000128036 001__ 128036
000128036 005__ 20240731103417.0
000128036 0247_ $$2doi$$a10.1016/j.biomaterials.2023.122273
000128036 0248_ $$2sideral$$a135184
000128036 037__ $$aART-2023-135184
000128036 041__ $$aeng
000128036 100__ $$aSáez, P.
000128036 245__ $$aBrain tissue mechanics is governed by microscale relations of the tissue constituents
000128036 260__ $$c2023
000128036 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128036 5203_ $$aLocal mechanical tissue properties are a critical regulator of cell function in the central nervous system (CNS) during development and disorder. However, we still don't fully understand how the mechanical properties of individual tissue constituents, such as cell nuclei or myelin, determine tissue mechanics. Here we developed a model predicting local tissue mechanics, which induces non-affine deformations of the tissue components. Using the mouse hippocampus and cerebellum as model systems, we show that considering individual tissue components alone, as identified by immunohistochemistry, is not sufficient to reproduce the local mechanical properties of CNS tissue. Our results suggest that brain tissue shows a universal response to applied forces that depends not only on the amount and stiffness of the individual tissue constituents but also on the way how they assemble. Our model may unify current incongruences between the mechanics of soft biological tissues and the underlying constituents and facilitate the design of better biomedical materials and engineered tissues. To this end, we provide a freely-available platform to predict local tissue elasticity upon providing immunohistochemistry images and stiffness values for the constituents of the tissue.
000128036 536__ $$9info:eu-repo/grantAgreement/EC/FP7/615170/EU/MICROMACHINED OPTOMECHANICAL DEVICES: looking at cells, tissues, and organs ... with a gentle touch/DIDYMUS$$9info:eu-repo/grantAgreement/EC/H2020/772426/EU/The integration of mechanical and chemical signals in neuronal guidance/MECHEMGUI$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 772426-MECHEMGUI
000128036 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000128036 590__ $$a12.8$$b2023
000128036 592__ $$a3.016$$b2023
000128036 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b2 / 53 = 0.038$$c2023$$dQ1$$eT1
000128036 593__ $$aBioengineering$$c2023$$dQ1
000128036 591__ $$aENGINEERING, BIOMEDICAL$$b4 / 122 = 0.033$$c2023$$dQ1$$eT1
000128036 593__ $$aBiomaterials$$c2023$$dQ1
000128036 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ1
000128036 593__ $$aCeramics and Composites$$c2023$$dQ1
000128036 593__ $$aMechanics of Materials$$c2023$$dQ1
000128036 593__ $$aBiophysics$$c2023$$dQ1
000128036 594__ $$a26.0$$b2023
000128036 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128036 700__ $$0(orcid)0000-0002-3784-1140$$aBorau, C.$$uUniversidad de Zaragoza
000128036 700__ $$aAntonovaite, N.
000128036 700__ $$aFranze, K.
000128036 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000128036 773__ $$g301 (2023), 122273 [9 pp.]$$pBiomaterials$$tBiomaterials$$x0142-9612
000128036 8564_ $$s5159640$$uhttps://zaguan.unizar.es/record/128036/files/texto_completo.pdf$$yVersión publicada
000128036 8564_ $$s2574534$$uhttps://zaguan.unizar.es/record/128036/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128036 909CO $$ooai:zaguan.unizar.es:128036$$particulos$$pdriver
000128036 951__ $$a2024-07-31-10:07:30
000128036 980__ $$aARTICLE