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Abstract
In this paper, Schur polynomials are used to provide a bidiagonal decomposition of polyno-
mial collocation matrices. The symmetry of Schur polynomials is exploited to analyze the
total positivity on some unbounded intervals of a relevant class of polynomial bases. The
proposed factorization is used to achieve relative errors of the order of the unit round-off when
solving algebraic problems involving the collocation matrix of relevant polynomial bases,
such as the Hermite basis. The numerical experimentation illustrates the accurate results
obtained when using the findings of the paper.

Keywords High relative accuracy · Bidiagonal decompositions · Schur functions ·
Orthogonal polynomials · Totally positive matrices

1 Introduction

Schur polynomials are homogeneous symmetric polynomials with integer coefficients that
arise inmany different contexts. They are indexed by partitions and generalize the class of ele-
mentary symmetric and complete homogeneous symmetric polynomials. In fact, the degree
k Schur polynomials in j variables form a linear basis for the space of homogeneous degree k
symmetric polynomials in j variables. When defined by Jacobi’s bi-alternant formula, Schur
polynomials are expressed as a quotient of alternating polynomials, i.e. polynomials that
change sign under any transposition of the variables.
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Schur polynomials have been classically studied inCombinatorics andAlgebra. They have
been playing a relevant role in the study of symmetric functions, in Representation theory
and in Enumerative combinatorics (see [21] and the references therein). In recent years, they
have also been used in Computer Science for Quantum computation [11] and in Geometric
complexity theory [12].

A relevant topic in Numerical Linear Algebra is the design and analysis of procedures
to get accurate solutions of algebraic problems for totally positive matrices that is, matrices
whoseminors are all non-negative. In particular, many fundamental problems in interpolation
and approximation require linear algebra computations related to totally positive collocation
matrices. For example, thesematrices arisewhen imposing Lagrange interpolation conditions
on a given basis of a vector space of functions, at sequences of parameters in the domain.

Let us note that many problems related to interpolation, numerical quadrature or least
squares approximations can be formulated in terms of collocation matrices of a given basis.
For example, interesting problems motivated by the use of the moving least squares method
applied in the image analysis are adresed in [17]. On the other hand, let us recall that in the
interactive design of parametric curves and surfaces, shape preserving properties are closely
related to the total positivity of the collocation matrices of the considered bases.

Unfortunately, collocation matrices may become ill-conditioned as their dimensions
increase and then, standard routines implementing best traditional numerical methods do
not obtain accurate solutions when computing the eigenvalues, the singular values or the
inverse matrices. For this reason, it is very interesting to achieve computations to high rel-
ative accuracy (HRA computations) whose relative errors are of the order of the machine
precision. In the last years, HRA computations when considering collocation matrices of
different polynomial bases have been achieved (see [2, 3, 5, 7, 19]).

The total positivity of a givenmatrix can be characterized through the sign of the pivots and
multipliers of its Neville elimination. The HRA computation of these pivots and multipliers
provides a bidiagonal factorization for totally positive matrices, leading to HRA algorithms
for the resolution of the aforementioned algebraic problems (cf. [8–10]). As shown in Sect. 2,
the pivots and multipliers of the Neville elimination can be expressed as quotients of minors
with consecutive columns of the considered matrix. For collocation matrices of a given basis,
these minors are alternating functions of the domain parameters and then can be expressed
in terms of a basis of symmetric functions.

Theprevious observation is at the core of this paper andwe shall exploit itwhen considering
collocation matrices of polynomial bases. In this case, the preferred basis of symmetric
functions is formed by Schur polynomials with which the pivots and the multipliers are
naturally expressed.

HRA computations have been achieved for some polynomial collocation matrices by
considering the bidiagonal factorization of Vandermonde matrices and that of a change of
basis matrix between the considered and the monomial bases (see [2, 3, 19]). In contrast,
the explicit expression for the bidiagonal factorization of any polynomial collocation matrix
is deduced in this paper. Furthermore, the achieved formulae for the pivots and multipliers
in terms of Schur polynomials, together with some known properties of these symmetric
functions allow us to fully characterize the total positivity on unbounded intervals of rel-
evant polynomial bases, and achieve HRA computations when solving algebraic problems
involving their collocation matrices.

The layout of this paper is as follows. Section2 recalls basic aspects related to the total
positivity, HRA and Schur polynomials. In addition, the Neville elimination procedure is
also described. In Sect. 3, the pivots and multipliers of the Neville elimination of polyno-
mial collocation matrices are explicitly expressed in terms of Schur polynomials. Section4
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focuses on polynomial bases obtained by multiplying the monomial basis by a nonsingu-
lar lower triangular matrix. A necessary and sufficient condition for the total positivity of
these polynomial bases at nonbounded intervals with positive or negative parameters is also
obtained. Taking into account the results of this section, bidiagonal factorizations for colloca-
tionmatrices of well-known polynomial bases are provided in Sect. 5. Section6 illustrates the
accurate results obtained when solving algebraic computations with collocation matrices of
Hermite polynomials. To the best of the authors’ knowledge, such precise calculations have
not yet been achieved with Hermite matrices.. Finally, some conclusions and final remarks
are collected in Sect. 7.

2 Notations and Auxiliary Results

Given k, n ∈ N with k ≤ n, A = (ai, j )1≤i, j≤n , and increasing sequences α = {α1, . . . , αk},
β = {β1, . . . , βk} of positive integers less than or equal to n, A[α|β] denotes the k ×
k submatrix of A containing rows and columns of places α and β, respectively, that is,
A[α|β]:=(aαi ,β j )1≤i, j≤k .

Let (u0, . . . , un) be a basis of a given space U (I ) of functions defined on the real set I .
The collocation matrix at a sequence {ti }n+1

i=1 ⊂ I is

M = (
u j−1(ti )

)
1≤i, j≤n+1.

Wesay that (u0, . . . , un) is totally positive orTP (respectively, strictly totally positive or STP),
if for any t1 < · · · < tn+1 in I , the corresponding collocation matrix is TP (respectively,
STP), that is all its minors are nonnegative (respectively, positive).

2.1 High Relative Accuracy, Total Positivity and Neville Elimination

An important topic in Numerical Linear Algebra is the design and analysis of algorithms
adapted to the structure of TP matrices and allowing the resolution of related algebraic
problems, achieving relative errors of the order of the unit round-off (or machine precision),
that is, to high relative accuracy (HRA).

Algorithms avoiding inaccurate cancelations can be performed to HRA (see page 52 in
[4]). Then we say that they satisfy the non-inaccurate cancellation condition, namely NIC
condition, and they only compute multiplications, divisions, and additions of numbers with
the same sign. Moreover, if the floating-point arithmetic is well-implemented the subtraction
of initial data can also be allowed without losing HRA (see page 53 in [4]).

Nowadays, bidiagonal factorizations are very useful to achieve accurate algorithms for
performing computations with TP matrices. In fact, the parameterization of TP matrices
leading to HRA algorithms is provided by their bidiagonal factorization, which is in turn
very closely related to the Neville elimination (cf. [8–10]).

The essence of the Neville elimination is to obtain an upper triangular matrix from a given
A = (ai, j )1≤i, j≤n+1, by adding to each row an appropriate multiple of the previous one. In
particular, the Neville elimination of A consists of nmajor steps that definematrices A(1):=A
and A(r) = (a(r)

i, j )1≤i, j≤n+1, such that,

a(r)
i, j = 0, 1 ≤ j ≤ r − 1, j < i ≤ n + 1, (1)
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for r = 2, . . . , n + 1, so that A(n+1) is an upper triangular matrix. In more detail, A(r+1) is
computed from A(r) according to the following formula

a(r+1)
i, j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(r)
i, j , if 1 ≤ i ≤ r ,

a(r)
i, j − a(r)

i,r

a(r)
i−1,r

a(r)
i−1, j , if r + 1 ≤ i, j ≤ n + 1, and a(r)

i−1, j �= 0,

a(r)
i, j , if r + 1 ≤ i ≤ n + 1, and a(r)

i−1,r = 0.

(2)

The entry

pi, j :=a( j)
i, j , (3)

for 1 ≤ j ≤ i ≤ n + 1, is called the (i, j) pivot of the Neville elimination of A and pi,i the
i-th diagonal pivot. If all the pivots of the Neville elimination are nonzero, Lemma 2.6 of [8]
implies that

pi,1 = ai,1, i = 1, . . . , n, pi, j = det A[i − j + 1, . . . , i |1, . . . , j]
det A[i − j + 1, . . . , i − 1|1, . . . , j − 1] , (4)

for 1 < j ≤ i ≤ n. Furthermore, the value

mi, j :=
{
a( j)
i, j /a

( j)
i−1, j = pi, j/pi−1, j , if a( j)

i−1, j �= 0,

0, if a( j)
i−1, j = 0,

, (5)

for 1 ≤ j < i ≤ n + 1, is called the (i, j) multiplier.
The complete Neville elimination of the matrix A consists of performing its Neville

elimination to obtain the upper triangularmatrixU :=A(n+1) and next, theNeville elimination
of the lower triangular matrix UT . If the complete Neville elimination of the matrix A can
be performed with no row and column exchanges, the multipliers of the complete Neville
elimination of A are the multipliers of the Neville elimination of A (respectively, of AT ) if
i ≥ j (respectively, j ≥ i) (see [10]).

