000128020 001__ 128020
000128020 005__ 20250619084224.0
000128020 0247_ $$2doi$$a10.1073/pnas.2305001120
000128020 0248_ $$2sideral$$a135165
000128020 037__ $$aART-2023-135165
000128020 041__ $$aeng
000128020 100__ $$aEstrada, Ernesto
000128020 245__ $$aNetwork bypasses sustain complexity
000128020 260__ $$c2023
000128020 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128020 5203_ $$aReal-world networks are neither regular nor random, a fact elegantly explained by mechanisms such as the Watts–Strogatz or the Barabási-Albert models, among others. Both mechanisms naturally create shortcuts and hubs, which while enhancing the network’s connectivity, also might yield several undesired navigational effects: They tend to be overused during geodesic navigational processes—making the networks fragile—and provide suboptimal routes for diffusive-like navigation. Why, then, networks with complex topologies are ubiquitous? Here, we unveil that these models also entropically generate network bypasses: alternative routes to shortest paths which are topologically longer but easier to navigate. We develop a mathematical theory that elucidates the emergence and consolidation of network bypasses and measure their navigability gain. We apply our theory to a wide range of real-world networks and find that they sustain complexity by different amounts of network bypasses. At the top of this complexity ranking we found the human brain, which points out the importance of these results to understand the plasticity of complex systems.
000128020 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-23R-FENOL$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-107603GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2021-001164-M$$9info:eu-repo/grantAgreement/ES/MCINN/EUR2021-122067$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113582GB-I00$$9info:eu-repo/grantAgreement/ES/MCINN/PID2020-114324GB-C22
000128020 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000128020 590__ $$a9.4$$b2023
000128020 592__ $$a3.737$$b2023
000128020 591__ $$aMULTIDISCIPLINARY SCIENCES$$b13 / 134 = 0.097$$c2023$$dQ1$$eT1
000128020 593__ $$aMultidisciplinary$$c2023$$dQ1
000128020 594__ $$a19.0$$b2023
000128020 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128020 700__ $$0(orcid)0000-0001-5204-1937$$aGómez-Gardeñes, Jesús$$uUniversidad de Zaragoza
000128020 700__ $$aLacasa, Lucas
000128020 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000128020 773__ $$g120, 31 (2023), 2305001120 [10 pp.]$$pProc. Natl. Acad. Sci.$$tProceedings of the National Academy of Sciences of the United States of America$$x0027-8424
000128020 8564_ $$s12400286$$uhttps://zaguan.unizar.es/record/128020/files/texto_completo.pdf$$yVersión publicada
000128020 8564_ $$s3577369$$uhttps://zaguan.unizar.es/record/128020/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128020 909CO $$ooai:zaguan.unizar.es:128020$$particulos$$pdriver
000128020 951__ $$a2025-06-19-08:41:29
000128020 980__ $$aARTICLE