gh2

qby

 (2)

being h the flow depth, (u, v) the components of the depth-averaged velocity u along
the x- and y-coordinates respectively, zb is the erodible bed elevation, (qbx, qby) are the
components of the non-equilibrium bedload discharge qb along the x- and y-coordinates
respectively and g is the gravity acceleration. On the right hand side, the terms Sb(U)
includes the bed-pressure momentum source and Sτ(U) accounts for the frictional momen-
tum dissipation along the x- and y-coordinates:

Sb(U) =


0

−gh ∂zb
∂x

−gh ∂zb
∂y

0

 Sτ(U) =


0

−τbx/ρw
−τby/ρw

0

 =


0

−gh S f x
−gh S f y

0

 (3)

being (τbx, τby) the components of the boundary shear stress vector τb between the flow
and the movable bed along the x- and y-coordinates, respectively, and (S f x, S f y) the cor-
responding frictional energy loss. For the sake of simplicity, in this work the turbulent
Manning friction formulation is adopted:

S f x =
n2 |u|u

h4/3 S f y =
n2 |u|v

h4/3 (4)

where |u| =
√

u2 + v2 is the depth-averaged flow velocity modulus and n is the bulk
Manning roughness parameter depending on the bed material.

The bedload solid discharge in classical morpho-dynamical models is considered un-
der equilibrium (capacity) conditions and usually modelled using the Grass law [31], which
scales exponentially the solid transport rate with the flow velocity as qb = Ag|u|m−1u,
being Ag a flow-bed interaction constant factor and m an behaviour exponent (usually
m = 3). More complex equilibrium models applied to realistic bedload transport tests
estimate the instantaneous local flow-bed interaction factor from the hydro-dynamical flow
features, hence Ag ≡ G(h, θ) [2,10,32], being θ the dimensionless Shields stress at the bed
surface. According to Martínez-Aranda et al. [29] and Martínez-Aranda et al. [30], the
bedload transport rate assuming a non-equilibrium approach can be expressed following a
modified Grass-type law as:

qbx =
1

1− ξ
G(h, θ, η) |u|2u qby =

1
1− ξ

G(h, θ, η) |u|2v (5)
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being ξ the bed layer porosity and G a interaction factor between the flow and erodible
riverbed. This interaction factor depends not only on the flow depth h and the dimension-
less Shields stress θ, but also on the bedload transport layer thickness η. Figure 1 shows a
schematic representation of the bedload generalized bedload mechanism at grain-scale.

Figure 1. Sketch of the generalized bedload transport model at grain-scale.

It is useful to split G in a product of three factors Γ1(h), Γ2(θ) and Γ3(η) as:

G = Γ1(h) Γ2(θ) Γ3(η) (6)

Table 1 provides expressions for functions Γ1, Γ2 and Γ3 using empirical relations
found in literature, where rs is the relative density of the sediment particles rs = ρs/ρw, ds
is the characteristic diameter of the bed sediment, kd and ke are the two constants associated
to the deposition and erosion exchange rates, respectively, between the underlying static
bed stratum and the bedload transport layer (moving layer). The term ∆θ accounts for the
excess of Shields stress over the critical threshold θc for the incipient motion threshold of
the solid particles, calculated as:

∆θ =

{
θ − θc if θ > θc

0 Otherwise

with: θ =
|τb|

(ρs − ρw)gds
=

n2 |u|2
(rs − 1) ds h1/3

(7)

This generalized Grass-type model (6) allows to consider capacity (equilibrium) or non-
equilibrium approaches for the bedload transport only by selecting the proper estimation
procedure for the bedload layer thickness η. On one hand, assuming the equilibrium
approach leads to the instantaneous adaptation of the bedload transport rate qb to its
capacity value q∗b and the equilibrium transport layer thickness η∗ can be estimated as:

η ≡ η∗ =
ke

rs kd
∆θ ds (8)

On the other hand, the non-equilibrium assumption forces the necessity of estimating
the temporal evolution of the bedload transport layer thickness η using the conserva-
tion equation:

∂η

∂t
+

∂ qbx
∂x

+
∂ qby

∂y
= (η̇e − η̇d) (9)

where η̇e and η̇d are the entrainment and deposition vertical rates, respectively, between
the the underlying static stratum and the bedload transport layer. Following [24,29], the
volumetric entrainment and deposition rates can be expressed as:
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η̇e = ke
∆θ

rs

√
(rs − 1)gds η̇d = kd

η

ds

√
(rs − 1)gds (10)

Table 1. Grass-type interaction factor G for transport rate formulations.

