000128055 001__ 128055
000128055 005__ 20241125101132.0
000128055 0247_ $$2doi$$a10.1016/j.apmt.2023.101929
000128055 0248_ $$2sideral$$a135217
000128055 037__ $$aART-2023-135217
000128055 041__ $$aeng
000128055 100__ $$aLafuente, Marta
000128055 245__ $$aExploring the surface-enhanced Raman scattering (SERS) activity of gold nanostructures embedded around nanogaps at wafer scale: Simulations and experiments
000128055 260__ $$c2023
000128055 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128055 5203_ $$aA unique way of converting free space light into a local electromagnetic field in small spaces is via metallic nanostructuring. In this work fabrication, experimental characterization and simulation of surface-enhanced Raman scattering (SERS) active specimens based on Au nanostructures are discussed. We used displacement Talbot lithography (DTL) to fabricate silicon nano-wedge substrates with Au nanostructures embedded around their apices. After the ion beam etching process, a nanogap is introduced between two Au nanostructures templated over nano-wedges, yielding specimens with SERS characteristics. The Au nanostructures and the nanogaps have symmetric and asymmetric configurations with respect to the wedges. With this nanofabrication method, various wafer-scale specimens were fabricated with highly controllable nanogaps with a size in the order of 6 nm for symmetric gaps and 8 nm for asymmetric gaps. SERS characteristics of these specimens were analyzed experimentally by calculating their analytical enhancement factor (AEF). According to finite-difference time-domain (FDTD) simulations, the Raman enhancement arises at the narrow gap due to plasmonic resonances, yielding a maximum AEF of 6.9  ×  106. The results highlight the SERS activity of the nanostructures and ultimately comply with reliable substrates for practical applications.
000128055 536__ $$9info:eu-repo/grantAgreement/EC/H2020/883390/EU/Advanced Surface Enhanced Raman Spectroscopy (SERS) based technologies for gas and liquids sensING in the area of chemical protection/SERSing$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 883390-SERSing$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108660RB-I00
000128055 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000128055 590__ $$a7.2$$b2023
000128055 592__ $$a1.623$$b2023
000128055 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b85 / 439 = 0.194$$c2023$$dQ1$$eT1
000128055 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000128055 594__ $$a14.9$$b2023
000128055 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128055 700__ $$aMuñoz, Pablo
000128055 700__ $$aBerenschot, Erwin J.W.
000128055 700__ $$aTiggelaar, Roald M.
000128055 700__ $$aSusarrey-Arce, Arturo
000128055 700__ $$aGutiérrez Rodrigo, Sergio
000128055 700__ $$aKooijman, Lucas J.
000128055 700__ $$aGarcía-Blanco, Sonia M.
000128055 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000128055 700__ $$0(orcid)0000-0001-9897-6527$$aPina, María P.$$uUniversidad de Zaragoza
000128055 700__ $$aTas, Niels R.
000128055 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000128055 773__ $$g35 (2023), 101929 [12 pp.]$$tApplied Materials Today$$x2352-9407
000128055 8564_ $$s10827877$$uhttps://zaguan.unizar.es/record/128055/files/texto_completo.pdf$$yVersión publicada
000128055 8564_ $$s2512872$$uhttps://zaguan.unizar.es/record/128055/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128055 909CO $$ooai:zaguan.unizar.es:128055$$particulos$$pdriver
000128055 951__ $$a2024-11-22-11:59:10
000128055 980__ $$aARTICLE