000127961 001__ 127961 000127961 005__ 20241125101149.0 000127961 0247_ $$2doi$$a10.1103/PhysRevB.108.024425 000127961 0248_ $$2sideral$$a135122 000127961 037__ $$aART-2023-135122 000127961 041__ $$aeng 000127961 100__ $$0(orcid)0000-0002-8173-1846$$aLaliena, V.$$uUniversidad de Zaragoza 000127961 245__ $$aContinuum of metastable conical states of monoaxial chiral helimagnets 000127961 260__ $$c2023 000127961 5060_ $$aAccess copy available to the general public$$fUnrestricted 000127961 5203_ $$aAt low temperature and zero applied magnetic field, besides the equilibrium helical state, monoaxial chiral helimagnets have a continuum of helical states differing by the wave number of the modulation. The wave number of these states in units of the equilibrium state wave number is denoted here by p, and accordingly the corresponding states are called the p states. In this work we study in detail the metastability of the p states. The application of an external magnetic field in the direction of the chiral axis has a double effect: On the one hand, it introduces a conical deformation of the p states, and, on the other hand, it destabilizes some of them, shrinking the range of p in which the p states are metastable. If a polarized current is applied along the chiral axis, then the p states reach a steady moving state with a constant velocity proportional to the current intensity. Besides this dynamical effect, the polarized current also induces a conical deformation and reduces the range of stability of the p states. The stability diagram in the plane applied field–applied current intensity has interesting features that, among other things, permits the manipulation of p states by a combination of applied fields and currents. These features can be exploited to devise processes to switch between p states. In particular there are p states with negative p, opening the possibility to helicity switching. The theoretical feasibility of such processes, crucial from the point of view of applications, is shown by micromagnetic simulations. Analogous p states exists in cubic chiral helimagnets and therefore similar effects are expected in those systems. 000127961 536__ $$9info:eu-repo/grantAgreement/ES/DGA/M4$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2022-138492NB-I00-XM4 000127961 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000127961 590__ $$a3.2$$b2023 000127961 592__ $$a1.345$$b2023 000127961 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 439 = 0.458$$c2023$$dQ2$$eT2 000127961 591__ $$aPHYSICS, CONDENSED MATTER$$b31 / 79 = 0.392$$c2023$$dQ2$$eT2 000127961 591__ $$aPHYSICS, APPLIED$$b62 / 179 = 0.346$$c2023$$dQ2$$eT2 000127961 593__ $$aCondensed Matter Physics$$c2023$$dQ1 000127961 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1 000127961 594__ $$a6.3$$b2023 000127961 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000127961 700__ $$aOsorio, S. A. 000127961 700__ $$aBazo, D. 000127961 700__ $$aBustingorry, S. 000127961 700__ $$0(orcid)0000-0002-3600-1721$$aCampo, J. 000127961 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000127961 773__ $$g108, 2 (2023), 024425 [12 pp.]$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950 000127961 8564_ $$s4004073$$uhttps://zaguan.unizar.es/record/127961/files/texto_completo.pdf$$yPostprint 000127961 8564_ $$s3295562$$uhttps://zaguan.unizar.es/record/127961/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000127961 909CO $$ooai:zaguan.unizar.es:127961$$particulos$$pdriver 000127961 951__ $$a2024-11-22-12:05:57 000127961 980__ $$aARTICLE