Formulation Γ1(h) Γ2(θ) Γ3(η) θc

MPM n3√g
(rs−1)

√
h

8
√

∆θ θ−3/2 rs kd
ke

η
ds

0.047

Nielsen n3√g
(rs−1)

√
h

12 θ−1 rs kd
ke

η
ds

0.047

Fernandez-Luque n3√g
(rs−1)

√
h

5.7
√

∆θ θ−3/2 rs kd
ke

η
ds

0.037

Wong n3√g
(rs−1)

√
h

3.97
√

∆θ θ−3/2 ρs/ρ f kd
ke

η
ds

0.0495

Smart n2

(rs−1)h1/3 4.2 S0.6
b θ−1 rs kd

ke

η
ds

0.047

Wu n3√g
(rs−1)

√
h

0.0053 θ−2.2
c
√

∆θ θ−3/2 rs kd
ke

η
ds

0.030

In the Smart formula, the parameter Sb accounts for the bed slope along the bedload transport direction.

3. Numerical Scheme for the 2D Bedload Transport Model

In order to obtain the numerical solution applying Finite Volume (FV) methods, the
spatial domain is discretized into a fixed-in-time mesh of triangular cells and system (1) is
integrated in each computational cell using the Gauss theorem:

d
dt

∫
Ωi

U dΩ +
NE

∑
k=1

[
F(U) nx + G(U) ny

]
k lk =

∫
Ωi

Sb(U) dΩ +
∫

Ωi

Sτ(U) dΩ (11)

being Ωi the inner domain and NE the number of edges for the i cell, n = (nx, ny) the
outward unit normal vector and lk the length of the kth edge. Assuming a piecewise
representation of the conservative variables U at each i cell, Ui, the updating formulation
between from time t = tn to the next step t = tn+1 is expressed as:

Un+1
i = Un

i −
∆t
Ai

NE

∑
k=1

R−1
k F

↓−
k lk (12)

where Ai is the i cell area, ∆t = tn+1 − tn is the time step, R−1
k is the inverse of the

rotation matrix Rk at kth edge [33] and F ↓−k is the numerical normal flux throughout
the kth edge. This numerical normal flux includes the convective flux augmented with
the non-conservative bed-pressure contribution and the frictional momentum dissipation
integrated thought the edge.

In this work, the upwind computation of F ↓−k is achieved using a fully-coupled Roe-
type Riemann solver for bedload transport (FCM solver) [34]. This augmented 5-waves
solver is based on computing the approximated solution of the linear Riemann problem:

∂RkU
∂t

+ M̃k
∂RkU

∂n̂
= RkT̃k (13)

where n̂ denotes the normal axis to the cell edge and superscripts˜ indicates edge-averaged
quantities. The pseudo-Jacobian matrix M̃k = (̃J− H̃)k of the coupled system includes the
approximated Jacobian matrix of the conservative convective flux J̃k and the non-conservative
matrix H̃k of the bed-pressure momentum contribution at the edge. On the right hand side,
the term T̃k denotes the momentum dissipation due to flow-bed frictional stress, integrated
through the kth edge. Details on the flux computation have been extensively reported in
Martínez-Aranda et al. [34] but, for the sake of brevity,F ↓−k at the kth edge is computed as:

F ↓−k = F(RkUn
i ) + ∑

m−

[
(λ̃mα̃m − σ̃m) ẽm

]n
k (14)
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where λ̃m,k are the wave celerities at the edge, i.e., the eigenvalues of the pseudo-Jacobian
matrix M̃k whereas (ẽm)k are the corresponding eigenvectors. The coefficients α̃m,k denotes
the wave strengths which accounts for the discontinuity on the conservative variables,
whereas the coefficients σ̃m,k are the source strengths involving the frictional momentum
contribution at the edge. The subscript m− under the sums indicate that only the waves
travelling inward the i cell are considered, leading to the upwind computation of the flux
at the edge.