Neville elimination is a nice and efficient tool to analyze the total positivity of a given
matrix. This fact is shown in the following characterization, which can be derived from
Theorem 4.1, Corollary 5.5 of [8] and the arguments of p. 116 of [10].

Theorem 1 A given matrix A is STP (resp. nonsingular TP) if and only if its complete Neville
elimination can be performed without row and column exchanges, the multipliers of the
Neville elimination of A and AT are positive (resp. nonnegative), and the diagonal pivots of
the Neville elimination of A are positive.

Furthermore, a nonsingular TPmatrix A ∈ R
(n+1)×(n+1) admits a decomposition of the form

A = FnFn−1 · · · F1DG1G2 · · ·Gn, (6)

where Fi ∈ R
(n+1)×(n+1) (respectively, Gi ∈ R

(n+1)×(n+1)) is the TP, lower (respectively,
upper) triangular bidiagonal matrix given by

Fi =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1
. . .

1
mi+1,1 1

. . .
. . .

mn+1,n+1−i 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, GT
i =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1
. . .

1
m̃i+1,1 1

. . .
. . .

m̃n+1,n+1−i 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (7)
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and D ∈ R
(n+1)×(n+1) is the diagonal matrix whose diagonal elements are the diagonal

pivots, pi,i > 0, i = 1, . . . , n + 1, of the Neville elimination of A in (3) (see Theorem 4.2
and the arguments of p. 116 of [10]).

The entries mi, j , of the matrix Fi in (7) are the multipliers of the Neville elimination of
A. Furthermore, the entries m̃ j,i of the matrix Gi in (7) are the multipliers of the Neville
elimination of AT .

By defining BD(A) = (BD(A)i, j )1≤i, j≤n+1, with

BD(A)i, j :=

⎧
⎪⎨

⎪⎩

mi, j , if i > j,

pi,i , if i = j,

m̃ j,i , if i < j,

(8)

the decomposition (6) of a nonsingular TP matrix A can be stored (cf. [13]). If the entries of
BD(A) can be computed to HRA, using the algorithms raised in [14], problems such as the
computation of A−1, of the eigenvalues and singular values of A, as well as the resolution
of linear systems of equations Ax = b, for vectors b whose entries have alternating signs,
can be performed to HRA. One can find the implementation of those algorithms through the
link [16]. The name of the corresponding functions is TNInverseExpand (applying the
algorithm proposed in [20]), TNEigenValues, TNSingularValues, and TNSolve,
respectively. All these functions require the matrix BD(A) as the input argument.

2.2 Basic Properties of Schur Polynomials

Given a partition λ:=(λ1, λ2, . . . , λp) of size |λ|:=λ1 + · · · + λp and length l(λ):=p, such
that λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, the Jacobi’s definition of the corresponding Schur polynomial
in n + 1 variables is via the Weyl’s formula,

Sλ(t1, . . . , tn+1):= det

⎡

⎢⎢⎢⎢
⎣

tλ1+n
1 tλ1+n

2 . . . tλ1+n
n+1

tλ2+n−1
1 tλ2+n−1

2 . . . tλ2+n−1
n+1

...
...

. . .
...

tλn+1
1 tλn+1

2 . . . tλn+1
n+1

⎤

⎥⎥⎥⎥
⎦

/ det

⎡

⎢⎢⎢
⎣

1 1 . . . 1
t1 t2 . . . tn+1
...

...
. . .

...

tn1 tn2 . . . tnn+1

⎤

⎥⎥⎥
⎦

. (9)

Schur polynomials labeled by empty partitions are, by convention, S(0,...,0)(t1, . . . , tn+1):=1.
These polynomials are commonly denoted as S∅(t1, . . . , tn+1).

Schur polynomials are symmetric functions in their arguments. In addition, we now list
other well-known properties that will be used in this article (for more details, interested
readers are referred to [18]).

(i) Sλ(t1, . . . , tn+1) > 0 for positive values of ti , i = 1, . . . , n + 1.
(ii) Sλ(t1, . . . , tn+1) = 0 if l(λ) > n + 1.
(iii) Sλ(t1, . . . , tn+1) is an homogeneous function of degree |λ|, that is,

Sλ(α t1, α t2, . . . , α tn+1) = α|λ|Sλ(t1, t2, . . . , tn+1). (10)

(iv) As running over all the partitions of size |λ|, the corresponding Schur polynomials pro-
vide a basis for the space of symmetric homogeneous polynomials of degree |λ|. When
considering all partitions, Schur polynomials provide a basis of symmetric functions.
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As an alternative to Weyl’s formula (9), Schur polynomials can also be expressed in terms
of monomials as follows

Sλ(t1, . . . , tn+1) =
∑

μ

Kλ,μ tμ1
1 · · · tμn+1

n+1 , (11)

where μ = (μ1, . . . , μn+1) is a weak composition of |λ| and Kλ,μ are non-negative integers
depending on the integer partitionsλ andμ. The numbers Kλ,μ are calledKostka numbers and
can be combinatorially calculated by counting the semistandard Young Tableaux (SSYT) that
can be constructed with shape λ and weight μ. An important simple property is that Kostka
numbers Kλ,μ do not depend on the order of the entries of μ (cf. [21]).

Apart from the general properties abovementioned, there are some specific facts involving
Schur polynomials that will be needed in this paper. Taking into account the way that SSYT
are defined, the following basic properties can be deduced:

Kλ,λ = 1, (12)

∂k Sλ

∂tkr
(t1, . . . , tn+1) = 0, if k > λ1. (13)

On the other hand, for a general partition λ and k = k1 + · · · + kn+1, the one variable
polynomial

∂k Sλ

∂tk11 · · · ∂tkn+1
n+1

(t, . . . , t), (14)

is either 0, or its degree is |λ| − k.
Finally, let us observe that for any rectangular partition λ:=(�, . . . , �), with l(λ) = j ,

Sλ(t1, . . . , t j ) = t�1 · · · t�j , j ∈ N. (15)

The simplicity of this Schur polynomial, which contains a single monomial term, lies in
the fact that the number of rows of the corresponding partition coincides with the number
of variables of the polynomial. In this case, it is easy to see that there is only one SSYT
available, namely the one that satisfies (12).

Finally, let us observe that Algorithm 5.2 of [6] evaluates Schur polynomials at positive
parameters to HRA

3 The Factorization of CollocationMatrices of Polynomial Bases in
Terms of Schur Functions

Let (p0, . . . , pn) be a basis of the space Pn(I ) of polynomials of degree not greater than n
defined on I , described by

pi−1(t) =
n+1∑

j=1

ai, j t
j−1, t ∈ I , i = 1, . . . , n + 1. (16)

For a given sequence of parameters {ti }n+1
i=1 on I , the following result provides the multipliers

and the diagonal pivots of the Neville elimination of the collocation matrix

Mp:=
(
p j−1(ti )

)
1≤i, j≤n+1, (17)
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in terms of Schur polynomials and minors of the change of basis matrix A:=(ai, j )1≤i, j≤n+1,
such that

(p0, p1, . . . , pn)
T = A(m0,m1, . . . ,mn)

T , (18)

with mi (t):=t i , i = 0, . . . , n.

Theorem 2 Let (p0, . . . , pn) be a basis of Pn(I ) and A be the matrix satisfying (18). Given
{ti }n+1

i=1 on I , the diagonal pivots (4) and the multipliers (5) of the Neville elimination of the
matrix Mp ∈ R

(n+1)×(n+1) in (17) are given by

p1,1 = a1,1, pi,i = Qi,i

Qi−1,i−1

∏

1<k<i

ti − tk , 1 < i ≤ n + 1, (19)

mi,1 = 1, mi, j = Qi, j Qi−2, j−1

Qi−1, j Qi−1, j−1

∏

i− j+1≤k<i
ti − tk

∏

i− j≤k<i−1
ti−1 − tk

, 1 < j < i ≤ n + 1, (20)

m̃i,1 =

∑

l1

ai,l1 S(l1−1)(t1)

∑

l1

ai−1,l1 S(l1−1)(t1)
= pn(t1)

pn−1(t1)
, m̃i, j = Q̃i, j Q̃i−2, j−1

Q̃i−1, j Q̃i−1, j−1
, 1 < j < i ≤ n + 1,

(21)

with

Qi, j :=
∑

l1<···<l j

det A[1, . . . , j | l1, . . . , l j ]S(l j− j,...,l1−1)(ti− j+1, . . . , ti ), (22)

Q̃i, j :=
∑

l1<···<l j

det A[i − j + 1, . . . , i | l1, . . . , l j ]S(l j− j,...,l1−1)(t1, . . . , t j ). (23)

The sums in (20) and (21) are taken over all strictly increasing sequences l1 < · · · < l j with
lr = 1, . . . , n + 1, r = 1, . . . , j .

