Internet of Things (IoT) in Buildings: A Learning Factory

Cano-Suñén, Enrique (Universidad de Zaragoza) ; Martínez, Ignacio (Universidad de Zaragoza) ; Fernández, Ángel (Universidad de Zaragoza) ; Zalba, Belén (Universidad de Zaragoza) ; Casas, Roberto (Universidad de Zaragoza)
Internet of Things (IoT) in Buildings: A Learning Factory
Resumen: Advances towards smart ecosystems showcase Internet of Things (IoT) as a transversal strategy to improve energy efficiency in buildings, enhance their comfort and environmental conditions, and increase knowledge about building behavior, its relationships with users and the interconnections among themselves and the environmental and ecological context. EU estimates that 75% of the building stock is inefficient and more than 40 years old. Although many buildings have some type of system for regulating the indoor temperature, only a small subset provides integrated heating, ventilation, and air conditioning (HVAC) systems. Within that subset, only a small percentage includes smart sensors, and only a slight portion of that percentage integrates those sensors into IoT ecosystems. This work pursues two objectives. The first is to understand the built environment as a set of interconnected systems constituting a complex framework in which IoT ecosystems are key enabling technologies for improving energy efficiency and indoor air quality (IAQ) by filling the gap between theoretical simulations and real measurements. The second is to understand IoT ecosystems as cost-effective solutions for acquiring data through connected sensors, analyzing information in real time, and building knowledge to make data-driven decisions. The dataset is publicly available for third-party use to assist the scientific community in its research studies. This paper details the functional scheme of the IoT ecosystem following a three-level methodology for (1) identifying buildings (with regard to their use patterns, thermal variation, geographical orientation, etc.) to analyze their performance; (2) selecting representative spaces (according to their location, orientation, use, size, occupancy, etc.) to monitor their behavior; and (3) deploying and configuring an infrastructure with +200 geolocated wireless sensors in +100 representative spaces, collecting a dataset of +10,000 measurements every hour. The results obtained through real installations with IoT as a learning factory include several learned lessons about building complexity, energy consumption, costs, savings, IAQ and health improvement. A proof of concept of building performance prediction based on neural networks (applied to CO2 and temperature) is proposed. This first learning shows that IAQ measurements meet recommended levels around 90% of the time and that an IoT-managed HVAC system can achieve energy-consumption savings of between 10 and 15%. In summary, in a real context involving economic restrictions, complexity, high energy costs, social vulnerability, and climate change, IoT-based strategies, as proposed in this work, offer a modular and interoperable approach, moving towards smart communities (buildings, cities, regions, etc.) by improving energy efficiency and environmental quality (indoor and outdoor) at low cost, with quick implementation, and low impact on users. Great challenges remain for growth and interconnection in IoT use, especially challenges posed by climate change and sustainability.
Idioma: Inglés
DOI: 10.3390/su151612219
Año: 2023
Publicado en: Sustainability (Switzerland) 15, 16 (2023), 12219
ISSN: 2071-1050

Factor impacto JCR: 3.3 (2023)
Categ. JCR: ENVIRONMENTAL SCIENCES rank: 159 / 358 = 0.444 (2023) - Q2 - T2
Categ. JCR: ENVIRONMENTAL STUDIES rank: 66 / 182 = 0.363 (2023) - Q2 - T2
Categ. JCR: GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY rank: 58 / 91 = 0.637 (2023) - Q3 - T2
Categ. JCR: GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY rank: 58 / 91 = 0.637 (2023) - Q3 - T2

Factor impacto CITESCORE: 6.8 - Computer Networks and Communications (Q1) - Management, Monitoring, Policy and Law (Q1) - Computer Science (miscellaneous) (Q1) - Environmental Science (miscellaneous) (Q1) - Geography, Planning and Development (Q1) - Renewable Energy, Sustainability and the Environment (Q2) - Energy Engineering and Power Technology (Q2) - Hardware and Architecture (Q2)

Factor impacto SCIMAGO: 0.672 - Geography, Planning and Development (Q1) - Energy Engineering and Power Technology (Q2) - Environmental Science (miscellaneous) (Q2) - Renewable Energy, Sustainability and the Environment (Q2) - Hardware and Architecture (Q2) - Management, Monitoring, Policy and Law (Q2) - Computer Networks and Communications (Q2)

Financiación: info:eu-repo/grantAgreement/ES/UZ/EQUZ-2022-TEC-11
Financiación: info:eu-repo/grantAgreement/ES/UZ/SGI-171481
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Construc. Arquitectónicas (Dpto. Arquitectura)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): Área Ingeniería Mecánica (Dpto. Ingeniería Mecánica)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)
Área (Departamento): Área Ingeniería Telemática (Dpto. Ingeniería Electrón.Com.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-10:04:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-10-23, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)