Furthermore, the stability of the explicitly computed numerical solution is addressed
by the dynamical limitation of the global time step using a CFL condition. The local time
step allowed for the kth edge is estimated assuming that the absolute maximum of the
eigenvalues corresponds to the fastest wave celerity. Hence the global time step ∆t is
limited by minimum of the local time steps, i.e., the more restrictive instantaneous local
flow features (see Martínez-Aranda et al. [34]).

3.1. Transport Layer Updating with Capacity and Non-Capacity Approaches

Once the conservative variables have been updated using (12), the bedload transport
rate qb is computed at the next time level tn+1 as:

(qb)
n+1
i =

1
1− ξ

Gn+1
i

[
(un+1

i )2 + (vn+1
i )2]un+1

i

with: Gn+1
i = Γ1(hn+1

i ) Γ2(θ
n+1
i ) Γ3(η

n+1
i )

(15)

where the hydrodynamic quantities hn+1
i , un+1

i , vn+1
i and θn+1

i are directly extracted from
Un+1

i . Nevertheless, equation (15) also requires to compute the updated bedload transport
layer thickness ηn+1

i at the next time level. The updating of the transport layer thickness
depends on the assumption made for the bedload transport:

• Equilibrium hypothesis: The new transport layer thickness is directly computed as:

ηn+1
i =

ke

rs kd
(∆θ)n+1

i ds (16)

where (∆θ)n+1
i is the Shields excess (7) at the i cell computed from the updated

conservative variables Un+1
i .

• Non-capacity approach: This leads to the necessity of solving equation (9) each time
step. The updating formula for the transport layer thickness η is expressed as:

ηn+1
i = ηn

i −
∆t
Ai

NE

∑
k=1

Fη↓
k lk + ∆t (η̇e − η̇d)

n
i (17)

being Fη↓
k the numerical normal flux at the kth intercell edge for the transport layer

equation and η̇n
e,i and η̇n

d,i the values of the entrainment and deposition rates for

the i cell at time n, respectively. To compute the numerical flux Fη↓
k , the bedload

transport layer Equation (9) is projected along the normal direction to the edge n̂ and
approximated by the local scalar Riemann problem:

∂η

∂t
+ λ̃η,k

∂η

∂n̂
= 0 (18)

with: η(n̂, 0) =

{
ηn

i if n̂ < 0
ηn

j if n̂ > 0 (19)
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where the virtual bedload wave celerity λ̃η,k is defined as:

λ̃η,k =

(
δqbn
δη

)
k

(20)

being δqbn = (qbxnx + qbyny)n
j − (qbxnx + qbyny)n

i and δη = ηn
j − ηn

i , and the bedload

numerical flux Fη↓
k is computed as:

Fη↓
k =

{
(qbxnx + qbyny)n

i if λ̃η,k > 0
(qbxnx + qbyny)n

j if λ̃η,k < 0
(21)

The cell-centered exchange rates η̇n
e,i and η̇n

d,i between the underlying static stratum
and the transport layer are computed as:

(η̇e)
n
i = ke

(∆θ)n
i

rs

√
(rs − 1)gds (η̇d)

n
i = kd

ηn
i

ds

√
(rs − 1)gds (22)

3.2. Morphological Collapse Mechanism

In realistic applications, the maximum bed level slope is limited due to morphological
collapse processes. In order to implement an efficient bed slope control mechanism, we pro-
pose the non-iterative limitation of the numerical beload flux provided for the augmented
Riemann solver at each cell edge imposing geometrical restrictions. The bed level updating
expressions for the left L and right R cells sharing the edge k0 read:

zn+1
bL = zn

bL −
∆t
AL

[
(q↓b l)k0 + . . . + (q↓b l)kNL

]
zn+1

bR = zn
bR −

∆t
AR

[
(q↓b l)k0 + . . . + (q↓b l)kNR

] (23)

where kNL and kNR refer to the non-shared edges of the left and right cells respectively and
(q↓b)k0 denotes the forth component of the numerical flux vector F ↓− at the common edge
k0 between cells L and R. This value is provided by the Riemann solver, i.e., the numerical
upwind bedload normal flux at the edge (q↓b ≡ F