Proof Using (4), the computation of theminors ofMp ∈ R
(n+1)×(n+1) with consecutive rows

and initial consecutive columns will allow us to determine the corresponding pivots pi, j and
multipliers mi, j , 1 ≤ j ≤ i ≤ n + 1. Taking into account properties of determinants, we can
write

det Mp[i − j + 1, . . . , i | 1, . . . , j] =
∑

(l1,...,l j )

det

⎛

⎜⎜
⎝

a1,l1 t
l1−1
i− j+1 . . . a j,l j t

l j−1
i− j+1

...
. . .

...

a1,l1 t
l1−1
i . . . a j,l j t

l j−1
i

⎞

⎟⎟
⎠

=
∑

(l1,...,l j )

a1,l1 · · · a j,l j det

⎛

⎜⎜
⎝

t l1−1
i− j+1 . . . t

l j−1
i− j+1

...
. . .

...

t l1−1
i . . . t

l j−1
i

⎞

⎟⎟
⎠ ,

(24)

where the sums are taken over all j-tuples (l1, . . . , l j )with li = 1, . . . , n+1, for i = 1, . . . , j .
Let us notice that any j-tuple (l1, . . . , l j ) with a repeated integer will no contribute to the

sum since the corresponding determinant vanishes, as can be seen in (24). For this reason,
we will only consider (l1, . . . , l j )with different entries. Then, the sum (24) can be organized
by choosing permutations of the entries such that l1 < · · · < l j .
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Taking into account these considerations, we have

det Mp[i − j + 1, . . . , i | 1, . . . , j]

=
∑

l1<···<l j

∑

σ∈S j
a1,lσ(1) · · · a j,lσ( j) det

⎛

⎜
⎜
⎝

t
lσ(1)−1
i− j+1 . . . t

lσ( j)−1
i− j+1

...
. . .

...

t
lσ(1)−1
i . . . t

lσ( j)−1
i

⎞

⎟
⎟
⎠

=
∑

l1<···<l j

∑

σ∈S j
a1,lσ(1) · · · a j,lσ( j) det

⎛

⎜
⎜
⎝

t l1−1
i− j+1 . . . t

l j−1
i− j+1

...
. . .

...

t l1−1
i . . . t

l j−1
i

⎞

⎟
⎟
⎠ sgn(σ )

=
∑

l1<···<l j

det A[1, . . . , j | l1, . . . , l j ] det

⎛

⎜
⎜
⎝

t l1−1
i− j+1 . . . t

l j−1
i− j+1

...
. . .

...

t l1−1
i . . . t

l j−1
i

⎞

⎟
⎟
⎠ , (25)

where S j denotes the group of permutation of j elements. The function sgn(σ ) is the
totally antysymmetric irreducible representation of the permutation group Sn , which is 1-
dimensional and equals 1 if σ is an even permutation and −1 if σ is an odd permutation.
Recall that even (odd) permutations are the ones which can be written as a product of an even
(odd) number of tranpositions.

Now, from the definition of the Schur polynomials (see (9)), of Qi, j in (22), and (25), we
can write

det [i − j + 1, . . . , i | 1, . . . , j]
det Mj,ti− j+1,...,ti

= Qi, j ,

det Mp[i − j + 1, . . . , i − 1 | 1, . . . , j − 1]
det Mj−1,ti− j+1,...,ti

= Qi−1, j−1,

where Mn+1,t1,...,tn+1 :=
(
t i−1
j

)

1≤i, j≤n+1
. Taking into account that

det Mj,ti− j+1,...,ti

det Mj−1,ti− j+1,...,ti−1

=
∏

i− j+1<k<i

ti − tk,

we derive that the pivots pi, j of the Neville elimination satisfy

pi,1 = ai,1, pi, j = Qi, j

Qi−1, j−1

∏

i− j+1<k<i

ti − tk . (26)

Consequently, for i = j , identities (19) are deduced. Finally, using (5) and (26), the multi-
pliers mi, j , 1 ≤ j < i ≤ n + 1, can be written as in (20).

Now, let us derive identities (21) for m̃i j . Again, using properties of determinants, the
minors of MT

p with initial consecutive columns and consecutive rows can be written as
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follows

det MT
p [i − j + 1, . . . , i | 1, . . . , j] =

∑

(l1,...,l j )

det

⎛

⎜
⎜
⎝

ai− j+1,l1 t
l1−1
1 . . . ai− j+1,l1 t

l1−1
j

...
. . .

...

ai,l j t
l j−1
1 . . . ai,l j t

l j−1
j

⎞

⎟
⎟
⎠

=
∑

(l1,...,l j )

ai− j+1,l1 · · · ai,l j det

⎛

⎜
⎜
⎝

t l1−1
1 . . . t l1−1

j
...

. . .
...

t
l j−1
1 . . . t

l j−1
j

⎞

⎟
⎟
⎠ ,

(27)

where the previous sums are taken over all j-tuples (l1, . . . , l j ) with lr = 1, . . . , n + 1,
r = 1, . . . , j . So, we can write

det MT
p [i − j + 1, . . . , i | 1, . . . , j]

=
∑

l1<···<l j

∑

σ∈S j
ai− j+1,lσ(1) · · · ai,lσ( j) det

⎛

⎜
⎜
⎝

t
lσ(1)−1
1 . . . t

lσ(1)−1
j

...
. . .

...

t
lσ( j)−1
1 . . . t

lσ( j)−1
j

⎞

⎟
⎟
⎠

=
∑

l1<···<l j

∑

σ∈S j
ai− j+1,lσ(1) · · · ai,lσ( j) det

⎛

⎜⎜
⎝

t l1−1
1 . . . t l1−1

j
...

. . .
...

t
l j−1
1 . . . t

l j−1
j

⎞

⎟⎟
⎠ sgn(σ )

=
∑

l1<···<l j

det A[i − j + 1, . . . , i | l1, . . . , l j ] det

⎛

⎜⎜
⎝

t l1−1
1 . . . t l1−1

j
...

. . .
...

t
l j−1
1 . . . t

l j−1
j

⎞

⎟⎟
⎠ .

(28)

Now, taking into account (28), the definition (9) of the Schur polynomials and the definition
(23) of Q̃i, j , we deduce

det MT
p [i − j + 1, . . . , i | 1, . . . , j]

det Mj, t1,...,t j
= Q̃i, j .

Using the following identity,

det Mj,t1,...,t j

det Mj−1,t1,...,t j−1

=
∏

1≤k< j

t j − tk,

we derive

p̃i, j = Q̃i, j

Q̃i−1, j−1

∏

1≤k< j

t j − tk . (29)

Finally, using (29) and (5), the multipliers m̃i, j , 1 ≤ j < i ≤ n + 1, can be written as in
(21). �	

As a consequence of Theorem 2, the decomposition (6) of any collocation matrix of a
polynomial TP basis on can be expressed in terms of Schur polynomials.
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Corollary 1 Let I ⊆ R and (p0, . . . , pn) be a TP basis of Pn(I ). For any sequence of
parameters t1 < · · · < tn+1 on I , the collocation matrix Mp ∈ R

(n+1)×(n+1) in (17) admits
a factorization of the form (6) such that

Mp = FnFn−1 · · · F1DG1G2 · · ·Gn, (30)

where Fi (respectively, Gi ), i = 1, . . . , n, are the lower (respectively, upper) triangular
bidiagonal matrices described in (7) and D = diag

(
p1,1, p2,2, . . . , pn+1,n+1

)
. The diagonal

entries pi,i , 1 ≤ i ≤ n + 1, can be obtained from (19). The off-diagonal entries mi, j and
m̃i, j , 1 ≤ j < i ≤ n + 1, can be obtained from (20) and (21), respectively.

In addition, if I ⊆ (0,∞) and the minors providing mi, j and m̃i, j are positive, then
Mp ∈ R

(n+1)×(n+1) is STP.

Proof Since (p0, . . . , pn) is TP on I , the collocation matrix Mp ∈ R
(n+1)×(n+1) is nonsin-

gular and TP and, by Theorem 1, its complete Neville elimination can be performed without
row and columns exchanges. Moreover,mi, j ≥ 0, m̃i, j ≥ 0, 1 ≤ j < i ≤ n+1 and, by The-
orem 2, these values satisfy (20) and (21), respectively. In addition, pi,i > 0, 1 ≤ i ≤ n + 1,
and satisfy (19).

