000128032 001__ 128032
000128032 005__ 20241125101159.0
000128032 0247_ $$2doi$$a10.1109/ACCESS.2023.3298571
000128032 0248_ $$2sideral$$a135196
000128032 037__ $$aART-2023-135196
000128032 041__ $$aeng
000128032 100__ $$aPascual, Alberto$$uUniversidad de Zaragoza
000128032 245__ $$aElectromagnetic modeling and analysis of multimaterial cookware for domestic induction heating
000128032 260__ $$c2023
000128032 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128032 5203_ $$aThe performance of induction cooktops (inductor and electronic power converter) is closely related to the inductive properties of the cookware used. Traditionally, they are designed to work optimally
with fully ferromagnetic cookware. However, multimaterial cookware with a bottom surface composed of a ferromagnetic material and small pieces of aluminum are nowadays more commonly used. Designing
cooktops to also work optimally with this cookwares requires identifying the equivalent parameters, Req and Leq, obtained from the electromagnetic models of the inductor-load system. Modeling multimaterial cookware, with a large number of inserts, complicates the model design and increases its computational cost. This work presents an equivalent model for multimaterial loads that allows the evaluation of the inductor performance and obtaining the equivalent parameters quickly and accurately. The multimaterial cookware is modeled as a disk of uniform material with equivalent electromagnetic properties, µr,eq and σeq, which depend on the properties of each material and the proportion of area they occupy. The equivalent model has been validated by electromagnetic simulation using a FEA tool and by experimental results. Finally, based on the results obtained, an analysis has been carried out to evaluate the importance of design factors such as the choice of the cookware base material and the size, arrangement, and number of inserts.
000128032 536__ $$9info:eu-repo/grantAgreement/EUR/AEI/CPP2021-008938$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PDC2021-120898-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103939RB-I00
000128032 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000128032 590__ $$a3.4$$b2023
000128032 592__ $$a0.96$$b2023
000128032 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b87 / 250 = 0.348$$c2023$$dQ2$$eT2
000128032 591__ $$aTELECOMMUNICATIONS$$b47 / 119 = 0.395$$c2023$$dQ2$$eT2
000128032 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b122 / 353 = 0.346$$c2023$$dQ2$$eT2
000128032 593__ $$aEngineering (miscellaneous)$$c2023$$dQ1
000128032 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000128032 593__ $$aComputer Science (miscellaneous)$$c2023$$dQ1
000128032 594__ $$a9.8$$b2023
000128032 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128032 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000128032 700__ $$0(orcid)0000-0001-7901-9174$$aCarretero, Claudio$$uUniversidad de Zaragoza
000128032 700__ $$0(orcid)0000-0003-4609-1254$$aLlorente, Sergio
000128032 700__ $$0(orcid)0000-0002-9655-5531$$aBurdio, José M.$$uUniversidad de Zaragoza
000128032 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000128032 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000128032 773__ $$g11 (2023), 79275-79284$$pIEEE Access$$tIEEE Access$$x2169-3536
000128032 8564_ $$s3212164$$uhttps://zaguan.unizar.es/record/128032/files/texto_completo.pdf$$yVersión publicada
000128032 8564_ $$s2620611$$uhttps://zaguan.unizar.es/record/128032/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128032 909CO $$ooai:zaguan.unizar.es:128032$$particulos$$pdriver
000128032 951__ $$a2024-11-22-12:10:52
000128032 980__ $$aARTICLE