↓−
4 ). Therefore, the evolution of the local

bed slope at edge k0 can be expressed as:

(zbR − zbL)
n+1 = (zbR − zbL)

n +
AL + AR

AL AR
(q↓b l)k0 ∆t (24)

Assuming a collapse bed slope angle δb along the edge-normal distance between cell
centres dn, two conditions arise for the morphological limiting of the numerical bedload
flux depending on the sign of the local bed slope:

• Positive bed slope if 0 < (zbR − zbL)
n+1 < tan δb dn

q↓b ≤
tan δb dn − (zbR − zbL)

n

l ∆t
AL AR

AL + AR
(25)

• Negative bed slope if −(tan δb dn) < (zbR − zbL)
n+1 < 0

q↓b ≥
−
[

tan δb dn + (zbR − zbL)
n]

l ∆t
AL AR

AL + AR
(26)

Actually, this limitation on the numerical bedload flux q↓b acts as a bed form control
mechanism, including artificial diffusion in the numerical bed level solution and avoiding
the appearance of shock waves in the bed level with local slopes larger than the morpho-
logical collapse limit.
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4. Numerical Results and Discussion
4.1. Adaptation of the Non-Equilibrium Bedload Rate to Equilibrium States

This new generalised model for the non-equilibrium bedload transport (5)–(6) requires
to compute the thickness η of the transport layer using (9), but it is able to account for the
spatial and temporal delay of the actual bedload rate with respect to the solid transport
capacity in highly unsteady flows. Moreover, if the local flow features allow to develop
steady states in the bedload transport process, the entrainment and deposition rates tend
to balance (η̇e = η̇d) and the solid rate recovers the equilibrium condition, characterized by
the transport layer thickness η∗ (8). Therefore, the equilibrium state is a particular case of
the generalised non-equilibrium model where η = η∗.

In order to illustrate the temporal-spatial behaviour of the generalised non-equilibrium
bedload model, a simple idealised test is included here forcing the following flow conditions

h|u|(t, x, y) = 2 m2s−1 ∀t, ∀x

|u|(t, x, y) =


2 m/s if t = 0 s, ∀x
4 m/s if t > 0 s, 20 m ≤ x ≤ 70 m
2 m/s if t > 0 s, otherwise

with ρs = 2650 kg/m3, ξ = 0.35, ds = 1 mm, n = 0.035, ke/kd = 20 and the MPM relation
(see Table 1). Using (15)–(16), these local flow features lead to a uniform bedload discharge
at the initial time t = 0 s and a stepped capacity transport rate |q∗b| for any t > 0 s, as
depicted in Figure 2.

Figure 2. Bedload transport rate evolution for classical equilibrium formulations.

The generalised non-equilibrium model introduces a temporal and spatial delay of the
actual transport rate with respect to the capacity value. Figure 3 shows the temporal evolu-
tion of the bedload rate |qb| in the spatial domain computed using the non-equilibrium
model (15)–(17), with (top) ke = 0.06 and (bottom) ke = 0.015. As time increases, the actual
solid rate adapts progressively to the capacity rate. Nevertheless, sudden spatial changes
of the local flow features, as occurs at x = 20 m and x = 70 m, need a length for the actual
transport rate to adapt to the transport capacity value even with t → ∞. Comparing the
adaptation of the beload rate to the flow carry capacity with (top) ke = 0.06 and (bottom)
ke = 0.015, it is worth noting that the temporal and spatial delay of the non-equilibrium
solid discharge respect to the corresponding equilibrium state increases as the entrainment
constant ke decreases.
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Figure 3. Bedload transport rate evolution for the generalised non-equilibrium model with
(top) ke = 0.06 and (bottom) ke = 0.015.