Since the Schur polynomials at positive parameters are positive, if I ⊆ (0,∞) and the
minors providing mi, j and m̃i, j are strictly positive, we can clearly guarantee mi, j > 0,
m̃i, j > 0 and, by Theorem 1, Mp ∈ R

(n+1)×(n+1) is STP. �	

4 On the Total Positivity of a Relevant Class of Polynomials

Many relevant bases of the polynomial space Pn(I ) are formed by polynomials q0, . . . , qn
such that deg qi = i , i = 0, . . . , n, and then

qi−1(t):=
i∑

j=1

bi, j t
j−1, i = 1, . . . , n + 1. (31)

The change of basis matrix B = (bi, j )1≤i, j≤n+1 such that

(q0, q1, . . . , qn)
T = B(m0,m1, . . . ,mn)

T , (32)

with mi (t):=t i , i = 0, . . . , n, is nonsingular lower triangular, that is,

bi, j = 0 if j > i, i = 1, . . . , n + 1. (33)

Taking into account the triangular structure of the matrix in (32), the following result
restates Theorem 2 for bases (31), providing the pivots and the multipliers of the Neville
elimination of their collocation matrices at nodes {ti }n+1

i=1 ,

Mq :=
(
q j−1(ti )

)
1≤i, j≤n+1. (34)

Theorem 3 Let (q0, . . . , qn) be a basis of Pn(I ) such that the matrix B satisfying (32) is
nonsingular lower triangular. Given {ti }n+1

i=1 on I , the diagonal pivots (4) and the multipliers
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(5) of the Neville elimination of the matrix Mq ∈ R
(n+1)×(n+1) in (34) are given by

p1,1 = b1,1, pi,i = bi,i
∏

1≤k<i

ti − tk , 1 < i ≤ n + 1. (35)

mi,1 = 1, mi, j =

∏

i− j+1≤k<i
ti − tk

∏

i− j≤k<i−1
ti−1 − tk

, 1 < j < i ≤ n + 1, (36)

m̃i,1 =

∑

l1

bi,l1 S(l1−1)(t1)

∑

l1

bi−1,l1 S(l1−1)(t1)
= qn(t1)

qn−1(t1)
, m̃i, j = Q̃i, j Q̃i−2, j−1

Q̃i−1, j Q̃i−1, j−1
, 1 < j < i ≤ n + 1,

(37)

with

Q̃i, j :=
∑

l1<···<l j

det B[i − j + 1, . . . , i | l1, . . . , l j ]S(l j− j,...,l1−1)(t1, . . . , t j ). (38)

The sum in (38) is taken over all increasing ascending sequences l1 < · · · < l j with
lr = 1, . . . , n + 1, r = 1, . . . , j .

Proof Since B is nonsingular lower triangular, the linear combinations Qi, j in (22) contain
a single term, namely, the corresponding to the sequence lr = r for r = 1, . . . , j . This
sequence corresponds to the Schur polynomial S∅ = 1. So, Qi, j = b1,1 · · · b j, j . Then,

Qi, j Qi−2, j−1

Qi−1, j Qi−1, j−1
= 1,

Qi,i

Qi−1,i−1
= bi,i , (39)

and the pivots and mutipliers given in (19) and (20) reduce to the expressions (35) and (36),
respectively. �	

The bidiagonal factorization (6), described by (35), (36) and (37) is now illustrated with a
simple example.The collocationmatrix of the polynomial basis ofP2 (b1,1, b2,1+b2,2t, b3,1+
b3,2t + b3,3t2) at a sequence of parameters {t1, t2, t3} can be decomposed as follows

Mq =
⎛

⎝
1 0 0
0 1 0
0 1 1

⎞

⎠

⎛

⎝
1 0 0
1 1 0
0 t3−t2

t2−t1
1

⎞

⎠

⎛

⎝
b1,1 0 0
0 b2,2(t2 − t1) 0
0 0 b3,3(t3 − t2)(t2 − t1)

⎞

⎠

⎛

⎝
1 m̃21 0
0 1 m̃32
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 m̃31
0 0 1

⎞

⎠ ,

where

m̃2,1 = b2,1S(0)(t1) + b2,2S(1)(t1)

b1,1S(0)(t1)
,

m̃3,1 = b3,1S(0)(t1) + b3,2S(1)(t1) + b3,3S(2)(t1)

b2,1S(0)(t1) + b2,2S(1)(t1)
,

m̃3,2 = b1,1S(0)(t1)Q̃3,2

det B[1, 2|1, 2]S(0,0)(t1, t2)(b2,1S(0)(t1) + b2,2S(1)(t1))
,

with

Q̃3,2 = det B[2, 3|1, 2]S(0,0)(t1, t2) + det B[2, 3|1, 3]S(1,0)(t1, t2)

+ det B[2, 3|2, 3]S(1,1)(t1, t2).
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Taking into account Theorem 3, the following result provides a useful characterization of
the polynomial bases (31), which are STP on intervals (τ,∞), τ ≥ 0, in terms of the sign of
the diagonal entries of the nonsingular lower triangular change of basis matrix B in (32).

Theorem 4 Let (q0, . . . , qn) be a polynomial basis such that the matrix B = (bi, j )1≤i, j≤n+1,
satisfying (32), is nonsingular lower triangular. Then, there exists τ ≥ 0 such that
(q0, . . . , qn) is STP on (τ,∞) if and only if bi,i > 0, for i = 1, . . . , n + 1.

Proof First, suppose that (q0, . . . , qn) is TP in (τ,∞) for some τ ≥ 0. Then there exists
nodes 0 < t1 < · · · < tn+1 such that the diagonal pivots pi,i , i = 1, . . . , n+1, of the Neville
elimination of

Mq :=
(
q j−1(ti )

)
1≤i, j≤n+1

are positive. Taking into account that pi,i satisfy identities (35), we deduce that bi,i > 0,
i = 1, . . . , n + 1.

Now, consider that bi,i > 0, for i = 1, . . . , n+ 1. Then, for any sequence 0 < t1 < · · · <

tn+1, the positivity of themultipliersmi, j , 1 ≤ j < i ≤ n+1, of theNeville elimination of the
collocation matrix Mq ∈ R

(n+1)×(n+1) is deduced from (36). Moreover, taking into account
that the diagonal pivots are given by (35), we also conclude that pi,i > 0, i = 1, . . . , n + 1.

The analysis of the sign of the multipliers m̃i, j needs a closer look. As in (38), let us
define

Q̃i, j (t1, . . . , t j ):=
∑

l1<···<l j

det B[i − j + 1, . . . , i | l1, . . . , l j ]S(l j− j,...,l1−1)(t1, . . . , t j ).

(40)

Clearly,

deg S(l j− j,...,l1−1) =
j∑

k=1

lk − j( j + 1)

2
(41)

and then, the highest degree among the Schur polynomials in (40) is achieved in the term
with maximum sum l1 + · · · + l j , as long as det B[i − j + 1, . . . , i | l1, . . . , l j ] �= 0. Since
B is a nonsingular lower triangular matrix, the maximum for the sum l1+· · ·+ l j is obtained
for columns

(l1, l2, . . . , l j ) = (i − j + 1, . . . , i).

Since

ci, j := det B[i − j + 1, . . . , i | i − j + 1, . . . , i ]
= bi− j+1,i− j+1 bi− j+2,i− j+2 · · · bi,i > 0, (42)

the Schur polynomial in (40) with the highest degree is

S(i− j,...,i− j)(t1, . . . , t j ) = t i− j
1 · · · t i− j

j , (43)

and deg S(i− j,...,i− j) = j(i − j). Moreover, by inspection of (40), we see that

Q̃i, j (t1, . . . , t j ) − ci, j t
i− j
1 · · · t i− j

j
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is a linear combination of Schur polynomials Sλ with a degree lower than j(i − j), labelled
by partitions λ = (λ1, . . . , λ j ) with λ1 ≤ i − j . Then, by the use of (13), we deduce that

∂k Sλ

∂tk11 · · · ∂tk jj
(t1, . . . , t j ) = 0 if kr > i − j, (44)

for any r = 1, . . . , j . These considerations allow us to assure that the polynomials

P(i, j,0,...,0)(t):=Q̃i, j (t, . . . , t), P(i, j,k1,...,k j )(t):=
∂k Q̃i, j

∂tk11 · · · ∂tk jj
(t, . . . , t),

with deg P(i, j,k1,...,k j ) = j(i − j) − k = j(i − j) − (k1 + · · · + k j ), have positive leading
coefficient. For this reason, for each P(i, j,k1,...,k j ), there exists a largest root ri, j,k1,...,k j such
that P(i, j,k1,...,k j )(t) > 0 and P(i, j,0,...,0)(t) > 0 for t > ri, j,k1...,k j .
Now, we can define

τ :=max

{
0, max

i, j,k1,...,k j
{ri, j,k1,...,k j | k = k1 + · · · + k j , 1 ≤ k ≤ j(i − j)}

}
.

(45)

The multivariate polynomial Q̃i, j can be written by its Taylor expansion around (τ, . . . , τ ),

Q̃i, j (t1, . . . , t j ) = P(i, j,0,...,0)(τ ) +
j(i− j)∑

k=1

∑

k1+···+k j=k

1

k1! · · · k j !δ
k1
1 · · · δk jj P(i, j,k1,...,k j )(τ )

where tr = τ + δr , r = 1, . . . , j , and

Q̃i, j (t1, . . . , t j ) > 0, 0 ≤ τ < t1 < · · · < t j . (46)

Given 0 ≤ τ < t1 < · · · < tn+1, by (37), the corresponding multiplier m̃i, j can be written
as

m̃i, j = Q̃i, j (t1, . . . , t j )Q̃i−2, j−1(t1, . . . , t j−1)

Q̃i−1, j−1(t1, . . . , t j−1)Q̃i−1, j (t1, . . . , t j )
, (47)

and, by (46), we deduce that m̃i, j > 0.
Finally, taking into account that for any sequence τ < t1 < · · · < tn+1, the multipliers

mi, j , m̃i, j and the diagonal pivots of the Neville elimination of the collocation matrix Mq

are positive, we deduce by Theorem 1, that Mq is a STP matrix and conclude that the basis
(q0, . . . , qn) is STP on the interval (τ,∞). �	

Now, using a similar reasoning to that of Theorem 4, the following result provides a
necessary condition for the total positivity of collocation matrices Mq ∈ R

(n+1)×(n+1) cor-
responding to negative parameters.

