000128023 001__ 128023
000128023 005__ 20240705134158.0
000128023 0247_ $$2doi$$a10.1063/5.0146000
000128023 0248_ $$2sideral$$a135160
000128023 037__ $$aART-2023-135160
000128023 041__ $$aeng
000128023 100__ $$0(orcid)0000-0003-2237-8859$$aJuste-Lanas, Yago$$uUniversidad de Zaragoza
000128023 245__ $$aFluid flow to mimic organ function in 3D in vitro models
000128023 260__ $$c2023
000128023 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128023 5203_ $$aMany different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
000128023 536__ $$9info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742684-CADENCE$$9info:eu-repo/grantAgreement/ES/MCIU/FPU17-03867$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122409OB-C21$$9info:eu-repo/grantAgreement/ES/NextGenerationEU/MZ-240621
000128023 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000128023 592__ $$a1.119$$b2023
000128023 593__ $$aBioengineering$$c2023$$dQ1
000128023 593__ $$aBiophysics$$c2023$$dQ1
000128023 593__ $$aBiomedical Engineering$$c2023$$dQ1
000128023 593__ $$aBiomaterials$$c2023$$dQ1
000128023 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128023 700__ $$0(orcid)0000-0001-8324-5596$$aHervás-Raluy, Silvia$$uUniversidad de Zaragoza
000128023 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, José Manuel$$uUniversidad de Zaragoza
000128023 700__ $$aGonzález-Loyola, Alejandra$$uUniversidad de Zaragoza
000128023 7102_ $$11002$$2050$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Biología Celular
000128023 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000128023 773__ $$g7, 3 (2023), 031501 [24 pp.]$$tAPL Bioengineering$$x2473-2877
000128023 8564_ $$s3043184$$uhttps://zaguan.unizar.es/record/128023/files/texto_completo.pdf$$yVersión publicada
000128023 8564_ $$s2744066$$uhttps://zaguan.unizar.es/record/128023/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128023 909CO $$ooai:zaguan.unizar.es:128023$$particulos$$pdriver
000128023 951__ $$a2024-07-05-12:50:20
000128023 980__ $$aARTICLE