000128029 001__ 128029
000128029 005__ 20241125101152.0
000128029 0247_ $$2doi$$a10.1007/s10915-023-02323-1
000128029 0248_ $$2sideral$$a135176
000128029 037__ $$aART-2023-135176
000128029 041__ $$aeng
000128029 100__ $$aDíaz, P.$$uUniversidad de Zaragoza
000128029 245__ $$aPolynomial Total Positivity and High Relative Accuracy Through Schur Polynomials
000128029 260__ $$c2023
000128029 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128029 5203_ $$aIn this paper, Schur polynomials are used to provide a bidiagonal decomposition of polynomial collocation matrices. The symmetry of Schur polynomials is exploited to analyze the total positivity on some unbounded intervals of a relevant class of polynomial bases. The proposed factorization is used to achieve relative errors of the order of the unit round-off when solving algebraic problems involving the collocation matrix of relevant polynomial bases, such as the Hermite basis. The numerical experimentation illustrates the accurate results obtained when using the findings of the paper.
000128029 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-096321-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
000128029 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000128029 590__ $$a2.8$$b2023
000128029 592__ $$a1.248$$b2023
000128029 591__ $$aMATHEMATICS, APPLIED$$b22 / 332 = 0.066$$c2023$$dQ1$$eT1
000128029 593__ $$aApplied Mathematics$$c2023$$dQ1
000128029 593__ $$aEngineering (miscellaneous)$$c2023$$dQ1
000128029 593__ $$aComputational Mathematics$$c2023$$dQ1
000128029 593__ $$aTheoretical Computer Science$$c2023$$dQ1
000128029 593__ $$aNumerical Analysis$$c2023$$dQ1
000128029 593__ $$aSoftware$$c2023$$dQ1
000128029 593__ $$aComputational Theory and Mathematics$$c2023$$dQ1
000128029 594__ $$a4.0$$b2023
000128029 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128029 700__ $$0(orcid)0000-0002-1101-6230$$aMainar, E.$$uUniversidad de Zaragoza
000128029 700__ $$0(orcid)0000-0001-9130-0794$$aRubio, B.$$uUniversidad de Zaragoza
000128029 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000128029 773__ $$g97, 10 (2023), [27 pp.]$$pJ. sci. comput.$$tJournal of Scientific Computing$$x0885-7474
000128029 8564_ $$s484749$$uhttps://zaguan.unizar.es/record/128029/files/texto_completo.pdf$$yVersión publicada
000128029 8564_ $$s1168759$$uhttps://zaguan.unizar.es/record/128029/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128029 909CO $$ooai:zaguan.unizar.es:128029$$particulos$$pdriver
000128029 951__ $$a2024-11-22-12:07:35
000128029 980__ $$aARTICLE