Theorem 5 Let (q0, . . . , qn) be a polynomial basis such that the matrix B = (bi, j )1≤i, j≤n+1,
satisfying (32), is nonsingular lower triangular. Then, there exists τ ≤ 0 such that the
collocation matrix (34) at any decreasing sequence 0 ≥ τ > t1 > · · · > tn+1 is STP if and
only if sign(bi,i ) = (−1)i−1, i = 1, . . . , n + 1.

Proof For the direct implication, consider 0 ≥ τ > t1 > · · · > tn+1 such that the collocation
matrix (34) is STP. Taking into account that the diagonal pivots of its Neville elimination, pi,i
are positive and satisfy identities (35), we deduce that sign(bi,i ) = (−1)i−1, i = 1, . . . , n+1.
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Now, suppose that sign(bi,i ) = (−1)i−1, i = 1, . . . , n + 1 and consider any sequence
tn+1 < · · · < t1 < 0. On the right hand side of (35) there are i −1 negative factors ti − tk and
so, sign(pi,i ) = sign(bi,i ) (−1)i−1 > 0. Moreover, using (36) we deduce that multipliers
mi, j are positive since they can be written as in (36), with j negative factors in the numerator
and j negative factors in the denominator.

Now, define

Ri, j (t1, . . . , t j ):=sign(ci, j )(−1) j(i− j) Q̃i, j (t1, . . . , t j ), (48)

where Q̃i, j (t1, . . . , t j ) is defined in (40), and

ci, j = det B[i − j + 1, . . . , i | i − j + 1, . . . , i ] = bi− j+1,i− j+1 bi− j+2,i− j+2 · · · bi,i .
(49)

The multivariate polynomial Ri, j (t1, . . . , t j ) is defined in such a way that its leading term,

|ci, j |(−1) j(i− j)t i− j
1 · · · t i− j

j , is positive for tn+1 < · · · < t1 < 0. Moreover, the sign of the

leading term of any k-derivative of Ri, j is (−1)k . Consequently, the leading terms of the
polynomials defined as

P(i, j,0,...,0)(t):=Ri, j (t, . . . , t), P(i, j,k1,...,k j )(t):=(−1)k
∂k Ri, j

∂tk11 · · · ∂tk jj
(t, . . . , t), (50)

with degree deg P(i, j,k1,...,k j ) = j(i − j) − k = j(i − j) − (k1 + · · · + k j ), take positive
values if t < 0.

For this reason, there exists a smallest root ri, j,k1,...,k j such that P(i, j,k1,...,k j )(t) > 0 and
P(i, j,0,...,0)(t) > 0 for t < ri, j,k1...,k j .
Now, we can define

τ :=min

{
0, min

i, j,k1,...,k j
{ri, j,k1,...,k j | k = k1 + · · · + k j , 1 ≤ k ≤ j(i − j)}

}
. (51)

Using (50), Ri, j can be written by its Taylor expansion around (τ, . . . , τ ), as follows,

Ri, j (t1, . . . , t j ) = P(i, j,0,...,0)(τ )

+
j(i− j)∑

k=1

∑

k1+···+k j=k

1

k1! · · · k j !δ
k1
1 · · · δk jj (−1)k P(i, j,k1,...,k j )(τ ) (52)

where tr = τ + δr , r = 1, . . . , j .
Given t j < · · · < t1 < τ ≤ 0, we have δr = tr − τ < 0, for r = 1, . . . , j , and then

Ri, j (t1, . . . , t j ) > 0. (53)

Finally, since

sign
(
ci, j ci−1, j−1ci−2, j−1ci−1, j

)
(−1) j(i− j)−( j−1)(i− j)+( j−1)(i− j−1)− j(i− j−1) = 1,

by (48), the multiplier m̃i, j can be expressed as

m̃i, j = Ri, j (t1, . . . , t j )Ri−2, j−1(t1, . . . , t j−1)

Ri−1, j−1(t1, . . . , t j−1)Ri−1, j (t1, . . . , t j )
. (54)

Thus, by (53), m̃i, j > 0 for any tn+1 < · · · < t1 < τ ≤ 0. �	
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Let us observe that, using Theorems 4 and 5, a simple inspection of the sign of the leading
coefficient of the polynomial bases (31) provides a criterion to establish their total positivity
on intervals contained in (0,∞) and (−∞, 0), respectively. It turns out that these bases may
be TP on wider intervals. In fact, we are giving some examples of this behavior in Sects. 5.3
and 5.4. The location of such intervals requires a further account of the basis and does not
fall within the scope of this paper. Even though, using Theorem 3, a deep study of the sign of
the pivots and multipliers can be carried out to deduce the range where a specific polynomial
basis is TP.

Finally, let us notice that under the conditions provided by Theorem 4 or by Theorem 5,
any STP collocation matrix Mq ∈ R

(n+1)×(n+1) in (34) admits a decomposition (6) such that

Mq = FnFn−1 · · · F1DG1G2 · · ·Gn, (55)

where Fi (respectively, Gi ), i = 1, . . . , n, are the lower (respectively, upper) triangular
bidiagonal matrices described in (7) and D = diag

(
p1,1, p2,2, . . . , pn+1,n+1

)
. The diagonal

entries pi,i , 1 ≤ i ≤ n + 1, can be obtained from (35). The off-diagonal entries mi, j and
m̃i, j , 1 ≤ j < i ≤ n + 1, can be obtained from (36) and (37), respectively.

Let us recall that, by Theorem 7.2 of [6], Algorithm 5.2 of [6] computes the values of
Schur functions for positive data to HRA. Moreover, by (10),

Sλ(−t1, . . . ,−t j ) = (−1)|λ|Sλ(t1, . . . , t j ).

Therefore, Algorithm 5.2 of [6] can be also used to compute the values of Schur functions
for negative data to HRA. In addition, let us observe that by Theorems 4 and 5, the pivots
pi,i and multipliers mi, j of the NE of any STP collocation matrix Mq ∈ R

(n+1)×(n+1) in
(34) can be computed to HRA. In addition, observe that the multipliers m̃i, j of the NE of
Mq ∈ R

(n+1)×(n+1) can be computed to HRA if the change of matrix B satisfying (32) is
TP. In the case that the matrix B is not TP there may appear subtractions of Schur functions.
Although, strictly speaking, the value of the Schur functions cannot be considered as initial
(exact) data, since they are computed to HRA they still lead to an excellent accuracy as we
are going to show in Sect. 6.

5 Total Positivity and Factorizations of Well-Known Polynomial Bases

Now, we shall use the results in previous sections to analyze the total positivity of relevant
polynomial bases and provide the decomposition (6) of their collocation matrices.

5.1 Recursive Polynomial Bases

Given values b1, . . . , bn+1, such that bi �= 0, i = 1, . . . , n+1, let us consider the polynomial
basis ( p̃0, . . . , p̃n), such that

p̃0(x):=b1, p̃i (t):=bi+1t
i + p̃i−1(t), i = 1, . . . , n. (56)
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Clearly, the change of basis matrix such that ( p̃0, . . . , p̃n)T = B(m0, . . . ,mn)
T , with

mi :=t i , i = 0, . . . , n, is a nonsingular lower triangular matrix of the following form

B =

⎛

⎜⎜
⎜
⎜
⎜
⎝

b1 0 0 0 . . . 0
b1 b2 0 0 . . . 0
b1 b2 b3 0 . . . 0
...

...
...

...
. . .

...

b1 b2 b3 b3 . . . bn+1

⎞

⎟⎟
⎟
⎟
⎟
⎠

. (57)

Let us note that the only non-zero minors of B are

B[i − j + 1, . . . , i |l1, i − j + 2, i − j + 3, . . . , i] = bl1
j∏

k=2

bi− j+k, l1 = 1, . . . , i − j + 1. (58)

Taking into account (58), the decomposition (6) of the collocation matrix of ( p̃0, . . . , p̃n) at
{ti }n+1

i=1 is given by Theorem 3 where

Q̃i, j =
i− j+1∑

l1=1

bl1

j∏

k=2

bi− j+k S(i − j, . . . , i − j
︸ ︷︷ ︸

j−1 times

,l1−1)(t1, . . . , t j ). (59)

Let us notice that since the matrix (57) is nonsingular lower triangular, the criteria of total
positivity depending on the diagonal entries bi �= 0, i = 1, 2 . . . , n+1, given by Theorems 4
and 5, apply.

Section 6 will show accurate computations when solving algebraic problems with col-
location matrices of recursive polynomial bases with leading coefficients satisfying either
bi > 0 or sign(bi ) = (−1)i−1, i = 1, 2 . . . , n + 1.

Let us observe that the collocationmatrices of the bases (56) can be considered as particular
cases of the Cauchy-polynomial Vandermonde matrices defined in [23],

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1
t1+d1

· · · 1
t1+dl

b1 b1 + b2t1 · · · ∑n−l
k=0 bk+1tk1

1
t2−d1

· · · 1
t2−dl

b1 b1 + b2t2 · · · ∑n−l
k=0 bk+1tk2

...
. . .