Furthermore, the net exchange flux through the static-moving bed layers interface can
be expressed as Nexch = η̇d − η̇e (22). Previous non-equilibrium (non-capacity) bedload
models [12,20,35,36] assumed a spatial length Lb for the adaptation of the actual bedload
solid rate to its equilibrium state and estimate the net exchange vertical flux as

Nexch =
1

1− ξ

|qb| − |q∗b|
Lb

(27)

where Lb is a constant parameter which needs to be calibrated for each case. Comparison of
method (27) to determine the entrainment/deposition flux Nexch with the method proposed
in this work (Nexch = η̇d − η̇e) demonstrates that the current model leads to a dynamic
adaptation length Lb which depends on the local flow features and scales following

Lb ∝

√
θ

ke
ds (28)

According to (28), higher boundary Shields stresses θ are associated longer distances
for the adaptation of the actual bedload discharge to its equilibrium state (see Figure 3).
Contrarily, the lower the entrainment parameter ke, the larger the dynamic adaptation
length. Therefore, high Shields stresses θ and low entrainment factors ke enhance non-
equilibrium bedload transport states, i.e., highly erosive flow features lead to larger adapta-
tion lengths. Instead, most of the previous models assume a global constant value based on
the dominant bed form [36].

To analyse the influence of the Shields stress on the dynamic adaptation of actual non-
equilibrium bedload rate to the equilibrium state, we use the above case but setting a entrain-
ment constant ke = 0.025 and increasing flow discharges h|u|(t, x, y) = [1, 2, 3, 4]m2s−1.
For t = 0 s the flow is uniform, with h = 1 m along the whole spatial domain regardless of
the discharge, whereas for t > 0 s a steady step in the flow features is set between 20 m
≤ x ≤ 70 m so that |q∗b| = 2|q∗b|t=0 regardless of the flow discharge. The shear stress at the
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bed surface, hence the Shields stress θ, increases progressively with the flow discharge as
θ = [1.18, 4.71, 10.6, 18.9] respectively. Figure 4 shows the non-equilibrium bedload rate
|qb| for t = 100 s, normalised by the initial uniform equilibrium value |q∗b|t=0, along the
whole spatial domain. As the Shields stress at the bed surface increases, the adaptation
length increases and enhances the non-capacity state in the bedload transport.

Figure 4. Normalised bedload transport rate for the generalised non-equilibrium model with increas-
ing Shields stresses θ.

4.2. Dike Breaking by Overtopping Flow Erosion

This experimental test case was carried out by Tingsanchali and Chinnarasri [3]
in a 35 m long 1 m wide straight rectangular cross-section flume. In the middle of the
flume, a trapezoidal dyke was constructed with a non-cohesive sand of medium diameter
ds = 0.86 mm, solid particle density ρs = 2650 kg/m3 and associated bulk porosity ξ = 0.34.
The dyke height over the flume floor was 0.80 m and the crest width was 0.30 m, whereas
the upward slope Su and downward slope Sd depends on the laboratory case. The initial
water surface elevation was 0.83 m over the flume floor upstream the dyke. During each
experimental case, a constant inlet discharge qinlet was set at the flume upstream section. In
the original work [3], the temporal evolution of the flow discharge at the dyke crest section
and the upstream reservoir level were reported during the whole experiment. Temporal
bed elevation data were also provided at probes P1 = 15 cm, P2 = 65 cm and P3 = 115 cm
downstream the upward vertex of the dyke crest.

For this case, simulations have been performed using a single-row mesh of 3500 rectan-
gular cells with ∆x = 0.01 m and ∆y = 1 m. The Manning’s roughness coefficient used has
been n = 0.010 for the flume floor and n = 0.015 for the sediment material. The CFL = 0.50
was set for a full simulated period of 140 s. The Smart formula (Table 1) has been used to
compute the bedload transport rate whereas the collapse mechanism has been neglected in
this case. Two different benchmarking experiments, C1 and C2, have been used to study the
capabilities of both the equilibrium and the non-equilibrium approaches (see Table 2).

Table 2. Setup for benchmarking cases C1 and C2.

Case Su Sd qinlet (L/s) ke kd

C1 1V:3H 1V:5H 1.05 0.24 0.012
C2 1V:3H 1V:3H 1.23 0.34 0.017

The left column in Figure 5 shows the computed dam profile evolution for both
benchmarking tests C1 and C2, considering the equilibrium and non-equilibrium bedload
transport assumption, whereas the right column depicts the temporal evolution of the dam
level at probes P1, P2 and P3. The black lines show the available experimental data for
each test. Analysing the results obtained in both cases C1 and C2, the assumption of non-
equilibrium bedload transport leads to a delay on the erosive process in the dam region and
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hence the change on the bed level is reduced for early stages after the flow starts. However,
as the dam erosion progresses, the non-equilibrium bedload transport tends to approach to
the equilibrium state and the dam profile level predicted by the non-equilibrium model
converges to that obtained by the equilibrium model. It is worth noting that, in case C2, a
marked scouring is observed in the experiments just downstream of the dam crest at time
t = 60 s. This scouring was caused likely by 3D behaviour of the flow at the upstream
region of the eroded dam. The proposed depth-averaged bedload model is not able to
capture the appearance and development of this feature in the bed profile, regardless of the
equilibrium or the non-equilibrium approach is selected, due to its 3D nature.

