000127961 001__ 127961
000127961 005__ 20241125101149.0
000127961 0247_ $$2doi$$a10.1103/PhysRevB.108.024425
000127961 0248_ $$2sideral$$a135122
000127961 037__ $$aART-2023-135122
000127961 041__ $$aeng
000127961 100__ $$0(orcid)0000-0002-8173-1846$$aLaliena, V.$$uUniversidad de Zaragoza
000127961 245__ $$aContinuum of metastable conical states of monoaxial chiral helimagnets
000127961 260__ $$c2023
000127961 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127961 5203_ $$aAt low temperature and zero applied magnetic field, besides the equilibrium helical state, monoaxial chiral helimagnets have a continuum of helical states differing by the wave number of the modulation. The wave number of these states in units of the equilibrium state wave number is denoted here by p, and accordingly the corresponding states are called the p states. In this work we study in detail the metastability of the p states. The application of an external magnetic field in the direction of the chiral axis has a double effect: On the one hand, it introduces a conical deformation of the p states, and, on the other hand, it destabilizes some of them, shrinking the range of p in which the p states are metastable. If a polarized current is applied along the chiral
axis, then the p states reach a steady moving state with a constant velocity proportional to the current intensity. Besides this dynamical effect, the polarized current also induces a conical deformation and reduces the range of stability of the p states. The stability diagram in the plane applied field–applied current intensity has interesting
features that, among other things, permits the manipulation of p states by a combination of applied fields and currents. These features can be exploited to devise processes to switch between p states. In particular there are p states with negative p, opening the possibility to helicity switching. The theoretical feasibility of such processes, crucial from the point of view of applications, is shown by micromagnetic simulations. Analogous p states exists in cubic chiral helimagnets and therefore similar effects are expected in those systems.
000127961 536__ $$9info:eu-repo/grantAgreement/ES/DGA/M4$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2022-138492NB-I00-XM4
000127961 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000127961 590__ $$a3.2$$b2023
000127961 592__ $$a1.345$$b2023
000127961 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 439 = 0.458$$c2023$$dQ2$$eT2
000127961 591__ $$aPHYSICS, CONDENSED MATTER$$b31 / 79 = 0.392$$c2023$$dQ2$$eT2
000127961 591__ $$aPHYSICS, APPLIED$$b62 / 179 = 0.346$$c2023$$dQ2$$eT2
000127961 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000127961 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1
000127961 594__ $$a6.3$$b2023
000127961 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000127961 700__ $$aOsorio, S. A.
000127961 700__ $$aBazo, D.
000127961 700__ $$aBustingorry, S.
000127961 700__ $$0(orcid)0000-0002-3600-1721$$aCampo, J.
000127961 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000127961 773__ $$g108, 2 (2023), 024425 [12 pp.]$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950
000127961 8564_ $$s4004073$$uhttps://zaguan.unizar.es/record/127961/files/texto_completo.pdf$$yPostprint
000127961 8564_ $$s3295562$$uhttps://zaguan.unizar.es/record/127961/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000127961 909CO $$ooai:zaguan.unizar.es:127961$$particulos$$pdriver
000127961 951__ $$a2024-11-22-12:05:57
000127961 980__ $$aARTICLE