...
...

...
. . .

...

1
tn+1−d1

· · · 1
tn+1−dl

b1 b1 + b2tn+1 · · · ∑n−l
k=0 bk+1tkn+1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (60)

for the case l = 0.
In Theorem 1 of [23], the authors give explicit formulas in terms of Schur functions of

the determinants used for obtaining the pivots and the multipliers of the Neville elimination
of A. It can be checked that from these expressions with l = 0, one can get the formula of
the pivots and multipliers obtained in this paper.
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5.2 Hermite Polynomials

The physicist’s Hermite basis of Pn is the system of Hermite polynomials (H0, . . . , Hn)

defined by

Hi (x):=i !
[ i2 ]∑

k=0

(−1)k

k!(i − 2k)! (2t)
i−2k, i = 0, . . . , n. (61)

The change of basis matrix A between the Hermite basis (61) and the monomial basis,
such that (H0, . . . , Hn)

T = A(m0, . . . ,mn)
T , is the nonsingular lower triangular matrix

A = (ai, j )1≤i, j≤n+1 described by

ai, j :=
{

2 j−1(i−1)!(−1)(i− j)/2

( j−1)!((i− j)/2)! , if i ≥ j, rest((i-j)/2)=0,

0, otherwise.
(62)

Let us observe that, from Theorem 3, we can obtain the decomposition (6) of the collocation
matrices of the Hermite polynomial basis (H0, . . . , Hn).

The diagonal entries satisfyai,i = 2i−1 > 0, i = 1, 2, . . . , n+1.Therefore, byTheorem4,
there exists a lower bound τ ≥ 0 such that the Hermite polynomial basis (H0, . . . , Hn) is
STP on (τ,∞).

Now, using well-known properties of the roots of Hermite polynomials, we shall deduce
a lower bound for τ , which is an increasing function of the dimension of the basis.

Let us recall that the roots of the Hermite polynomials are simple and real. Then we can
write t1,n < · · · < tn,n , where ti,n , i = 1, . . . , n, are the n roots of the n-degree Hermite
polynomial Hn . In [22], it is shown that the largest root of Hn satisfies

√
n − 1

2
< tn,n <

√
2n − 2. (63)

On the other hand, since Hermite polynomials satisfy the following property

H ′
n(t) = 2n Hn−1(t),

the roots of Hn and Hn−1 interlace, that is,

t1,n < t1,n−1 < t2,n < t2,n−1 < · · · < tn−1,n < tn−1,n−1 < tn,n . (64)

Taking into account (63) and (64), we can write

√
n − 2

2
< tn−1,n−1 < tn,n <

√
2n − 2. (65)

By (37) and (65), we deduce that m̃n+1,1 is negative for t1 satisfying
√

n−2
2 < tn−1,n−1 <

t1 < tn,n . Therefore,

√
n − 2

2
< τ.
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Let us illustrate the bidiagonal decomposition (6) of collocation matrices of Hermite bases
with a simple example. For (H̃0, H̃1, H̃2),

⎛

⎝
1 2t1 4t21 − 2
1 2t2 4t22 − 2
1 2t3 4t23 − 2

⎞

⎠

=
⎛

⎝
1 0 0
0 1 0
0 1 1

⎞

⎠

⎛

⎝
1 0 0
1 1 0
0 t3−t2

t2−t1
1

⎞

⎠

⎛

⎝
1 0 0
0 2(t2 − t1) 0
0 0 4(t3 − t2)(t2 − t1)

⎞

⎠

⎛

⎝
1 m̃21 0
0 1 m̃32
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 m̃31
0 0 1

⎞

⎠

where

m̃2,1 = 2S(1)(t1),

m̃3,1 = −2 + 4S(2)(t1)

2S(1)(t1)
,

m̃3,2 = 4 + 8S(1,1)(t1, t2))

4S(1)(t1)
.

It can be easily checked that for
√
2/2 < t1 < t2 < t3, the collocationmatrix is STP. Section6

will show accurate computations when solving algebraic problems with collocation matrices
of physicist’s Hermite polynomial bases.

5.3 Bessel Polynomials

The Bessel basis of Pn is the polynomial system (B0, . . . , Bn) with

Bi (t):=
i∑

k=0

(i + k)!
2k(i − k)!k! t

k, i = 0, . . . , n. (66)

The change of basis matrix A between the Bessel basis (66) and the monomial basis,
with (B0, . . . , Bn)

T = A(m0, . . . ,mn)
T , is the nonsingular lower triangular matrix A =

(ai, j )1≤i, j≤n+1 such that

ai, j = (i + j − 2)!
2 j−1(i − j)!( j − 1)! , i ≥ j .

In [3], the total positivity of A is proved and the pivots and multipliers of its Neville elimi-
nation are provided. As a consequence, accurate computations when considering collocation
matrices of (B0, . . . , Bn) for (0 <)t0 < t1 < · · · < tn are derived by considering that they
are the product of a Vandermonde matrix and the matrix A. The bidiagonal decomposition
of Vandermonde matrices can be found in [1, 5].

Now, using Theorem 3, we can obtain the explicit bidiagonal decomposition (6) of the
Bessel collocation matrices. Let us illustrate it with a simple example. For (B̃0, B̃1, B̃2),

⎛

⎜⎜
⎝

1 1 + t1 1 + 3t1 + 3t21
1 1 + t2 1 + 3t2 + 3t22
1 1 + t3 1 + 3t3 + 3t23

⎞

⎟⎟
⎠

=
⎛

⎜
⎝

1 0 0

0 1 0

0 1 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0

1 1 0

0 t3−t2
t2−t1

1

⎞

⎟
⎠

⎛

⎝
1 0 0
0 t2 − t1 0
0 0 3(t3 − t1)(t3 − t2)

⎞

⎠

⎛

⎝
1 m̃21 0
0 1 m̃32
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 m̃31
0 0 1

⎞

⎠

123



Journal of Scientific Computing (2023) 97 :10 Page 19 of 27 10

where

m̃2,1 = 1 + S(1)(t1),

m̃3,1 = 1 + 3S(1)(t1) + S(2)(t1)

1 + S(1)(t1)
,

m̃3,2 = 2 + 3S(1,0)(t1, t2) + 3S(1,1)(t1, t2)

1 + S(1)(t1)
.

It can be easily checked that for −1 < t1 < t2 < t3 with t2 > −1 + 1
3(1+t1)

, the matrix is
STP.

5.4 Laguerre Polynomials

Given α > −1, the generalized Laguerre basis is (L(α)
0 , . . . , L(α)

n ) with

L(α)
i (x):=

i∑

k=0

(−1)k
(
i + α

i − k

)
xk

k! , i = 0, . . . , n. (67)

The change of basis matrix between the generalized Laguerre basis (67) and the mono-
mial basis, with (L(α)

0 , . . . , L(α)
n )T = A(m0, . . . ,mn)

T , is the lower triangular matrix
A = (ai, j )1≤i, j≤n+1 such that

ai, j =
(
i − 1

j − 1

)
(−1) j−1(i − 1 + α) · · · (α + 1)

(i − 1)!( j − 1 + α) j−1)
, i ≥ j,

where, for a real x and a positive integer k, the falling factorial is

x0):=1, and xk):=x(x − 1)(x − 2) · · · (x − k + 1).

In [2], computations to HRA for algebraic computations with the collocation matrix of
(L(α)

0 , . . . , L(α)
n ) at (0 >)t0 > t1 > · · · > tn are achieved. These computations are obtained

through the bidiagonal decomposition of A and the well-known bidiagonal decomposition
of the Vandermonde matrices.

Now, using Theorem 3, we can obtain the explicit bidiagonal decomposition (6) of the
Laguerre collocation matrices. Let us illustrate it with a simple example. For (L0

0, L
0
1, L

0
2),

⎛

⎜⎜
⎝

1 1 − t1 1 − 2t1 + (1/2)t21
1 1 − t2 1 − 2t2 + (1/2)t22
1 1 − t3 1 − 2t3 + (1/2)t23

⎞

⎟⎟
⎠

=
⎛

⎝
1 0 0
0 1 0
0 1 1

⎞

⎠

⎛

⎝
1 0 0
1 1 0
0 t3−t2

t2−t1
1

⎞

⎠

⎛

⎝
1 0 0
0 −(t2 − t1) 0
0 0 (1/2)(t3 − t1)(t3 − t2)

⎞

⎠

⎛

⎝
1 m̃21 0
0 1 m̃32
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 m̃31
0 0 1

⎞

⎠

where

m̃2,1 = 1 − S(1)(t1),

m̃3,1 = 1 − 2S(1)(t1) + (1/2)S(2)(t1)

1 − S(1)(t1)
,

m̃3,2 = −1 + (1/2)S(1,0)(t1, t2) − (1/2)S(1,1)(t1, t2)

−1 + S(1)(t1)
.
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It can be easily checked that, for t3 < t2 < t1 < 2 − √
2, the collocation matrix of the

three dimensional Laguerre basis is STP. That means that, for this dimension, the results
obtained in [2] for the total positivity of collocation matrices on parameters in (−∞, 0) can
be extended to the larger interval (−∞, 2 − √

2) and then, even to sequences of parameters
t3 < t2 < t1 with a different sign.