Figure 5. Dam profile evolution for (top row) case C1 and (bottom row) case C2 with equilibrium
and non-equilibrium approaches: (left) dam profile at different times and (right) bed level evolution
at P1, P2 and P3.

Table 3 shows the Root Mean Square Error (RMSE) of the computed results with both
the equilibrium and non-equilibrium models respect to the measured bed level evolution at
P1, P2 and P3 in case C1 (available experimental data). Also, for case C2, the RMSE of the
computed bed profiles at times t = 30 s and t = 60 s respect to the dam profiles measured
in the laboratory for the same times are shown in Table 3. Generally, the computed dam
level changes with the non-equilibrium approach show a much better agreement with the
measured data than those obtained assuming the equilibrium restriction.

Table 3. RMSE for dam level evolution data in benchmarking cases C1 and C2.

Data Series Equil. No-Equil.

C1—Bed level in P1 0.057 m 0.023 m
C1—Bed level in P2 0.053 m 0.022 m
C1—Bed level in P3 0.033 m 0.020 m

C2—Bed level profile at t = 30 s 0.112 m 0.061 m
C2—Bed level profile at t = 60 s 0.029 m 0.039 m

In order to get insight into the non-equilibrium bedload behaviour, the temporal
evolution of the thickness of the transport layer η at probes P1, P2 and P3, normalised by the
corresponding equilibrium value η∗ computed from the instantaneous local hydrodynamic
features using (8), is depicted in Figure 6 for cases C1 and C2. During the early stages
after the overtopping flow starts, non-equilibrium states in the bedload transport layer
occur all along the downward dam slope. The closer the dyke crest, the more enhanced
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is the non-equilibrium state of bedload transport and hence the normalised value η/η∗

generally shows lower values at P1 location than that at probes P2 and P3 during the first
flow stages. Then, as the dam erosion progresses, the thickness of the transport layer tends
progressively to the equilibrium value (η/η∗ ≈ 1) all along the dyke downward side.

Figure 6. Temporal evolution of the transport layer thickness at P1, P2 and P3: (left) case C1 and
(right) case C2.

The temporal evolution of the computed and measured discharge at the dyke crest
and the water surface level at the the upstream reservoir have been plotted in Figure 7
for cases C1 and case C2. Also the Root Mean Square Error (RMSE) of the computed data
with respect to the available measured data have been reported in Table 4 considering both
equilibrium and non-equilibrium approaches. Considering non-equilibrium conditions for
the bedload transport improves clearly the general agreement between the computed and
measured evolution of the crest discharge and reservoir level in both benchmarking cases.

Figure 7. Computed and measured temporal evolution of (left column) the discharge at the dyke
crest and (right column) the upstream reservoir water surface level: (top row) case C1 and (bottom
row) case C2.

Table 4. RMSE for the crest discharge and reservoir level data in benchmarking cases C1 and C2.

Data Series Equil. No-Equil.

