A Mathematical Modelling Study of Chemotactic Dynamics in Cell Cultures: The Impact of Spatio-temporal Heterogeneity
Resumen: As motivated by studies of cellular motility driven by spatiotemporal chemotactic gradients in microdevices, we develop a framework for constructing approximate analytical solutions for the location, speed and cellular densities for cell chemotaxis waves in heterogeneous fields of chemoattractant from the underlying partial differential equation models. In particular, such chemotactic waves are not in general translationally invariant travelling waves, but possess a spatial variation that evolves in time, and may even oscillate back and forth in time, according to the details of the chemotactic gradients. The analytical framework exploits the observation that unbiased cellular diffusive flux is typically small compared to chemotactic fluxes and is first developed and validated for a range of exemplar scenarios. The framework is subsequently applied to more complex models considering the chemoattractant dynamics under more general settings, potentially including those of relevance for representing pathophysiology scenarios in microdevice studies. In particular, even though solutions cannot be constructed in all cases, a wide variety of scenarios can be considered analytically, firstly providing global insight into the important mechanisms and features of cell motility in complex spatiotemporal fields of chemoattractant. Such analytical solutions also provide a means of rapid evaluation of model predictions, with the prospect of application in computationally demanding investigations relating theoretical models and experimental observation, such as Bayesian parameter estimation.
Idioma: Inglés
DOI: 10.1007/s11538-023-01194-9
Año: 2023
Publicado en: BULLETIN OF MATHEMATICAL BIOLOGY 85, 98 (2023), [48 pp.]
ISSN: 0092-8240

Factor impacto JCR: 2.0 (2023)
Categ. JCR: BIOLOGY rank: 49 / 109 = 0.45 (2023) - Q2 - T2
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 34 / 66 = 0.515 (2023) - Q3 - T2

Factor impacto CITESCORE: 3.9 - Mathematics (all) (Q1) - Agricultural and Biological Sciences (all) (Q2) - Environmental Science (all) (Q2) - Biochemistry, Genetics and Molecular Biology (all) (Q2) - Computational Theory and Mathematics (Q2) - Neuroscience (all) (Q3) - Pharmacology (Q3) - Immunology (Q3)

Factor impacto SCIMAGO: 0.61 - Agricultural and Biological Sciences (miscellaneous) (Q1) - Environmental Science (miscellaneous) (Q2) - Pharmacology (Q2) - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q2) - Computational Theory and Mathematics (Q2) - Mathematics (miscellaneous) (Q2) - Neuroscience (miscellaneous) (Q3) - Immunology (Q3)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-106099RB-C44
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-12:07:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras



 Registro creado el 2023-10-27, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)