5.5 Jacobi Polynomials

Given α, β ∈ R, the basis of Jacobi polynomials of the space Pn of polynomials of degree
less than or equal to n is (J (α,β)

0 , . . . , J (α,β)
n ) with

J (α,β)
i (t):= γ (α + i + 1)

i !γ (α + β + i + 1)
i∑

k=0

(
i

k

)
γ (α + β + i + k + 1)

γ (α + k + 1)

(
t − 1

2

)k

, i = 0, . . . , n. (68)

The change of basis matrix between the Jacobi basis (68) and the basis (v0, . . . , vn) with

vk(t):=
(
t − 1

2

)k

, k = 0, . . . , n, (69)

is the lower triangular matrix A = (ai, j )1≤i, j≤n+1 such that

ai, j :=
{

1
( j−1)!(i− j)!

∏i−1
k= j (α + k)

∏ j−1
k=1(α + β + i + k − 1), if i ≥ j,

0, if i < j .
(70)

In [19] the total positivity on (1,∞) of the Jacobi basis (J (α,β)
0 , . . . , J (α,β)

n ) is deduced.
In addition, the pivots and multipliers of the Neville elimination of the change of basis matrix
A in (70) are provided. Using the bidiagonal decomposition of A, computations to HRA are
achieved.

Defining J̃ (α,β)
i (t):=J (α,β)

i (1 + 2t), i = 0, . . . , n, using Theorem 3, we can write the

bidiagonal decomposition (6) of the Jacobi collocation matrices. For ( J̃ (1,2)
0 , J̃ (1,2)

1 , J̃ (1,2)
2 ),

⎛

⎝
1 2 + 5t1 3 + 18t1 + 21t21
1 2 + 5t2 3 + 18t2 + 21t22
1 2 + 5t3 3 + 18t3 + 21t23

⎞

⎠

=
⎛

⎝
1 0 0
0 1 0
0 1 1

⎞

⎠
(
1 0 0
1 1 0

)
⎛

⎝
1 0 0
0 5(t2 − t1) 0
0 0 21(t3 − t1)(t3 − t2)

⎞

⎠

⎛

⎝
1 m̃21 0
0 1 m̃32
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 m̃31
0 0 1

⎞

⎠

where

m̃2,1 = 2 + 5S(1)(t1),

m̃3,1 = 3 + 18S(1)(t1) + 21S(2)(t1)

2 + 5S(1)(t1)
,

m̃3,2 = 11 + 42S(1,0)(t1, t2) + 105S(1,1)(t1, t2)

5(2 + 5S(1)(t1))
.

It can be easily checked that for (
√
2−3)/7 < t1 < t2 < t3 the collocation matrix is STP.

Therefore, the Jacobi polynomial bases (J (1,2)
0 , J (1,2)

1 , J (1,2)
2 ) is STP on ((1+2

√
2)/7,∞) ⊃

(0.546,∞) ⊃ (1,∞).
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Finally, let us observe that the bidiagonal decomposition (6) of the collocation matrices
of Legendre, Gegenbauer, first and second kind Chebyschev and rational Jacobi polynomials
can be derived by considering Theorem 3.

6 Numerical Experiments

In order to encourage the understanding of the numerical experimentation carried out, using
Theorem 3, we provide the pseudocode of Algorithm 1 for computing the matrix form
BD(Mq) (8) storing the bidiagonal decomposition (6) of the collocation matrix Mq (34). Let
us observe that Algorithm 1 calls the Matlab function Schurpoly available in [15], for the
computation of Schur polynomials.

To test our algorithm, we have considered STP collocation matrices Mq of recursive
polynomial bases (56), as well as Hermite polynomial bases (61) with dimension n + 1 =
5, 10, 15. Moreover, using the bidiagonal decompositions BD(Mq) given by Algorithm 1
and the Matlab functions available in the software library TNTools in [14], we have solved
fundamental problems in Numerical Linear Algebra involving the considered matrices.

In addition, for analyzing the accuracy of the obtained results, we have calculated the
relative errors taking the solutions obtained in Mathematica with a 100-digit arithmetic as
the exact solution of the considered algebraic problems.

We have also obtained in Mathematica the 2-norm condition number of all considered
matrices. In Tables 1, 2 and 3, this conditioning is depicted. It can be easily observed that the
conditioning drastically increases with the size of the matrices. Due to their ill-conditioning,
standard routines do not obtain accurate solutions since they can suffer from inaccurate
cancelations. In contrast, the accurate algorithms that we have developed in this paper exploit
the structure of the considered matrices obtaining, as we will see, accurate numerical results.
HRA computation of the singular values and eigenvalues Given B = BD(A) to HRA, the
Matlab functions TNSingularValues(B) and TNEigenValues(B) are availables in
[16] and compute the singular values and eigenvalues, respectively, of a matrix A to HRA.
Their computational cost are all O(n3) (see [13]).

Algorithm 2 uses BD(Mq) provided by Algorithm 1 to compute the eigenvalues and
singular values of a collocation matrix Mq .

For all considered matrices, we have compared the smallest eigenvalues and singular
values obtained using Algorithm 2, with those computed to the Matlab commands eig and
svd. The values provided by Mathematica using 100-digit arithmetic have been considered
as the exact solution of the algebraic problem and the relative error e of each approximation
has been computed as e:=|a − ã|/|a|, where a denotes the smallest eigenvalue and singular
value computed in Mathematica and ã the smallest eigenvalue and singular value computed
in Matlab.

Looking at the results (see Tables 4, 5 ), we notice that our approach is able to compute
accurately the lowest eigenvalue and singular value, regardless of the ill-conditioning of the
matrices. In contrast, the Matlab commands eig and svd return results that become not
accurate when the dimension of the collocation matrices increases.
HRA computation of the inverse matrix. Given B = BD(A) to HRA, the Matlab function
TNInverseExpand(B) available in [16] returns A−1 to HRA, requiring O(n2) arithmetic
operations (see [20]).

Algorithm3uses BD(Mq)providedbyAlgorithm1 to compute the inverse of a collocation
matrix Mq .
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For all consideredmatrices,wehave compared the inverses obtainedusingAlgorithm3and
theMatlab command inv. To look over the accuracy of these twomethodswe have compared
both Matlab approximations with the inverse matrix A−1 computed by Mathematica using
100-digit arithmetic, taking into account the formula e = ‖A−1 − Ã−1‖/‖A−1‖ for the
corresponding relative error.

The achieved relative errors are shown in Table 6. We observe that our algorithm provides
very accurate results in contrast to the inaccurate results obtained when using the Matlab
command inv.
HRA computation of solution of linear system Mc = d Given B = BD(A) to HRA and a
vector d with alternating signs, theMatlab function TNSolve(B, d) available in [16] returns
the solution of the linear system Ac = d to HRA. It requires O(n2) arithmetic operations
(see [16]).

Algorithm 4 uses BD(Mq) provided by Algorithm 1, to compute the solution of the linear
system Mqc = d , where d = ((−1)i+1di )1≤i≤n+1 and di , i = 1, . . . , n + 1, are random
nonnegative integer values.

For all considered collocation matrices, we have compared the solution obtained using
Algorithm 4 and the Matlab command \. The solution provided by Mathematica using 100-
digit arithmetic has been considered as the exact solution c. Then, we have computed in
Mathematica the relative error of the computed approximation with Matlab c̃, taking into
account the formula e = ‖c − c̃‖/‖c‖.

In Table 7 we show the relative errors. We clearly see that, in spite of the dimension of the
problem, the proposed algorithm preserves the accuracy as opposed to the results obtained
with the Matlab command \.
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Algorithm 1: Computation of the bidiagonal decomposition of the collocation matrix Mq ∈ R
(n+1)×(n+1) (34)

Require: The change of basis matrix B satisfying (32) and t = {ti }n+1
i=1

Ensure: BDMq bidiagonal decomposition of Mq
for i = 1 : n + 1

for j = i + 1 : n + 1
if HP(j,i) == 0
P(j,i) = functionP(B,t,j,i)
HP(j,i) = 1

end
if HP(j-1,i) == 0

P(j-1,i) = functionP(B,t,j-1,i)
HP(j-1,i) = 1

end
BDMq(i,j) = P(j,i)/P(j-1,i);

end
end
for i = 2 : n + 1

for j = 1 : i − 1
BDMq(i,j) = functionM(t,i,j)

end
end

for i = 1 : n + 1
BDMq(i,i) = functionD(B,t,i)

end

function p = functionP(B, t, i, j)
if ( j == 1)

p = 0
for l = 1 : n + 1

d = det(B(i, l))
if d ∼= 0

p = p + d · schurpoly(l − 1, t(1))
end

end
else

a = 0
comb = nchoosek(1 : n + 1, j)
for c = 1 : size(comb, 1)

S = zeros( j, 1)
for s = 0 : j − 1

S(s + 1) = comb(c, j − s) − j + s
end
d = det(B(i − j + 1 : i, comb(c, :)))
if d ∼= 0
a = a + d · schurpoly(S, t(1 : j))

end
end
i = i − 1
j = j − 1
ab = 0
comb = nchoosek(1 : n + 1, j)
for c = 1 : size(comb, 1)