C1—Dam discharge 10.94 L/s 3.10 L/s
C1—Reservoir level 0.055 m 0.019 m

C2—Dam discharge 45.02 L/s 11.76 L/s
C2—Reservoir level 0.116 m 0.034 m



Water 2023, 15, 3094 13 of 19

4.3. Breach Opening in Homogeneous Dam

This benchmark case aims to explore qualitatively the differences on the numerical
modelling of the dambreach opening process using both bedload equilibrium and non-
equilibrium approaches. Here we consider one of the experimental dambreach tests carried
out at the Laboratório Nacional de Engenharia Civil (LNEC), Lisbon, Portugal, as part
of the 6th Workshop on River and Sedimentation Hydrodynamics and Morphodynamics
(Online, 24–26 November 2021), supported by Experimental Methods and Instrumentation
Committee of the IAHR. The main results obtained during this laboratory campaign are
unpublished yet. The experimental data available for this work were provided to the
numerical modellers during the first blind stage and hence they are limited. Figure 8
shows a 3D sketch of the initial experimental setup. A homogeneous trapezoidal dam was
constructed at the end of a 6 m length 1.2 m width rectangular cross-section channel. The
dam was 0.45 m height, 1V:2H upward slope, 1V:2.5H downward slope, 2.20 m base length
and 0.17 m crest width. Downstream the dam, there exists a 3.6 m× 2.0 m× 0.55 m settling
basin, where the elevation of the free surface is zero relatively to the bottom of the upstream
reservoir (dam base).

Figure 8. 3D sketch of the experimental setup (initial condition) at the Laboratório Nacional de
Engenharia Civil (LNEC, Lisbon). Detail of the initial triangular notch at the dam crest.

The dam was composed of a non-cohesive silty sand with 25% of fines, solid density
2650 kg/m3, median diameter ds = 0.320 mm, relative compaction of 90% of the Standard
Proctor reference value, 10% optimal water content for compaction. At the centerline of
the dam crest, a triangular cross-section notch with 1V:1H side slopes and 1.5 cm deep
(see Figure 8) was carved to guide the dambreach process during the early flow stages.
Initially, the water level at the upstream reservoir was equal to the height of the model dam
(0.45 m) and the free surface at the downstream basin is at the dam toe elevation. Note
that the water at the downstream basin is spilt if the elevation is higher than the dam toe.
Once the flow started at the notch region and the breach opening process began, the water
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level at the upstream reservoir was maintained approximately constant by changing the
upstream inlet discharge. The maximum inlet discharge allowed in the upstream reservoir
is 0.030 m3/s. The test was conducted until the maximum discharge at the upstream
reservoir was attained. During the test, the temporal evolution of the inlet discharge at the
upstream reservoir was recorded using an electromagnetic flowmeter whereas the water
level was obtained from an acoustic probe following the free-surface.

This test has been simulated using an unstructured mesh of almost 16,500 triangular
cells, with 50 cm2 of base cell area and a progressively refined region at the dam and notch
zones of 0.5 cm2 minimum cell area. At the inlet section of the upstream reservoir, the
time series of inlet discharge recorded in the experiment has been imposed during the
simulation, whereas free outflow has been allowed at the outlet section at the downstream
basin. The Manning’s roughness coefficient n = 0.0125 has been used for the sediment
material in the Manning-Strickler relation n = 1/21d1/6

s . The porosity of the dam layer
has been estimated as ξ = 0.335 from the bulk weight of the compacted dam material
(90% of the Standard Proctor) and the entrainment and deposition constants have been
set to ke = 0.06 and kd = 0.003 respectively. The Smart formula (Table 1) has been used
to compute the bedload transport rate with the critical Shields stress for the incipient
motion θc = 0.047. The morphological mechanism plays a key role in this case to model the
breach opening due to the collapse of the lateral sides. Based on experimental qualitative
observations, a collapse bed slope angle δb = 75◦ has been set (see Section 3.2). CFL = 0.95
for a full simulated period of 4500 s.

Figures 9–12 show a 3D view of the dam topography and free water surface computed
with the non-equilibrium model at t = 1500 s, t = 2650 s, t = 3566 s and t = 4317 s
respectively. Also the thickness of the bedload transport layer and the flow velocity field
at the breach region are shown. The breach opens progressively, increasing its cross-
wise width due to the side wall collapse thanks to the collapse mechanism. A couple of
coherent vortices appear downstream the dam, as the flow through the breach goes into
the downward basin. The thickness of the transport layer increases progressively along the
breach, allowing that the mobilized material incorporated to the flow from the breach sides
can be transported downstream and reaches the settling basin.

Figure 9. Dambreach opening at t = 1500 s with non-equilibrium model: (left) 3D view of the
dam level and water surface; (right top) thickness of the bedload transport layer and (right bottom)
depth-averaged velocity field.
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Figure 10. Dambreach opening at t = 2650 s with non-equilibrium model: (left) 3D view of the
dam level and water surface; (right top) thickness of the bedload transport layer and (right bottom)
depth-averaged velocity field.