S = zeros(j,1)
for s = 0 : j − 1

S(s + 1) = comb(c, j − s) − j + s
end
d = det(B(i − j + 1 : i, comb(c, :)))
if d ∼= 0
ab = ab + d · schurpoly(S, t(1 : j))

end
end
p = a/ab

end
function m = functionM(t, i, j)
m = 1
if ( j > 1)

for k = 1 : j − 1
m = m ∗ (t(i) − t(i − k))/(t(i − 1) − t(i − k − 1))

end
end
function d = functionD(B, t, i)
d = B(i, i)
for k = 1 : i − 1

d = d · (t(i) − t(i − k))
end
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Table 1 Condition number of
collocation matrices of recursive
polynomial bases (56) at
ti = i/(n + 1) with bi = i (left),
ti = 1 + i/(n + 1) with
bi = (i + 1) (center) and
ti = 2 + i/(n + 1) with
bi = i + 2 (right),
i = 1, . . . , n + 1

n + 1 Bases (56), bi > 0

κ2(M) κ2(M) κ2(M)

5 1.1 × 105 9.8 × 105 1.8 × 107

10 4.5 × 108 9.0 × 1012 7.8 × 1015

15 1.7 × 1013 9.2 × 1019 3.5 × 1024

Table 2 Condition number of
collocation matrices of recursive
polynomial bases (56) at
ti = −i/(n + 1) with
bi = (−i)i−1 (left),
ti = −1 − i/(n + 1) with
bi = (−i − 1)i−1 (center) and
ti = −2 − i/(n + 1) with
bi = (−i − 2)i−1 (right),
i = 1, . . . , n + 1

n + 1 Bases (56) with sign(bi ) = (−1)i−1

κ2(M) κ2(M) κ2(M)

5 7.9 × 105 9.9 × 107 6.2 × 109

10 2.2 × 1013 2.3 × 1020 1.3 × 1024

15 9.6 × 1022 9.7 × 1033 5.1 × 1039

Table 3 Condition number of
collocation matrices of Hermite
polynomial bases (61) at
ti = 4 + i/(n + 1) (left),
ti = 5 + i/(n + 1) (center) and
ti = 8 + i/(n + 1) (right),
i = 1, . . . , n + 1

n + 1 Hermite bases

κ2(M) κ2(M) κ2(M)

5 1.8 × 109 8.2 × 109 2.4 × 1011

10 9.8 × 1020 3.4 × 1022 7.0 × 1025

15 3.2 × 1032 1.3 × 1035 2.3 × 1040

Algorithm 2: Computation of the singular values and eigenvalues of Mq

Require: The change of basis matrix B satisfying (32) and t = {ti }n+1
i=1

Ensure: vs ∈ R
n+1, ve ∈ R

n+1 containing the singular values and the eigenvalues, respectively, of Mq
BDMq = zeros(n + 1)
BDMq = BDMq(B, t)
vs = TNSingularValues(BDMq)

ve = TNEigenvalues(BDMq)

Table 4 Relative errors when computing the lowest eigenvalue of collocationmatrices of recursive polynomial
bases (56) at ti = i/(n + 1) with bi = i , i = 1, . . . , n + 1 (left), recursive polynomial bases (56) at
ti = −i/(n + 1) with bi = (−i)i−1, i = 1, . . . , n + 1 (center) and Hermite polynomial bases (61) at
ti = 8 + i/(n + 1), i = 1, . . . , n + 1 (right)

n + 1 Bases (56), bi > 0 Bases (56), bi = (−i)i−1 Hermite bases

eig(Mq ) Algorithm 2 eig(Mq ) Algorithm 2 eig(Mq) Algorithm 2

5 2.4 × 10−14 1.3 × 10−16 5.2 × 10−14 5.4 × 10−16 1.2 × 10−8 1.7 × 10−15

10 1.4 × 10−9 1.0 × 10−15 1.5 × 10−5 2.4 × 10−16 1.5 × 10−6 3.1 × 10−15

15 2.0 × 10−5 7.4 × 10−16 1.9 × 105 6.6 × 10−16 4.3 × 1013 4.2 × 10−14
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Table 5 Relative errors when computing the lowest singular value of collocation matrices of recursive poly-
nomial bases (56) at ti = i/(n + 1) with bi = i , i = 1, . . . , n + 1 (left), recursive polynomial bases (56)
at ti = −i/(n + 1) with bi = (−i)i−1, i = 1, . . . , n + 1 (center) and Hermite polynomial bases (61) at
ti = 8 + i/(n + 1), i = 1, . . . , n + 1 (right)

n + 1 Bases (56), bi > 0 Bases (56), bi = (−i)i−1 Hermite bases

svd(Mq ) Algorithm 2 svd(Mq ) Algorithm 2 svd(Mq ) Algorithm 2

5 7.4 × 10−14 4.2 × 10−16 5.3 × 10−13 8.1 × 10−17 5.8 × 10−8 1.5 × 10−15

10 1.6 × 10−10 2.8 × 10−16 1.4 × 10−4 6.7 × 10−16 6.7 × 105 6.7 × 10−16

15 3.0 × 10−5 1.4 × 10−16 1.2 × 103 3.8 × 10−16 2.5 × 1011 4.9 × 10−14

Algorithm 3: Computation of the inverse of Mq

Require: The change of basis matrix B satisfying (32) and t = {ti }n+1
i=1

Ensure: The inverse matrix M−1
q of the collocation matrix Mq

BDMq = zeros(n + 1)
BDMq = BDMq(t)

M−1
q = TNInverseExpand(BDMq)

Table 6 Relative errors when computing the inverse of collocation matrices of recursive polynomial bases
(56) at ti = 1 + i/(n + 1) with bi = i + 1, i = 1, . . . , n + 1 (left), recursive polynomial bases (56) at
ti = −1 − i/(n + 1) with bi = (−i − 1)i−1, i = 1, . . . , n + 1 (center) and Hermite polynomial bases (61)
at ti = 5 + i/(n + 1), i = 1, . . . , n + 1 (right)

n + 1 Bases (56), bi > 0 Bases (56), bi = (−i − 1)i−1 Hermite bases

inv(Mq ) Algorithm 3 inv(Mq ) Algorithm 3 inv(Mq ) Algorithm 3

5 5.0 × 10−14 2.7 × 10−16 2.2 × 10−12 2.2 × 10−15 2.6 × 10−11 8.7 × 10−16

10 1.4 × 10−6 1.6 × 10−15 4.4 × 10−6 1.6 × 10−15 2.2 × 10−3 4.1 × 10−16

15 2.1 × 10−1 1.4 × 10−16 1.0 1.7 × 10−16 1.0 2.0 × 10−14

Algorithm 4: Computation of the solution of the linear system of Mqc = d

Require: The change of basis matrix B satisfying (32), t = {ti }n+1
i=1 and d ∈ R

n+1

Ensure: c ∈ R
n+1 containing the solution of the linear system Mc = d

BDMq = zeros(n + 1)
c = zeros(n + 1, 1)
BDMq = BDMq(t)
c = TNSolve(BDMq, d)

Table 7 Relative errors of the approximations to the solution of the linear systems Mqc = d, where d =
((−1)i+1di )1≤i≤n+1 and di , i = 1, . . . , n + 1, are random nonnegative integer values, and Mq collocation
matrices of recursive polynomial bases (56) at ti = 2 + i/(n + 1) with bi = i + 2, i = 1, . . . , n + 1 (left),
recursive polynomial bases (56) at ti = −2 − i/(n + 1) with bi = (−i − 2)i−1, i = 1, . . . , n + 1 (center)
and Hermite polynomial bases (61) at ti = 4 + i/(n + 1), i = 1, . . . , n + 1 (right)

n + 1 Bases (56), bi > 0 Bases (56), bi = (−i − 2)i−1 Hermite bases

Mq\d Algorithm 4 Mq\d Algorithm 4 Mq\d Algorithm 4

5 1.6 × 10−11 2.1 × 10−15 1.2 × 10−11 2.3 × 10−15 2.6 × 10−11 8.5 × 10−16

10 4.5 × 10−3 3.7 × 10−16 1.5 × 10−3 6.6 × 10−16 2.9 × 10−3 3.9 × 10−16

15 1.0 2.8 × 10−16 1.0 4.2 × 10−17 1.0 2.4 × 10−14
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7 Conclusions and Final Remarks

The field of symmetric functions brings new tools to tackle known algebraic problems related
to collocation matrices. We expect that further studies in this line of research will involve
representations of the groups of permutations, partitions and other bases of symmetric func-
tions. That is, all the relevant concepts which come up whenever an action of the permutation
group can be defined on a given setup.

Using the proposed Schur computation of the pivots and the multipliers of the Neville
elimination, the bidiagonal factorization (6) of polynomial collocation matrices can obtained
accurately. The efficiency of this procedure depends on the number of the involved Schur
polynomials and the computational cost of their evaluation. For some bases, as those in (56),
the number of nonzerominors decreases significantly, resulting inmore efficient calculations.
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