Figure 11. Dambreach opening at t = 3566 s with non-equilibrium model: (left) 3D view of the
dam level and water surface; (right top) thickness of the bedload transport layer and (right bottom)
depth-averaged velocity field.
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Figure 12. Dambreach opening at t = 4317 s with non-equilibrium model: (left) 3D view of the
dam level and water surface; (right top) thickness of the bedload transport layer and (right bottom)
depth-averaged velocity field.

Differences appears in the breach opening process depending on the equilibrium or
non-equilibrium approaches selected. Figure 13 depicts (left) the total breach discharge
and (right) the upstream reservoir level during the test computed with both equilibrium
and non-equilibrium models. The total water discharge at the breach crest cross-section
is almost similar using both approaches. Nevertheless, as the breach opens, the reservoir
level decreases more markedly with the equilibrium assumption than that using the non-
equilibrium model. Note that the experimental test was carried out maintaining an almost-
constant water level at the upstream reservoir (solid black line in Figure 13 right). Therefore,
the non-equilibrium model seems to approximate better the breach opening process than
the equilibrium approach.

Figure 13. Dambreach evolution with equilibrium and non-equilibrium approaches: (left) dam
discharge and (right) upstream reservoir level.

Finally, the left column of Figure 14 shows cross-section wetted-area at the dam crest
section whereas the right column depicts the averaged flow velocity at the same section.
Assuming non-equilibrium bedload transport leads to a slower flow velocity during the
early stages of the breach opening and a higher wetted area along the breach region. This
hydrodynamic combination reduces the erosive capability of the flow at this region and
delays the breach opening process.
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Figure 14. Dambreach evolution with equilibrium and non-equilibrium approaches: (left) cross-
section wetted-area of the breach and (right) averaged flow velocity at the dam crest section.

5. Conclusions

In this work, a recently developed 2D generalized bedload transport model [30], able
to account for equilibrium and non-equilibrium transport conditions, is applied to study the
dam breach and dyke erosion processes. This generalized model is based on the grain-scale
analysis of the net exchange flux through the static-moving bed layers interface and provide
new expressions for the erosion and deposition rates η̇e and η̇d, respectively. The proposed
bedload transport model is supported by a generalized Grass-type formula for the non-
equilibrium 2D bedload rate qb as a function of the transport layer thickness η, which
must be solved depending on equilibrium or non-equilibrium approach is considered. The
2D morpho-dynamical system of flow-bed conservation equations is solved using and
fully-coupled augmented Roe solver [34] whereas the bedload transport layer equation is
solved using an upwind scheme. Furthermore, the maximum bed slope is limited using
an efficient non-iterative morphological collapse mechanism, which imposes geometrical
restrictions on each cell edge.

The proposed model has been benchmarked against dyke erosion and dambreach
opening laboratory experiments, involving highly unsteady flows. The non-equilibrium
model is able to predict the measured data in all the cases tested, improving the results
obtained with the classical equilibrium approach. Furthermore, the effects of the entrain-
ment and deposition constants, ke and kd respectively, have also been analysed. When
non-equilibrium model is applied, the adaptation of the actual bedload solid rate to the
flow carry capacity becomes non-instantaneous and the appearance of bed changes is
delayed in time and space. The temporal and spatial delay of the non-equilibrium bedload
rate respect to the corresponding flow carry capacity increases as the entrainment constant
ke decreases. Moreover, as the local Shield stress θ exerted by the flow in the bedload
transport layer grows, the equivalent dynamic adaptation length Lb is increased and hence
the non-equilibrium states are promoted (see Section 4.1).

In general, considering the unsteady dambreach flow configuration, better predictions
of the breach opening mechanism can be obtained using the non-equilibrium approach
for the bedload transport rate with moderate values of the exchange entrainment and
deposition parameters respect those obtained using the equilibrium model. Numerical
results seems to support that considering non-equilibrium conditions for the bedload
transport improves the general agreement between the computed results and measured
data for overtopping dyke erosion and dambreach opening cases, delaying the breach
opening process. However, the non-equilibrium approach requires a careful calibration of
the exchange parameters in regions with complex transient processes.
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